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Abstract: Deep learning based on vibration signal image representation has proven to be effective
for the intelligent fault diagnosis of bearings. However, previous studies have focused primarily
on dealing with single-channel vibration signal processing, which cannot guarantee the integrity of
fault feature information. To obtain more abundant fault feature information, this paper proposes a
multivariate vibration data image representation method, named the multivariate symmetrized dot
pattern (M-SDP), by combining multivariate variational mode decomposition (MVMD) with sym-
metrized dot pattern (SDP). In M-SDP, the vibration signals of multiple sensors are simultaneously
decomposed by MVMD to obtain the dominant subcomponents with physical meanings. Subse-
quently, the dominant subcomponents are mapped to different angles of the SDP image to generate
the M-SDP image. Finally, the parameters of M-SDP are automatically determined based on the
normalized cross-correlation coefficient (NCC) to maximize the difference between different bearing
states. Moreover, to improve the diagnosis accuracy and model generalization performance, this
paper introduces the local-to-global (LG) attention block and locally enhanced positional encoding
(LePE) mechanism into a Swin Transformer to propose the LEG Transformer method. Then, a novel
intelligent bearing fault diagnosis method based on M-SDP and the LEG Transformer is developed.
The proposed method is validated with two experimental datasets and compared with some other
methods. The experimental results indicate that the M-SDP method has improved diagnostic accuracy
and stability compared with the original SDP, and the proposed LEG Transformer outperforms the
typical Swin Transformer in recognition rate and convergence speed.

Keywords: multivariate symmetrized dot pattern; Swin Transformer; fault visualization; rolling
bearing; fault diagnosis

1. Introduction

Rolling bearings are widely used in various industrial fields as a supporting part of
rotating machinery [1,2]. They commonly operate in a complex environment and may
produce different failures following long-term and high-intensity work. These failures
seriously affect the stability and safety of mechanical equipment. Therefore, bearing fault
diagnosis is of great significance in ensuring the reliability of mechanical equipment [3].

Traditional bearing fault diagnosis methods based on mathematical models and ex-
perience require specialized background knowledge and complex signal processing tech-
niques [4]. With the development of artificial intelligence (AI) and big data technology,
intelligent bearing fault diagnosis methods based on machine learning, such as artificial
neural network (ANN) [5], K nearest neighbor (KNN) [6], and support vector machines
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(SVMs), have been universally applied. However, due to their limited learning capacity and
poor generalization properties, these methods find it difficult to process large datasets and
meet the requirements of more complex working conditions. In this context, various deep
learning models have been introduced for fault diagnosis. Based on the successful applica-
tions in the fields of image processing of deep learning methods, many researchers utilize
signal visualization methods that convert one-dimensional signals into two-dimensional
image features for intelligent fault diagnosis [7]. Zhang et al. [8] employed the short-time
Fourier transform (STFT) to obtain the image samples and selected the convolutional neural
network (CNN) for identification. Cheng et al. [9] established the 2D image representation
of the vibration signal of rotating machinery through the continuous wavelet transform
(CWT). Xiao et al. [10] transformed signals into time-domain feature images by the Markov
transition field (MTF) and utilized continuous wavelet transform (CWT) to gain the energy
feature images. Bai et al. [11] proposed a frequency spectrum feature representation method
named the spectral Markov transition field (SMTF). Zhao et al. [12] used the signal-to-
image mapping method to exchange the raw vibration signals for grey images. As one of
the signal visualization methods, the symmetrized dot pattern (SDP) algorithm has been
universally utilized to diagnose bearing faults because of its simple and convenient data
processing process, which reduces the calculation consumption in the process of signal
conversion. Long et al. [13] transformed the original vibration signal by the SDP method
to obtain image information of different motor fault features. Moreover, Long et al. [14]
combined SDP with scale the invariant feature transform (SIFT) to improve image feature
extraction. Tang et al. [15] acquired images of the vibration signals by SDP to take advan-
tage of deep learning methods in image processing. Gu et al. [16] applied SDP to convert
the reconstructed angular domain vibration signals into images and optimized internal
parameters of SDP using Pearson correlation coefficient. Wang et al. [17] adopted the cross-
correlation coefficient to optimize the parameters of the SDP method to improve image
clarity. However, the aforementioned studies aim to process the signal of a single sensor
which cannot completely reflect the information of the bearing failure features. In addition,
vibration signal detection is easily interfered with by external factors [18]. The changes in
the working environment and monitoring position particularly impact the collected data.
Decomposing the signal into different scales will facilitate our comprehensive and accurate
description of the fault features. In previous studies, empirical mode decomposition (EMD)
was widely applied to decompose signals into a series of intrinsic mode functions (IMFs) by
a recursive sifting process. However, the problem of mode mixing inhibits its performance.
Variational mode decomposition (VMD) can effectively separate the various components
by iterative calculation. Multivariate empirical mode decomposition (MEMD) and mul-
tivariate variational mode decomposition (MVMD) extend the corresponding univariate
into multivariate, enabling multiple channels as input. For multichannel signals, using
univariate signal processing methods, such as EMD and VMD, to decompose each channel
separately cannot ensure the mode alignment and correlation. To address the challenges,
multivariate approaches decompose the multichannel signals simultaneously. However,
MEMD still inherits the same issues of mode mixing and noise sensitivity as EMD does.
MVMD effectively solves the mode mixing problem of MEMD and maintains the mode
alignment property. Based on multivariate data processing, fault diagnosis methods have
been universally proposed and achieved excellent results [19,20]. Lv et al. [21] applied
the multivariate empirical mode decomposition (MEMD) approach to extract the fault
feature information. Yuan et al. [22] obtained the intrinsic mode functions through the
adaptive-projection intrinsically transformed MEMD method. Pang et al. [23] proposed a
multisensor information fusion fault detection method based on complex singular spec-
trum decomposition (CSSD). Wang et al. [24] developed the complex variational mode
decomposition (CVMD) method to deal with the complex-valued signals. Song et al. [25]
developed the self-adaptive multivariate variational mode decomposition (MVMD) for
multichannel bearing vibration signals decomposition. In this work, signals monitored
by multiple sensors are co-decomposed by the multivariate variational mode decomposi-
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tion (MVMD) method to obtain signal components at different scales. Subsequently, the
components are mapped to different angles of the SDP image. Combining the advantages
of MVMD and SDP, an image representation method for multivariate vibration signals,
termed the multivariate symmetrized dot pattern (M-SDP), is presented in this paper.

Deep learning methods have been widely used for intelligent fault diagnosis because
of their potential for robust feature extraction, adaptability, good transferability, and power-
ful model-building ability [26–28]. Wang et al. [17] integrated the channel attention with the
CNN model to propose the squeeze-and-excitation-enabled convolutional neural network
(SE-CNN) method to diagnose variable bearing fault states. Wen et al. [29] proposed a
transfer CNN (TCNN) model based on transfer learning and compared it with deep learn-
ing methods based on Visual Geometry Group 16 (VGG-16), Visual Geometry Group 19
(VGG-19), and Inception-V3 to demonstrate the high prediction accuracy of their methods.
Zhang et al. [30] combined the hybrid attention mechanism with ResNet to effectively im-
prove the capability of the model to extract fault features. Wan et al. [31] put forward an
improved 2D LeNet-5 network by adapting the convolution layer and the pooling layer
of LeNet-5 and evaluated the effectiveness of the method. Zhu et al. [32] proposed an im-
proved LeNet-5 method by optimizing the hyperparameters of the LeNet-5 model through
particle swarm optimization (PSO) and applied it to fault diagnosis. Although CNN-model-
based methods have made outstanding achievements in bearing fault diagnosis, they all
have limited model transfer capabilities, which is a crucial requirement for the application
of fault diagnosis in the industrial field [33,34]. In recent studies, transformer-based models
have been introduced from natural language processing to image processing and have
exhibited great potential in transferability [35]. The convolution kernel is utilized to extract
the local feature information in CNN-based models. Consequently, the transformer-based
models are more capable of learning and extracting the global features than the CNN-based
models. A novel transformer-based model, named the Swin Transformer [36], is introduced
and modified for bearing fault identification in this paper. Specifically, the local-to-global
attention block is employed to solve the problem of information interaction limitation in
Swin Transformer and further improve the diagnostic accuracy. In addition, the locally
enhanced positional encoding mechanism is introduced to enhance the generalization
capability of the model. Incorporating the local-to-global attention block with the locally
enhanced positional encoding mechanism into the Swin Transformer method, this paper
proposed a new deep learning method termed the LEG Transformer method.

This paper proposes an intelligent bearing fault diagnosis method based on M-SDP
and LEG Transformer. The M-SDP algorithm is used to establish the image representation
of the multichannel vibration signals of bearings, which intuitively reflects the visual
features of different bearing fault states. The proposed LEG Transformer is employed to
automatically learn and extract features of M-SDP images for bearing fault identification.
The M-SDP algorithm can integrate the fault information of multiple sensors to establish
more abundant fault features. The LEG Transformer aims to improve the recognition rate
and convergence speed of classification.

The rest of the paper is organized as follows. Section 2 presents the basic principles
of MVMD, SDP, and the proposed M-SDP methods. Section 3 introduces the theoretical
basis of LEG Transformer. Section 4 presents the specific steps of the designed bearing fault
diagnosis framework. The proposed method is verified and compared with some other
methods by two different datasets in Section 5. Finally, conclusions are given in Section 6.

2. Multivariate Symmetrized Dot Pattern
2.1. Multivariate Variational Mode Decomposition

Multivariate variational mode decomposition (MVMD) is a decomposition method for
the co-processing of multichannel input signals [37]. It can concurrently detect the intrinsic
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mode function (IMF) components uk(t) from the multichannel signals, i.e., x(t) = [x1(t), x2(t),
. . . , xc(t)].

x(t) =
K

∑
k=1

uk(t) (1)

where uk(t) = [uk1(t), uk2(t), . . . , ukN(t)].

The IMFs {uk(t)}K
k=1 should be compact around their estimated center frequencies ωk,

(k = 1, 2, . . . , K), and they can be estimated by solving the optimization problem as follows:

L
({

uk,c
}

, {ωk}, λc
)
= α∑

c
∑
k

∥∥∥∂t

[
uk,c
+ (t)e−jωkt

]∥∥∥2

2
+ ∑

c

∥∥∥∥∥xc(t)−∑
k

uk,c(t)

∥∥∥∥∥
2

2

+ ∑
c

〈
λc(t), xc(t)−∑

k
uk,c(t)

〉
(2)

where uk,c
+ (t) represents the analytical signal representations of the corresponding channel

c and mode k, α denotes the quadratic penalty factor, and λc(t) specifies the Lagrangian
multiplier.

The variational problem can be effectively solved by applying alternate direction
method of multipliers (ADMM). Then, the modes uk,c(t) in the frequency domain are
updated as Equation (3) and the estimated center frequency ωk of the mode can be obtained
by Equation (4).

ûn+1
k,c (ω) =

x̂c(ω)−∑ i 6=kû i,c(ω) + λ̂c(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k,c =

∑
c

∫ ∞
0 ω

∣∣∣ûn+1
k,c

∣∣∣2dω

∑
c

∫ ∞
0

∣∣∣ûn+1
k,c

∣∣∣2dω

(4)

2.2. Symmetrized Dot Pattern

The symmetrized dot pattern (SDP) algorithm is a visualization method capable of
transforming time-domain signals on a Cartesian coordinate system into symmetric images
on a polar coordinate system [38]. Specifically, it uses a normalization method to transform
a one-dimensional signal in the time domain into an angular vector and two-length vectors
in polar coordinates. Compared with the more complex time and frequency domain
analysis methods, the SDP method is more straightforward and enables the visualization of
signal features. The varying of the SDP image represents the change of signal characteristics
in time and frequency domains, and the difference of the original signal category can be
judged by the significant difference between the images. Figure 1 shows the principle
of SDP.
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The SDP representation of the 1D signal F(t) can be represented as:

F(t)→ S(r(i), θ(i), φ(i)) (5)

where r(i), θ(i), and φ(i) have the following expression:

r(i) =
xi − xmin

xmax − xmin

θ(i) = γ +
xi+L − xmin

xmax − xmin
ξ

φ(i) = γ − xi+L − xmin

xmax − xmin
ξ

(6)

where xi is the sampled i-th time-domain signal, and xmax and xmin represent the maximum
and minimum values of the vibration signal, respectively. L denotes the time interval
parameter. ξ represents the magnification factor of the plotting angle (ξ ≤ γ). r(i) is the
radius of the i-th signal in polar coordinates. γ specifies the rotating angle of the reference
line. θ(i) and φ(i) signify the clockwise and counterclockwise rotation angles of the mirror
symmetry diagram in polar coordinates, respectively.

2.3. Principle of M-SDP

By combing the multivariate data processing capability of MVMD and the image
representation advantage of SDP, this paper develops an image representation method for
multivariate vibration data, termed the multivariate symmetrized dot pattern (M-SDP).
The MVMD is employed to decompose the multichannel data of bearing to gain the IMFs
at different scales. Then, each IMF component is assigned to a different angle to obtain the
M-SDP image. Taking the two channel vibration signals as an example, the M-SDP image
can be generated when the decomposed number of MVMD is set to 3, as shown in Figure 2.
The traditional SDP method rotates the mirror symmetry plane multiple times at a constant
angle to create a complete pattern. Therefore, the traditional SDP image contains redundant
information. Unlike SDP, the colour and shape of the arms are valid features at each angle
in the M-SDP image. Therefore, the proposed M-SDP method can not only integrate the
fault information of the multivariate data but also can inhibit information redundancy.
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3. LEG Transformer Method

The models based on Swin Transformer architecture have demonstrated superior
performance in computer vision fields such as image classification, target detection, and
semantic segmentation [39]. In this paper, we proposed the LEG Transformer method to
classify different fault states.
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3.1. Swin Transformer Overall Architecture

The Swin Transformer has a hierarchical structure similar to convolutional neural
networks (CNN) [36], and the architecture of the Swin Transformer is visualized in Figure 3.
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Figure 3. The architecture of the Swin Transformer.

The input images with the size of H ×W × 3 are fed into the patch partition module.
Next, they are split into a set of non-overlapping patches with a size of 4 × 4. Then, raw
feature dimension is projected to an arbitrary dimension (specified as C) after the operation
in the linear embedding (LE) layer. Furthermore, these patch tokens will be computed
through several Swin Transformer blocks. These blocks, together with the linear layers,
constitute Stage 1.

The entire network consists of four stages to generate a hierarchical representation. In
each of the following layers, every stage contains two modules which are patch merging
(PM) layer and Swin Transformer block. The number of tokens is reduced by a multiple of
4 with a patch merging layer, while the output dimensions are increased by a multiple of 2.
Meanwhile, the Swin Transformer block is capable of feature transformation. This process
will be repeated three times to construct Stages 2–4.

3.2. Swin Transformer Block

As shown in Figure 4, there are two successive blocks to constitute the Swin Trans-
former block. The first block utilizes a window-based multi-head self-attention (W-MSA)
module, while the second block employs the shifted window multi-head self-attention
(SW-MSA) module based on shifted windows.
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Based on the shifted window partitioning method, successive Swin Transformer blocks
can be expressed as:

x̂l = W−MSA
(

LN
(

xl−1
))

+ xl−1 (7)

xl = MLP
(

LN
(

x̂l
))

+ x̂l (8)

x̂l+1 = SW−MSA
(

LN
(

xl
))

+ xl (9)

xl+1 = MLP
(

LN
(

x̂l+1
))

+ x̂l+1 (10)
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where x̂l denotes the outputs of the W-MSA or SW-MSA module of l-th block, xl denotes
the outputs of the multi-layer perceptron (MLP) module for block l, and LN represents the
LayerNorm layer.

Define the input token X ∈ RN×D, and the Swin Transformer will reshape the input to

a X̂ ∈ R
hw
M2×M2×D feature firstly. Besides, supposing every window has M ×M patches,

so the entire number of windows is hw
M2 . Subsequently, every patch feature is computed

through SW-MSA. The query matric Q, key matric K, and value matric V are acquired by
the functions given below:

Q = XWQ K = XWK V = XWV (11)

where WQ, WK, and WV are the weight matrices shared between different windows.
Self-attention with a relative position bias is calculated as:

Attention(Q, K, V) = SoftMax
(

QKT
√

d
+ B

)
V (12)

where Q ∈ RM2×d, K ∈ RM2×d, V ∈ RM2×d, and d denote the dimension of query or key.
B represents the bias matrix of the values obtained from B̂.

3.3. Improvement Mechanisms

The original Swin Transformer only considers the relationships between adjacent
regions when computing the self-attention modules. It limits the capability of the Swin
Transformer method by ignoring the integrity of the global characteristics. To address this
issue, the local-to-global attention block is introduced to extend feature interaction to local
areas of different scales [40]. In particular, this block expands the original module to a
multi-route approach, which is easier to operate and does not require the introduction of
new modules. Afterwards, local and global features will be integrated into more effective
tokens. In the meantime, the locally enhanced positional encoding (LePE) mechanism is
introduced to make our approach more efficient in modelling [41]. It can compute local
features much better than other positional coding mechanisms and can process images of
different resolutions, thus enhancing the model generalization capability.

The local-to-global (LG) attention block has three SW-MSA modules running simulta-
neously to compute local attention and collect local-to-global data with feature commu-
nications, as shown in Figure 5. The feature maps will be downsampled among the two
parallel routes before entering the SW-MSA module. Then, the outputs are upsampled to
the same size and concatenated. Afterwards, they are calculated in the LN and MLP layers.
The local-to-global attention block can be expressed as:

x̂l
O = SW−MSA

(
LN
(

xl−1
))

(13)

x̂l
d,1 = SW−MSA

(
Bd1

(
LN
(

xl−1
)))

(14)

x̂l
d,2 = SW−MSA

(
Bd2

(
LN
(

xl−1
)))

(15)

x̂l = x̂l
O + Bu1

(
x̂l

d,1

)
+ Bu2

(
x̂l

d,2

)
+ xl−1 (16)

xl = MLP
(

LN
(

x̂l
))

+ x̂l (17)

where x̂l
O, x̂l

d,1 and x̂l
d,2 denote the middle features with local-to-global information. Bd

represents the bilinear downsampled module, while Bu signifies the bilinear upsampled
module. x̂l is the collection of features and xl is the outputs.
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Positional encoding is a mechanism for adding positional information in images
to self-attention operations. Classical positional encoding mechanisms are conditional
positional encoding (CPE), relative positional encoding (RPE), and absolute positional
encoding (APE). However, the recently proposed LePE mechanism leads to better results
for image classification. The difference between these positional coding mechanisms shows
in Figure 6. APE and CPE attach positional information into the feature maps before
entering the Swin Transformer blocks, while RPE and LePE integrate that within each
Swin Transformer block. RPE introduces the positional information into the self-attention
calculation, while LePE processes V directly. The formula of self-attention computation
with the LePE mechanism is given below:

Attention(Q, K, V) = SoftMax
(

QKT
√

d

)
V + DWConv(V) (18)

where DWConv is the depth-wise convolution operator.
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3.4. Architecture of LEG Transformer

A new deep-learning method named the LEG Transformer is developed in this work.
The introduction of the SW-MSA mechanism made it possible to interact with the informa-
tion between different windows. Nevertheless, the feature communication is still restricted
to a local area. To address this problem, the local-to-global attention block is employed
to replace the Swin Transformer block in stage 1, stage 2 and stage 3. Additionally, the
locally enhanced positional encoding (LePE) mechanism is brought into the W-MSA and
SW-MSA modules. The overall structure of the LEG Transformer is presented in Figure 7.
The detailed configurations of the LEG Transformer are shown in Table 1.
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Table 1. Detailed configurations of the LEG Transformer.

Downsampled
Rate

Output
Size Layer Concatenation

Rate
Output

Dimensions Scale Rates Window
Size Heads

Stage 1 4× 56×56
LE 4 × 4 96
LG 96 [4×, 16×, 32×] 7 × 7 3

Stage 2 8× 28 × 28
PM 2 × 2 192
LG 192 [8×, 16×, 32×] 7 × 7 6

Stage 3 16× 14 × 14
PM 2 × 2 384
LG 384 [16×, 32×] 7 × 7 12

Stage 4 32× 7 × 7
PM 2 × 2 768

SW-MSA 768 [32×] 7 × 7 24

4. The Specific Steps of the Proposed Method

Combining the M-SDP and LEG Transformer methods, a novel intelligent bearings
fault diagnosis method is put forward. Its flowchart is shown in Figure 8. The detailed
steps of the proposed method are given as follows:

Step 1: Decompose the data of the input N signal channels to obtain the dominant
intrinsic mode functions (IMFs) by MVMD.

Step 2: Map the input dominant IMFs of MVMD to different angles to generate the
M-SDP image.

Step 3: Divide the M-SDP images of different datasets into training, validation, and
testing datasets.

Step 4: Utilize the LEG Transformer to learn and extract the features of prepared
datasets and classify different fault states simultaneously.

Step 5: Implement the trained model of Step 4 to the testing dataset and evaluate the
LEG Transformer diagnostic method.
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5. Experimental Results and Analysis
5.1. Case 1

In this case, the proposed method was validated by using the bearing dataset from
the Case Western Reserve University (CWRU) [42]. Figure 9 displays the testbed for data
collection. The CWRU experiment apparatus mainly consists of an induction motor, rolling
bearings, a torque transducer, and a dynamometer. The types of bearing states can be
classified as normal (N), inner-race fault (IF), ball fault (BF), and outer-race fault (OF),
respectively. The diameters of each fault are 0.1778 mm, 0.3556 mm, and 0.5334 mm. The
experimental data were chosen from the drive end and fan end with a sampling frequency
of 12 kHz. In total, ten bearing working states under the motor load of 0 hp were analyzed.
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This subsection processes data from two sensors through the proposed M-SDP ap-
proach. To ensure the integrity of the individual fault features, the information collected
on the drive end with the fan end was fused. Firstly, the raw fused vibration signals
were divided into sub-sequence signals of equal length, containing 2048 sampling points.
Secondly, a series of feature data were obtained at different scales by co-processing the
information from two sensors through the MVMD method. Subsequently, the feature data
of different scales were arranged at different angles to gain the M-SDP images, which real-
ized the fusion of multisensor and multiscale information. However, the choice of internal
parameters γ, ξ, and L can affect the difference between each M-SDP image. Therefore, the
parameters should be selected appropriately. The M-SDP datasets of outer race fault were
used to analyze the parameters selection. Since we adopted 2 channel vibration signals and
the number of the decomposed number was set to 3 when using MVMD, 6 IMFs needed to
be mapped to the polar coordinate system, thus γ was set at 60◦. Moreover, L was set to
1, 5, and 10, and ξ was set to 10◦, 30◦, and 50◦, respectively. The above parameters were
combined to generate nine M-SDP images, as shown in Table 2.

Table 2. M-SDP images with different internal parameters.

State: Outer Race Fault

ξ = 10◦ ξ = 30◦ ξ = 50◦

L = 1
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As displayed in Table 2, the differences in shape characteristics, thickness, and cur-
vature of each arm in the M-SDP image can be reflected by changing ξ and L. Specifically,
the rotation angle of arms along the initial line gradually increased with the increase in
parameter ξ and the thickness of each arm increased slightly with ξ. If the rotational
curvature and the thickness of the arms were too small, it reduced the area of recognized
features, and the points on the edge of each arm were scattered when they were too large.
The above situation can bring obstacles to image classification. Hence, it is particularly
important to select appropriate values of ξ and L.

In order to further select the optimal parameters, the normalized cross-correlation
coefficient (NCC) method was adopted in this work. For two images M and N, with the
same size a × b, the NCC can be expressed by

R(θ,g,L)(M, N) =
∑ ∑

(
Mab −M

)(
Nab − N

)√[
∑ ∑

(
Mab −M

)2
][

∑ ∑
(

Nab − N
)2
] (19)
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where M and N denote the average value of the three channels of image M and N, respec-
tively. The value of R can be used to measure the similarity of two M-SDP images. R ranges
from 0 to 1, and the higher the value of R is, the more similar the images of M and N are.
The value of L is identified by traversing the interval of [1,10] at step size 1, and the value
of ξ is identified by traversing the interval of [20,50] at step size 5. Since there are ten
fault types in our datasets, a 10 × 10 matrix can be obtained by calculating the correlation
coefficient between every two M-SDP images. Then, the average correlation coefficient of
the matrix can be calculated, which is considered the correlation coefficient of ten M-SDP
fault images under the current combination of ξ and L. Following this, the non-correlation
degree (NR) was further calculated, and the results are displayed in Table 3. From Table 3,
the maximum values of NR correspond to ξ = 35◦ and L = 7.

Table 3. Non-correlation value under different parameters of ξ and L.

ξ = 20◦ ξ = 25◦ ξ = 30◦ ξ = 35◦ ξ = 40◦ ξ = 45◦ ξ = 50◦

L = 1 0.281 0.332 0.452 0.463 0.468 0.474 0.409
L = 2 0.285 0.325 0.364 0.400 0.386 0.389 0.380
L = 3 0.295 0.335 0.373 0.410 0.446 0.421 0.396
L = 4 0.321 0.358 0.423 0.456 0.442 0.438 0.412
L = 5 0.332 0.373 0.421 0.458 0.453 0.467 0.457
L = 6 0.325 0.385 0.447 0.461 0.464 0.445 0.451
L = 7 0.351 0.392 0.452 0.500 0.495 0.490 0.443
L = 8 0.341 0.396 0.449 0.499 0.451 0.448 0.431
L = 9 0.348 0.381 0.459 0.497 0.444 0.428 0.429
L = 10 0.352 0.359 0.438 0.479 0.470 0.446 0.402

The relationship between NR and the parameters ξ and L can be directly reflected in
Figure 10. From Figure 10, when the range of ξ is from 20 to 35, the value of NR increases
gradually, but it declines gradually when ξ is between 35 and 50. When ξ is fixed, there
is usually a peak of NR at L = 7. Thus, ξ and L are eventually determined by 35 and 7,
respectively. According to the selected parameters, the ten types of M-SDP data obtained
are shown in Figure 11. Meanwhile, to confirm the effectiveness of the M-SDP method, the
single sensor data are processed using the original SDP method as a comparison, and ten
types of SDP data are obtained as shown in Figure 12.
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The M-SDP and SDP datasets were randomly divided to validate the diagnostic
accuracy of the M-SDP method. Each bearing working condition contains 2000 samples as
a training dataset, 400 samples as a validation dataset, and 100 samples as a testing dataset.
The LEG Transformer designed in this paper was performed to process the prepared
datasets. The initial learning rate of the model is 0.001 and the training epoch is 50. The
accuracy of the obtained validation dataset is shown in Figure 13a, and the loss curve is
shown in Figure 13b. According to the validation accuracy curves of M-SDP and SDP
in Figure 13a, the validation accuracy starts to stabilize and remains around 100% when
the training epoch reaches 16. However, the accuracy of the original SDP method is still
low and fluctuates wildly before the epoch training reaches 30. From Figure 13b, it can be
noticed that the loss of the M-SDP dataset also drops to very low level at epoch 10, while the
original SDP has higher loss values than our proposed M-SDP method in all 50 epochs. To
further ensure the reliability of the experimental results, the trained model was applied to
the pre-prepared testing dataset, and the results include accuracies and standard deviation
(SD) as shown in Table 4. The M-SDP datasets have no false diagnoses during testing and
show superior diagnostic stability with an average accuracy of 100%.
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Table 4. The testing results using M-SDP and SDP (%).

Methods Max Min Mean SD

M-SDP 100.00 100.00 100.00 0
SDP 99.11 98.76 99.06 0.16

The above results clearly show that the M-SDP method has a compelling improve-
ment over the original SDP, especially in accuracy and stability during training. In the
industrial field, real-time fault monitoring is highly required for the efficiency and stability
of diagnosis. Accidental misdiagnosis will still have a particularly negative impact on
mechanical equipment. The dataset generated by the M-SDP method proposed in this
paper has a fast convergence performance during training, and the diagnostic accuracy of
the trained model is exceptionally high. The results demonstrate that the M-SDP method
can further amplify the differences between categories while making the characteristics of
each category more significant.

To further validate the performance of the LEG Transformer (LEGT) model exploited
in this paper, it was compared with the typical Swin Transformer method for different
processes. According to the analysis in the official paper of the Swin Transformer, the model
trained with pre-trained weights offered by officials can achieve better recognition accuracy.
For this reason, this paper introduced the pre-trained weights in model training. At the
same time, more extensive comparisons were made with SE-CNN, TCNN (ResNet-50),
PSO-LeNet-5, VGG-19, and Inception-V3 models. The pre-prepared M-SDP datasets were
used for fault diagnosis of each deep learning model. Besides, a machine learning method
named the particle-swarm-optimization-based support vector machine (PSO-SVM) was
implemented to evaluate the necessity of deep learning methods [43]. Figure 14 presents
the accuracy and loss of the LEG Transformer and the typical Swin Transformer in the
training process.

The designed LEG Transformer method achieves the desired effect at about 10 epochs
during the training process. In addition, the convergence speed is significantly enhanced
compared with before the improvement. The accuracy of the validation dataset and the
training loss for deep learning models are shown in Figure 15. From Figure 15, LEG
Transformer outperforms other models in recognition accuracy over 50 epochs and has the
best stability for fault diagnosis. The LEG Transformer and the Swin Transformer have
higher accuracy and convergence speed than other CNN-based models, demonstrating the
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excellent performance of transformer-based structural models. To show the classification
effect of the LEG Transformer more intuitively, the classification results are visualized using
the T-distributed stochastic neighbor embedding (t-SNE) method [44], as presented in
Figure 16. From the t-SNE figure, it can be observed that the LEG Transformer can effectively
separate different features. To further verify the performance of the LEG Transformer model,
each model was applied to the testing dataset. Figure 17 shows the confusion matrix of
LEG Transformer in processing the testing dataset. The accuracy of each model applied to
the testing dataset is shown in Table 5.
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Table 5. The results of the testing dataset in different models (%).

Methods Max Min Mean SD

LEG Transformer (LEGT) 100.00 100.00 100.00 0
Swin Transformer (Swin) 100.00 99.95 99.97 0.02

SE-CNN 99.99 99.36 99.67 0.19
TCNN (ResNet-50) 99.79 99.21 99.58 0.16

PSO-LeNet-5 99.62 98.99 99.57 0.21
VGG-19 99.96 97.89 98.68 0.72

Inception-V3 99.38 97.23 98.71 0.86
PSO-SVM 99.23 95.59 97.39 0.26

From Table 5, the LEG Transformer method proposed in this paper achieves up to
100% average accuracy in classifying the testing dataset. At the same time, the standard
deviation of the LEG Transformer is 0. The accuracy values of the Swin Transformer,
SE-CNN, TCNN(ResNet-50), PSO-LeNet-5, VGG-19, Inception-V3, and PSO-SVM are
99.97% ± 0.0002, 99.67% ± 0.0019, 99.58% ± 0.0016, 99.57% ± 0.0021, 98.68% ± 0.0072,
98.71% ± 0.0086, and 97.39 ± 0.0026, respectively. Table 6 shows the comparative result
of all models published in the literature. The results reveal that the LEG Transformer
outperforms the other models. In conclusion, the proposed LEG Transformer method has
superior diagnostic accuracy and stable performance.



Machines 2022, 10, 550 17 of 23

Table 6. Comparative results published in the literature.

Reference Methods Accuracy (%)

Present work LEG Transformer (LEGT) 100.00
Liu et al. [36] Swin Transformer (Swin) 99.97

Wang et al. [17] SE-CNN 99.81
Wen et al. [29] TCNN (ResNet-50) 99.99
Zhu et al. [32] PSO-LeNet-5 98.71

Simonyan et al. [45] VGG-19 98.68
Szegedy et al. [46] Inception-V3 98.71

Yan et al. [43] PSO-SVM 97.08

5.2. Case 2

To further analyze the generalization capability and robustness of the proposed LEG
Transformer model, this case employed it with a new dataset for testing and comparison.
Figure 18 displays the testbed for data acquisition and the roller bearing NU205E was
chosen as the experimental bearing [47]. The vibration signals were collected at a shaft
speed of 2050 rpm and a load of 200 N. In this case, the vertical channel and the horizontal
channel of the data acquisition device were adopted. The dataset composition that contains
twelve fault types is specifically demonstrated in Table 7.
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Table 7. The composition of the dataset.

Bearing State Label Fault Size (mm)

Inner-race fault

A1 0.43
A2 1.01
A3 1.56
A4 2.03

Outer-race fault

B1 0.42
B2 0.86
B3 1.55
B4 1.97

Ball fault

C1 0.49
C2 1.16
C3 1.73
C4 2.12

Normal N -

In this case, the procedure to select internal parameters and form the M-SDP datasets
is similar to Case 1. The M-SDP images for the thirteen types of bearing states are displayed
in Figure 19. The original SDP images as a comparison are presented in Figure 20.
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The M-SDP and SDP datasets are randomly split, with 2000 samples of each category
as a training dataset, 400 samples as a validation dataset, and 100 samples as a testing
dataset. The proposed LEG Transformer was implemented on the prepared datasets. The
accuracy of the validation dataset of M-SDP and original SDP during training is displayed
in Figure 21a, and the loss curve is shown in Figure 21b.
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In the M-SDP datasets of this case, Figure 21a,b demonstrate a significant advantage in
the accuracy of the validation dataset compared with the original SDP. For different kinds
of bearing states, the datasets obtained by the M-SDP method have a fast convergence
speed and excellent stability of correct classification. Table 8 demonstrates the experimental
results for the testing dataset. From Table 8, the diagnostic effect of the M-SDP datasets is
better than the original SDP method in this process.

Table 8. The testing results using M-SDP and SDP (%).

Methods Max Min Mean SD

M-SDP 99.63 97.34 99.07 0.26
SDP 99.35 96.57 98.01 0.46

In this case, the proposed LEG Transformer (LEGT) was compared with the Swin
Transformer, SE-CNN, TCNN (ResNet-50), PSO-LeNet-5, VGG-19, Inception-V3, and PSO-
SVM models. The accuracy and loss curves of the LEG Transformer and the original Swin
Transformer in the training process are shown in Figure 22.
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Similarly, the LEG Transformer showed significantly improved diagnostic performance
over the original Swin Transformer. The accuracy of the validation datasets for deep
learning models and train loss are shown in Figure 23.
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Similar to the dataset in Case 1, the LEG Transformer is still the best among all models
in classification accuracy and fault diagnosis stability. The LEG Transformer visualization
of the classification results for this section of the dataset is illustrated in Figure 24. The
confusion matrix of LEG Transformer is shown in Figure 25. The classification results of
the testing dataset for each model are shown in Table 9.

Machines 2022, 10, x FOR PEER REVIEW 20 of 23 
 

 

  
(a) (b) 

Figure 23. The training process among different models: (a) validation accuracy curves; (b) training 
loss curves. 

Similar to the dataset in Case 1, the LEG Transformer is still the best among all 
models in classification accuracy and fault diagnosis stability. The LEG Transformer 
visualization of the classification results for this section of the dataset is illustrated in 
Figure 24. The confusion matrix of LEG Transformer is shown in Figure 25. The 
classification results of the testing dataset for each model are shown in Table 9. 

Table 9. The results of the testing dataset in different models (%). 

Methods Max Min Mean SD 
LEG Transformer(LEGT) 99.67 98.78 99.15 0.14 
Swin Transformer (Swin) 99.03 97.84 98.95 0.21 

SE-CNN 98.88 98.28 98.67 0.20 
TCNN (ResNet-50) 98.57 97.68 98.10 0.35 

PSO-LeNet-5 98.44 96.62 97.86 0.38 
VGG-19 98.40 96.69 98.01 0.76 

Inception-V3 97.71 95.89 97.23 0.84 
PSO-SVM 98.26 94.63 96.98 0.67 

 
Figure 24. Visualization results of the LEG Transformer. 

Figure 24. Visualization results of the LEG Transformer.

Machines 2022, 10, x FOR PEER REVIEW 21 of 23 
 

 

 
Figure 25. Confusion matrix of the LEG Transformer. 

The LEG Transformer has superior performance when dealing with different datasets, 
and these results indicate that the model has strong generalization ability and robustness. 

6. Conclusions 
This study presents a bearing fault diagnosis method based on M-SDP and the LEG 

Transformer. The proposed M-SDP method ensures the integrity and richness of bearing 
condition information by taking advantage of MVMD and SDP. SDP was applied to 
visualize the multisensor and multiscale information. Compared with SDP, the M-SDP 
method was proven to be better in expressing the difference between various features in 
processing vibration signals and significantly improves the diagnostic accuracy and stability 
during testing in two datasets. In addition, this paper effectively combines the local-to-global 
attention block and the locally enhanced positional encoding mechanism and applies them 
appropriately to the Swin Transformer framework to satisfy the requirements of bearing 
fault diagnosis, thus proposing the LEG Transformer. The experimental results demonstrate 
that the diagnostic accuracy is over 99% of the proposed method in processing testing 
datasets, indicating that the LEG Transformer has more powerful image processing and 
feature extraction ability than the typical Swin Transformer. Compared with different 
CNN-based models, it was found that the LEG Transformer has a higher classification 
recognition rate, better convergence, and the best stability. All the above results confirm the 
validity and reliability of the proposed LEG Transformer method. 

In future research, the fusion of more signal channels will be considered, and the 
effectiveness of the proposed bearing fault diagnosis method will be validated. 

Author Contributions: Conceptualization, B.P. and J.L.; methodology, B.P., J.L., and H.L.; 
software, B.P., J.L., and H.L.; formal analysis, J.D.; resources, B.P.; writing original draft 
preparation, B.P., J.L., and H.L.; writing—review and editing, Z.X. and X.Z.; supervision, B.P.; 
project administration, B.P.; funding acquisition, B.P. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was funded by the Natural Science Foundation of Hebei Province, China 
(No. E2021201032), Hebei University high-level talents research start project (521000981420) and 
Baoding Science and Technology Plan Project (2074P019). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

Figure 25. Confusion matrix of the LEG Transformer.



Machines 2022, 10, 550 21 of 23

Table 9. The results of the testing dataset in different models (%).

Methods Max Min Mean SD

LEG Transformer (LEGT) 99.67 98.78 99.15 0.14
Swin Transformer (Swin) 99.03 97.84 98.95 0.21

SE-CNN 98.88 98.28 98.67 0.20
TCNN (ResNet-50) 98.57 97.68 98.10 0.35

PSO-LeNet-5 98.44 96.62 97.86 0.38
VGG-19 98.40 96.69 98.01 0.76

Inception-V3 97.71 95.89 97.23 0.84
PSO-SVM 98.26 94.63 96.98 0.67

The LEG Transformer has superior performance when dealing with different datasets,
and these results indicate that the model has strong generalization ability and robustness.

6. Conclusions

This study presents a bearing fault diagnosis method based on M-SDP and the LEG
Transformer. The proposed M-SDP method ensures the integrity and richness of bearing
condition information by taking advantage of MVMD and SDP. SDP was applied to visual-
ize the multisensor and multiscale information. Compared with SDP, the M-SDP method
was proven to be better in expressing the difference between various features in processing
vibration signals and significantly improves the diagnostic accuracy and stability during
testing in two datasets. In addition, this paper effectively combines the local-to-global
attention block and the locally enhanced positional encoding mechanism and applies them
appropriately to the Swin Transformer framework to satisfy the requirements of bearing
fault diagnosis, thus proposing the LEG Transformer. The experimental results demonstrate
that the diagnostic accuracy is over 99% of the proposed method in processing testing
datasets, indicating that the LEG Transformer has more powerful image processing and
feature extraction ability than the typical Swin Transformer. Compared with different
CNN-based models, it was found that the LEG Transformer has a higher classification
recognition rate, better convergence, and the best stability. All the above results confirm
the validity and reliability of the proposed LEG Transformer method.

In future research, the fusion of more signal channels will be considered, and the
effectiveness of the proposed bearing fault diagnosis method will be validated.
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