
Citation: Lei, S.; Mao, K.; Tian, W.; Li,

L. A Three-Dimensional Transition

Interface Model for Bolt Joint.

Machines 2022, 10, 511. https://

doi.org/10.3390/machines10070511

Academic Editors: Dar-Zen Chen and

Kuan-Lun Hsu

Received: 23 May 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

A Three-Dimensional Transition Interface Model for Bolt Joint
Sheng Lei 1,* , Kuanmin Mao 2, Wei Tian 1 and Li Li 2,3

1 School of Computer Science, South-Central Minzu University, Wuhan 430074, China; victor-tian888@163.com
2 School of Mechanical Science and Engineering, Huazhong University of Science and Technology,

Wuhan 430074, China; kmmao4645@sina.com (K.M.); lili_em@hust.edu.cn (L.L.)
3 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science

and Technology, Wuhan 430074, China
* Correspondence: leisheng945@sina.com

Abstract: Bolt connection is an important component in mechanical structure which significantly
affects the dynamic property of the whole structure. In this paper, a three-dimensional transition
interface model which contains geometric and physical parameters is proposed to model the bolted
joint based on the contact analysis. The geometric parameters and the physical parameters are used to
characterize the influence of contact area and contact pressure which are related to connection param-
eters such as material, roughness, connection thickness, and tightening force, respectively. After that,
the geometric parameter identification method is proposed, and the geometric parameter database
of bolt joints for machine tools is constructed based on the Kriging interpolation method. Then, the
model updating method based on the combination of modal parameters and frequency response
function is proposed to identify the physical parameters and thickness of the three-dimensional tran-
sition interface model. The database of the transition interface model is constructed after verifying
the validity of the proposed model. Finally, an engineering example of an engraving machine tool
is used to check the practicability of the proposed transition interface model and the usage of the
constructed parameter database.

Keywords: bolt joint; transition interface model; contact characteristic; dynamic model; parameter
identification

1. Introduction

Finite element analysis, which has been widely used in machine tools, aircraft, auto-
mobiles, and other industrial designs, can greatly shorten the design period of products
and improve their competitiveness of products. The key factor of finite element analysis is
to establish an accurate digital model which could reflect the performance of the structure.
Nowadays, commercial finite element software such as ANSYS and Nastran could treat
single mechanical parts with high accuracy, but the modeling of large mechanical systems
is somewhat unsatisfactory. One of the main barriers lies in the modeling of connected
joints. The dynamic modeling and parameter identification of joints have attracted much
attention from researchers from all over the world.

The bolt joint is almost the most common connection in mechanical systems, and
various models are proposed around the modeling of this joint. The commonly used model
includes the classic spring-damping model [1–4], the zero-thickness model [5–7], the eight-
nodes-hexahedron-element model [8,9], the elastic contact stiffness model [10,11], and the
virtual material model [12–15]. The spring-damping model is simple and convenient, and
therefore, it has been widely used in engineering structures. However, this kind of model
ignores the coupling effect between the joints, and the distribution of springs is closely
related to the connected structure [14], which limited the accuracy of this model. The zero-
thickness model and the eight-nodes-hexahedron model reflect the coupling effect between
the joints and the degree of freedom which could give high modeling precision, but the
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parameters of this kind of model are too much, which makes the modeling process complex,
and makes the iterative optimization design time-consuming. The virtual material model
treats the joint as a layer of material that can be easily combined with the general finite
element software for engineering applications. However, the testing results of pressure
distribution of the bolted connection showed that the practical contact scope is limited to
the bolt-related area [16–19], while the common virtual material model does not consider
these local features.

The parameter identification methods of the joint can be classified as direct method
and indirect method. The direct method includes the direct measurement of force and
displacement which is used in the spring model [20,21], the Hertz contact theory [22–24],
or the fractal theory used in the virtual material model [14,25–27]. Nowadays, the virtual
material model is usually carried out by using the Hertz contact theory and the fractal
theory to deduce the elastic modulus and Poisson’s ratio. However, this kind of parameter
identification method faces the challenge to determine the thickness of virtual material,
whose value changes from 0.031–0.131 mm and has a great influence on the dynamic
property of the virtual material model [28].

For the indirect method, the dynamics characteristics of the overall structure are tested
first, and then the model updating or the inverse method is used for model parameter iden-
tification. The commonly used indirect methods contain the frequency-response-function-
based method and model-parameters-based method. In the frequency-response-function-
based methods, the dynamic matrices of the sub-structures are calculated theoretically and
the FRF of the whole structure is obtained experimentally, and then the joint parameters
are calculated by inverse methods [29–32]. The difference with this kind of method lies
in the way to treat the inverse problem. As the joint parameters are usually sensitive to
the FRF near the resonance, the FRFs near the resonance are usually used in parameter
identification. However, a slightly offset modal frequency could introduce huge errors to
the experimental FRF, which makes this kind of parameter identification method sensitive
to noise, especially for lightly damped systems. Due to the effort of lots of researchers,
the sensitivity analysis of eigenproblems including the undamped systems [33], damped
systems [34–36], and repeated root systems [37–41] have been developed maturely, which
lay the foundation for parameter identification based on modal parameters. However, due
to the imperfection of the test modes, the result of parameter identification may appear to
be static uncertainty. A suitable parameter identification method of joint with high accuracy
is still the pursuit of researchers.

In this paper, a three-dimensional transition interface model for bolt joints is proposed.
In Section 2, the existing problems of modeling bolt joints are stated, and therefore, a transi-
tion interface model of bolt joint which contains the geometrical and physical parameters is
proposed. Section 3 introduced the geometric parameter identification method and then
established the geometric parameter database of bolt joints for machine tools. In Section 4,
the model updating method with left- and right-weighted matrix is developed for physical
parameters identification, while the accuracy of the parameter’s identification method and
the joint model is verified. The database of the transition interface model for bolted joints is
then constructed. In Section 5, the application of the engraving machine tool is used as an
engineering example to check the practicability of the proposed transition interface model
and the constructed model database.

2. Problem Statement and a Transition Interface Model of Bolt Joint

In the bolt-connected structure, two substructures are bolted together as a whole
system under the action of preloads. The essence of bolt connection can be thought of as a
contact problem. One of the widely-used models is the zero-thickness model [5–7], which
states that the contact zone of the contacting bodies can be modeled using an interface
whose thickness is zero.

When the plane elements are adopted in the zero-thickness model, the internal moment
between contacting bodies in the zero-thickness plane model cannot be allowed to exist
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due to the neglected flexural rigidity in nature. If a shell element is used for constructing
the zero-thickness model, there exists the traction discontinuity problem [42]:

〚σijnj〛 6= 0 (1)

where the operator 〚•〛 in this study denotes the discrepancy of σijnj of the upper and lower
contacting interface. That is, 〚•〛 = •+ − •− with subscript “+” denoting the upper surface
and “−” denoting the lower surface; here, σij is the stress tensor, and nj is the unit normal
of the interface. The traction discontinuity problem can result in computational difficulties.
Additionally, due to the two-dimensional setting, the physical or material properties are
not consistent with those of three-dimensional contacting bodies. To overcome these issues,
we model the bolt connections using a three-dimensional setting.

Furthermore, the size of contact area is ambiguity. Often the geometric interface,
instead of the ‘real’ physical interface, is used for modeling bolt connections. It must be
noted that the influence zone of the bolt connections is not infinite but finite. To illustrate the
phenomenon of the finite influence zone, a finite element contact analysis, as an example, is
used to study the contact characteristics of bolt connection structures. The contact analysis
is performed. The finite element model is constructed by two plates connected with a bolt,
which is shown in Figure 1a, the contact element are added between the two plates, the
gasket plate, and the bolt head-plate. The element meshing of the whole structure is shown
in Figure 1b. It should be mentioned that, due to the axial symmetry of contact pressure,
the element size along the R-axis is set small to reduce the influence of element size on
the results, and the element size in the other direction is somewhat coarse to reduce the
computational cost.
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Figure 1. Contact analysis: (a) contact structure, and (b) elemental mesh. 

The results of contact analysis can be seen in Figure 2a. As can be seen from the an-
alytical results, the influence of bolted joints on structure exhibits strong local character-
istics. To obtain the distribution of the contact pressure between the plates, the values of 
contact pressure along the R-axis are extracted and drawn in Figure 2b. 

Figure 1. Contact analysis: (a) contact structure, and (b) elemental mesh.

The results of contact analysis can be seen in Figure 2a. As can be seen from the ana-
lytical results, the influence of bolted joints on structure exhibits strong local characteristics.
To obtain the distribution of the contact pressure between the plates, the values of contact
pressure along the R-axis are extracted and drawn in Figure 2b.
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Figure 2. Contact results: (a) contact pressure, (b) pressure distribution.

It is clear that the influence zone of the bolt connections is finite. For the static
connection using bolts, we assume that both the displacement field and the traction satisfy
the continuity conditions, which require

〚ui〛 = 0 (2)

〚σijnj〛 = 0 (3)

Here, ui is the displacement field. As defined before, the operator 〚•〛 denotes the
discrepancy of •. These two conditions mean that there is no discrepancy of the upper and
lower contacting interface for displacement field and the traction. With these assumptions,
we propose the transitional interface model, as shown in Figure 3a. As the bolt-connected
structure can be treated as two substructures bolted together under the action of preloads,
the ‘real’ physical contact area is a key factor that affects the connection performance. That
is, the essence of bolt connection can be alternatively viewed as a local (finite) interface
problem. Regarding this, the joint is modeled as a piece of the transition interface material
with geometric parameters shown in Figure 3b. The geometric parameters of the transition
interface material reflect the actual contact area and the thickness of the transition interface
material. The geometric parameters can be calibrated based on experimental data.
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As the connecting area of the bolt joint usually acts as circles, the geometric parameters
of the virtual material can be modeled as a concentric ring with a certain thickness h,
which is shown in Figure 3c. The inner diameter of the concentric ring Rnei is related to
the diameter of the bolt hole. According to the contact analysis results, the actual contact
area of the concentric ring is related to the thickness of the connecting plate and the bolt
tightening force. So, the outside diameter of the concentric ring Rwai, which is related to the
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thickness b of the connected substructure and the tightening force F of the bolt, is defined
as Equation (5). The thickness of the concentric ring h is related to the material properties
and surface roughness of the connected substructure, as well as the normal load, which can
be defined as

Rnei = Rnei(D) (4)

Rwai = Rwai(b, F) (5)

h = h(E1, E2, µ1, µ2, Ra1, Ra2, P) (6)

Here, D means the diameter of the bolt hole, b means the thickness of the connected
substructure, F means the tightening force of the bolt, and E1 and E2 mean the elastic
modulus of the connected substructure, respectively. µ1 and µ2 mean the Poisson’s ratio of
the connected substructures. Ra1 and Ra2 mean the surface roughness of the connected sub-
structures. P is the normal pressure between the bolt joint and the connected substructure.

As mentioned above, the transition interface material is an interface problem, thus the
physical or material properties shall be different to those of its connecting bodies. To explore
the feature of the transition interface material, we use the control variable method to clarify
the affection of different contact conditions. To illustrate the affection of thickness, the bolt
diameter and the tightening force are set as M12 and 25,000 N, respectively. The contact
pressure under the thickness value of 10 mm, 20 mm, 30 mm, and 40 mm is analyzed. The
contact pressure distribution between the plates modeled using different thicknesses is
shown in Figure 4. Clearly, the physical properties of the transition interface material shall
change smoothly through its thickness as a gradient way.
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Figure 4. Contact pressure distribution for different thicknesses.

To clarify the affection of tightening force, the bolt diameter and thickness are constant,
and the contact pressure distribution between the plates under different tightening forces is
drawn in Figure 5. The same process is performed to clarify the affection of bolt diameter,
material, and roughness. The result shows that the affection of bolt diameter on the contact
pressure distribution of joint bolt connection structures is not significant.
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However, modeling the transition interface material using gradient properties is
difficult to implement for engineering applications (using common finite element software).
For the sake of simplification, the physical properties of the transition interface material
are assumed to be uniform. This simplification is mainly aiming at significantly cutting
down the complexity of the problem of concern while retaining its most important features.
For these reasons, we assume that the transition interface material is isotropic and its
property is uniform (only two independent parameters, that is, the elastic modulus E and
the Poisson’s ratio µ).

The physical parameters of the transition interface model are reflected mechanical
properties of the contact area, which describe the contact stiffness of the surface. Those
parameters are mainly determined by the contact pressure. As the contact pressure is
related to normal pressure between the joint, the material of contact structure, and the
surface roughness. So, the physical parameters of the transition interface material can be
defined as

E = E(E1, E2, µ1, µ2, Ra1, Ra2, P) (7)

µ = µ(E1, E2, µ1, µ2, Ra1, Ra2, P) (8)

ρ = ρ(E1, E2, µ1, µ2, Ra1, Ra2, P) (9)

Additionally, the density expressed in Equation (9) can be set to zero. This is because
the density of the connecting bodies is assumed to unchanged.

The geometric parameters of the transition interface reflect the actual contact area and
the thickness of the transition interface material. The physical parameters of the transition
interface material reflect the mechanical properties caused by the contact pressure of the con-
tact area. The transition interface material is fixedly connected with the substructure in the
contact surface and the material properties changes at the connection part. The connected
bolt structure and the transition interface model are shown in Figure 3a,b, respectively.

The sizes of the contact area and the contact pressure on this area are the main
factors affecting the connection performance. Clarifying the affection of contact conditions
(material, thickness, bolt diameter, tightening force, and so on) on the contact characteristics
is the basis of joint modeling.

The transition interface model of the bolt joint proposed in this part has geometric
parameters and physical parameters. The geometric parameters describe the geometric
dimensions of the actual contact area of the joint, and the physical parameters describe
the mechanical properties of the contact area. The application of this model can be shown
in Figure 6 According to the surface condition parameters, the geometric and physical
parameters of the combined surface are determined. After that, the model is meshed
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according to the geometric parameters and the physical parameters are given to the mesh.
Then, the finite element model of the joint is developed.

Machines 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

The transition interface model of the bolt joint proposed in this part has geometric 
parameters and physical parameters. The geometric parameters describe the geometric 
dimensions of the actual contact area of the joint, and the physical parameters describe 
the mechanical properties of the contact area. The application of this model can be shown 
in Figure 6 According to the surface condition parameters, the geometric and physical 
parameters of the combined surface are determined. After that, the model is meshed ac-
cording to the geometric parameters and the physical parameters are given to the mesh. 
Then, the finite element model of the joint is developed. 

Connect 
condition

geometric 
parameters

FEM model 
of bolt joint

physical 
parameters

meshing

material 
propertiesroughness

tightening force

bolt size

thickness

 
Figure 6. Application of transition interface model in finite element analysis. 

As can be seen from Figure 6, the transition interface model takes full consideration 
of the actual contact situation of the joint in the modeling so that this model is universal. 
The transition interface model consists of geometric parameters and physical parameters, 
which can be easily connected with the general finite element software. Moreover, the 
mesh size of the joint can be conveniently controlled to meet the analysis requirements of 
different precision. 

The application of the proposed transition interface model requires the determina-

tion of geometric parameters and physical parameters. As neiR  can be given by the 
connection condition of bolt diameter, the density of virtual can be determined by the 
average density of the contact plates. The parameters which need to be determined are 
the geometric parameters Rwai and h, as well as the physical parameters E and μ . The 
next two sections introduce the parameter identification of transition interface model 
mode. The contact analysis is conducted to determine the geometric parameters and the 
average normal pressures of the contact area. After that, the physical parameters are 
identified by the model updating method because the joint significantly affects the 
dynamic characteristics of the whole structure. 

3. Geometric Parameters Identification of the Transition Interface Model 
3.1. Identification of Geometric Parameter Rwai 

As can be seen from Figure 2, the pressure distribution is closely related to the ra-
dius R. To obtain the real contact area and contact pressure of the bolt joint, the contact 
pressure between the plant can be extracted. The contact pressure distribution along the 
radius R can be then drawn by MATLAB. The real contact area can be then obtained by 
setting a limit for contact pressure such as the contact pressure being larger than Plim. The 
expression of the progress can be given as follows: 

{ }limmax ( )waiR r P r P= ≥  (10)

The geometric parameter waiR  can be calculated by Equation (10). It should be 
noted that the element size along the radius R is set very small to ensure the accuracy of 
the calculation result. By setting the Plim to 1 MPa, the contact pressure of bolt connect 

Figure 6. Application of transition interface model in finite element analysis.

As can be seen from Figure 6, the transition interface model takes full consideration
of the actual contact situation of the joint in the modeling so that this model is universal.
The transition interface model consists of geometric parameters and physical parameters,
which can be easily connected with the general finite element software. Moreover, the
mesh size of the joint can be conveniently controlled to meet the analysis requirements of
different precision.

The application of the proposed transition interface model requires the determination
of geometric parameters and physical parameters. As Rnei can be given by the connection
condition of bolt diameter, the density of virtual can be determined by the average density
of the contact plates. The parameters which need to be determined are the geometric
parameters Rwai and h, as well as the physical parameters E and µ. The next two sections
introduce the parameter identification of transition interface model mode. The contact
analysis is conducted to determine the geometric parameters and the average normal
pressures of the contact area. After that, the physical parameters are identified by the model
updating method because the joint significantly affects the dynamic characteristics of the
whole structure.

3. Geometric Parameters Identification of the Transition Interface Model
3.1. Identification of Geometric Parameter Rwai

As can be seen from Figure 2, the pressure distribution is closely related to the radius
R. To obtain the real contact area and contact pressure of the bolt joint, the contact pressure
between the plant can be extracted. The contact pressure distribution along the radius R
can be then drawn by MATLAB. The real contact area can be then obtained by setting a
limit for contact pressure such as the contact pressure being larger than Plim. The expression
of the progress can be given as follows:

Rwai = max{r|P(r) ≥ Plim } (10)

The geometric parameter Rwai can be calculated by Equation (10). It should be noted
that the element size along the radius R is set very small to ensure the accuracy of the
calculation result. By setting the Plim to 1 MPa, the contact pressure of bolt connect plates
with the thickness of 20 mm under different tightening forces can be solved, as shown in
Table 1.

Table 1. The contact radius under different tightening force.

Tightening force (N) 12,500 25,000 37,500 50,000 62,500

Contact radius (mm) 35.39 40.86 42.68 43.59 45.41
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3.2. Database of the Geometric Parameter of Bolt Joint on Machine Tools

As the plate thickness and the tightening force are the key factors which deeply affect
the contact area of bolt connect structure, a database of geometric parameter Rwai of bolt
joint on machine tools can be established under the thought of the response surface method.
According to the common application of bolt joints on machine tools, the thickness between
10~40 mm and the bolt tightening force between 10,000 N~70,000 N are usually used. This
connect condition can be used as samples to form the geometric parameters database. The
contact analysis of all combinations under different thicknesses and different tightening
forces is performed, and then the real contact radius of the bolt joint and the average contact
pressure can be calculated. The results of contact radius and contact pressure are shown in
Tables 2 and 3, respectively.

Table 2. The contact radius under different connection conditions (mm).

Tightening Force
Thickness

10 mm 15 mm 20 mm 25 mm 30 mm 35 mm 40 mm

12,500 N 25.63 31.54 35.39 36.8 37.86 38.39 39.19
25,000 N 26.25 34.69 40.86 46.29 49.45 50.5 51.79
37,500 N 26.88 35.75 42.68 49.45 54.71 56.82 57.14
50,000 N 27.5 36.8 43.59 51.55 57.88 59.98 61.16
62,500 N 28.36 39.96 45.41 52.61 59.98 63.14 63.84

Table 3. The contact pressure under different connection conditions (Mpa).

Tightening Force
Thickness

10 mm 15 mm 20 mm 25 mm 30 mm 35 mm 40 mm

12,500 N 6.32 3.87 2.87 2.26 1.94 1.82 1.70
25,000 N 11.57 6.61 4.65 3.49 2.87 2.68 2.49
37,500 N 16.77 9.49 6.47 4.72 3.73 3.44 3.29
50,000 N 22.05 11.83 8.35 5.89 4.58 4.21 3.99
62,500 N 27.03 12.15 9.64 7.11 5.42 4.82 4.67

After determining the contact radius at the sample points, the interpolation method
can be conducted to estimate the contact radius under the actual application. The Kriging
interpolation method, which is a local interpolation method based on variogram theory,
is chosen as the interpolation method for contact radius estimation. This method as-
sumed that the response value consists of a regression model g(t) and random process
function Z(t)

f̂ (t) = g(t) + Z(t) (11)

The regression model g(t) is selected according to the characteristics of the measured
data. The random process function Z(t) has the mean equal to zero and the non-zero
covariance. The value of the function at the point t0 which needs to be estimated can be
expressed as

z(t0) =
n

∑
i=1

λiz(ti) (12)

Here, ti(i = 1, 2, . . . , n) represents known sample points, and z(ti) represents the value of
known sample points; λi is the undetermined weight coefficient which can be obtained by
joint solution according to the unbiased condition and the minimum variance condition:

n
∑

i=1
λiC(ti, tj)− µ = C(ti, V) (i = 1, 2, . . . , n)

n
∑

i=1
λi = 1

(13)
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Based on the effect radius in Table 2, The Kriging interpolation method can be con-
ducted for the estimation of Rwai. To check the accuracy of the Kriging interpolation
method, the total 35 data points in Table 2 are classified as the sample points set and the
testing points set. The sample points are used to form the Kriging method and the testing
points are used for comparison. The testing points set are chosen in Table 4, and the others
in Table 2 are used as sample points.

Table 4. The contact radius of testing points.

Testing Point Tightening Force (N) Thickness (mm) Analyzed Contact Radius (mm)

1 12,500 30 37.86
2 25,000 15 34.69
3 37,500 25 49.45
4 50,000 20 43.59
5 62,500 35 63.14

The Kriging interpolation of contact radius under different connect thicknesses and
tightening forces is shown in Figure 7a.
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The contact radius estimated by the Kriging interpolation method under the testing
points is shown in Table 5 and the errors are listed in the last column of the table. As can be
seen from the results, the contact radius estimated by the Kriging interpolation method is
less than 2%, which means that the constructed geometric parameter database can be used
for engineering applications.

Table 5. The error of contact radius estimated by the Kriging interpolation method.

Testing Point Analyzed Contact Radius
(mm)

Estimated Contact Radius
(mm) Errors (%)

1 37.86 37.47 −1.03
2 34.69 34.19 −1.44
3 49.45 49.34 −0.22
4 43.59 44.18 1.35
5 63.14 62.88 −0.41
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To make the database more usable, a parameter database management system is
developed by MATLAB GUI as Figure 7b. It should be mentioned here that as the tighten-
ing torque and bolt diameter is usually used in engineering applications, the parameter
database management system uses the tightening torque and bolt diameter as input, the
tightening force is calculated from the inputs and the Kriging interpolation method is then
used to calculate the contact radius.

The average contact pressure P, which is used as the input of physical parameters
identification, can also be calculated by the same progress under the Kriging interpola-
tion method.

4. Physical Parameters Identification of the Transition Interface Model

Once the geometric parameter Rwai of the proposed model is identified, the unknown
parameters of the proposed model are the physical parameters and thickness. In this
section, the parameter identification method for those unknown parameters is introduced
firstly. Then, the accuracy of the proposed parameter identification method is verified
through numerical example. After that, the joint parameters are identified and the accuracy
of the proposed joint model is verified

4.1. Physical Parameters Identification Based on Model Updating Method

According to the transition interface model, the bolt connects structure can be treated
as substructures of plates and substructures of the bolt joint. The dynamic characteristics of
the whole structure and the substructures of plates are known. The model updating method
can be performed to identify the bolt joint. Due to the limitation of testing condition, the
number of test modal is usually limited which make the parameter identification method
based on modal parameters easy to face statically indeterminate problems. The frequency
response function contains much dynamic information about the structure; however, the
parameter identification method based on FRFs has to treat the inverse problem, which is
very sensitive to measuring noise. A new method that combines the modal parameters and
FRFs by weight matrix is proposed to overcome the shortcomings of both methods. The
FRFs are properly introduced to the model updating equations base on modal parameters.
Those equations are weighting properties to reduce the conditions which could improve the
precision and stability of parameter identification. The process of parameter identification
is shown in Figure 8.

Choosing the natural frequency and FRFs as the objective function, the identification
control conditions can be set as Equation (7),

∣∣∣wana
i (∆p)−wex

i
wex

i

∣∣∣ ≤ ε1 for i = 1, 2, . . . , n∣∣∣∣Hana
j,kt (∆p)−Hex

j,kt
Hex

j,kt

∣∣∣∣ ≤ ε2 for j = 1, 2, . . . , N
(14)

Here, wana
i and wex

i are ith order theoretical and experimental natural frequency, respec-
tively. Hana

j,kt and Hex
j,kt are the theoretical and experimental FRFs which excited at t degrees

of freedom and response on k degrees of freedom, respectively. Variables n and N are the
numbers of mode and FRFs which take part in the parameter identification, respectively.
ε1 and ε2 are the tolerance of natural frequency and FRFs, respectively. ∆p are the param-
eters which need to be modified, which can be the elastic modulus, Poisson’s ratio, the
thickness et al.
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For the joint parameter identification problem with m unknown variables, the modified
equations can be constructed by the first few natural frequencies and some chosen FRFs,
and the equation is formed as follows:

Axp = b (15)

where

A =

{
A1
A2

}
, A1 =


∂w1
∂p1

. . . ∂w1
∂pm

. . . . . . . . .
∂wn
∂p1

. . . ∂wn
∂pm

, A2 =


∂H1,kt

∂p1
. . . ∂H1,kt

∂pm

. . . . . . . . .
∂HN,kt

∂p1
. . . ∂HN,kt

∂pm

 (16)

b =

{
b1
b2

}
, b1 =

wex
1 − wana

1
. . .

wex
n − wana

n

, b2 =

 Hex
1,kt − Hana

1,kt
. . .

Hex
N,kt − Hana

N,kt

, xp =

 xp1
. . .
xpm

 (17)

Once the sensitivity of natural frequencies and FRFs are calculated, the modified
parameters xp can be calculated by Equation (15). For the transition interface model

constructed in this study, the modified parameters are defined as xp = [E µ h]T . The
joint parameters can then be identified as the iteration progress shown in Figure 4.

As the sensitivity values of natural frequency to different parameters (E, µ and h)
varied greatly, the modified Equation (15) usually faces an ill-condition problem, which
makes the modified progress disconverge. The treatment of this problem is the key to the
parameter identification progress. A new weighted equation shown as Equation (18) is
proposed to reduce the condition number of the modified equation,
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WmAWpxwp = Wmb (18)

Here,

Wm = diag




w f1
m
∑

i=1

∣∣∣A f1,pi

∣∣∣ · · ·
w fn

m
∑

i=1

∣∣∣A fn ,pi

∣∣∣︸ ︷︷ ︸
n

,


wH1

m
∑

i=1

∣∣∣AH1,kt ,pi

∣∣∣ · · ·
wHn

m
∑

i=1

∣∣∣AHN,kt ,pi

∣∣∣︸ ︷︷ ︸
N


 (19)

Wp = diag


1

n
∑

i=1

∣∣∣Ai
f ,p1

∣∣∣+ N
∑

j=1

∣∣∣AHj,kt ,p1

∣∣∣ ,
1

n
∑

i=1

∣∣∣Ai
f ,p2

∣∣∣+ N
∑

i=1

∣∣∣AHj,kt ,p2

∣∣∣ , . . . ,
1

n
∑

i=1

∣∣∣Ai
f ,pm

∣∣∣+ N
∑

i=1

∣∣∣AHj,kt ,pm

∣∣∣︸ ︷︷ ︸
m


(20)

Here, the left weight function Wm is the inverse of the sum of absolute values to the
sensitivities of all design parameters, which aim to reduce the difference in sensitivity values
between certain identification parameters to the different modal parameters. The right
weight function Wp is the inverse of the sum of the absolute value of the sensitivity of design
parameters to all modal parameters and all FRFs, which aims to reduce the difference of
sensitivity values between different identification parameters to certain modal parameters.

4.2. Validation of the Physical Parameter Identification Method

To verify the accuracy of the physical parameter identification method proposed in
Section 4.1, the theoretical model of two dumbbells connected by a sandwich material, as
shown in Figure 9, is constructed. The elastic modulus and Poisson’s ratio of dumbbells are
1.3 × 1011 Pa and 0.27, respectively. The density of the model is 7850 kg/m3. The thickness
and the elastic modulus as well as the Poisson’s ratio of the sandwich are the unknown
parameters that need to be identified. The pickup and driving points of the FRFs in the
theoretical model are shown in Figure 9.
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The sandwich material under material parameters 1 in Table 6 is chosen as the standard
structure. The model analysis is performed to this standard structure to obtain the non-zero
natural frequencies and modals. Additionally, the frequency response function analysis is
performed to obtain the FRFs. Those analysis results are treated as the experimental results.
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Table 6. Material parameters of sandwich.

Thickness h (mm) Elastic Modulus Ej (Pa) Poisson Ratio µ

Material parameters 1 10 1 × 1010 0.24
Material parameters 2 20 3.5 × 1010 0.27

The sandwich material under material parameter 2 is set as the initial parameters.
The method proposed in Section 4.1 is adopted for parameter identification. For the aim
of comparison, the model-based method which used the first six order modal data for
parameter identification is also produced. The iterative process and correction results of
the two methods are shown in Figure 10.
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Figure 10. Identification process of the sandwich system.

As can be seen from Figure 10, the proposed method could identify the parameters
of the sandwich with high accuracy. Although the model-based method could make the
natural frequencies of the modified system have good agreement with the experimental
results after a few steps of iterations, it failed to identify the exact result of the sandwich
parameters. The reason is that just a few experiment modes may not be enough to describe
all the characteristics of the system. The result of parameter identification may not be
unique when just a few modes are used in the identification process. The method proposed
in Section 4.1 uses FRFs as a supplement to the identification process, which could describe
the system more accurately and improve the accuracy of parameter identification.

4.3. Validation of the Dynamic Model of Bolt Joint

To check the effectiveness of the dynamic model proposed in this paper, experimental
specimens were designed and manufactured, and the joint parameters were identified by
the parameter identification method proposed in Section 4.1.

As shown in Figure 11, the dumbbell-like experimental specimen which has a small
head near the contact part of the bolt joint is manufactured. This design would make
the joint-related part ‘soft’ so that the dynamic characteristics of the bolt connection part
could be inspired easily. The length and width of the big bead and the small bead of the
dumbbell-like experimental specimen are 240 × 180 mm and 120 × 63 mm, respectively.
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The roughness of the surface is Ra = 1.6 µm, the diameter of the bolt is M16, and the
preload of the bolt in the experiment is 90 Nm.
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Figure 11. Dumbbell-like modal specimen: (a) schematic diagram of specimen structure; (b) specimen
dimensions.

By inputting the contact conditions to the geometric parameter database constructed
in Section 3.2, the contact radius of the experimental specimen can be calculated as Fig-
ure 12. By comparing the dimension of the small head with the contact radius Rwai seen
in Figure 12a, it can be obtained that the contact occurs on the whole surface. To illustrate
this result, the contact pressure test film which consists of two pieces of thin film produced
by the Fuji company is used for contact pressure testing. The film is inserted into the
contact area, and the colors change to red once the contact pressure is large than 1 Mpa.
The pressure testing is shown in Figure 12b, and the results demonstrated that the contact
fulfills the whole surface. The geometric model of the bolt joint can then be established.
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The impact experimental test system includes the LMS Test.Lab 9B vibration Test
and analysis system, PCB086D05 hammer, and PCB356A15 acceleration sensors. The test
pieces are suspended by wire rope as shown in Figure 13a to simulate the free boundary.
To reduce the influence of additional quality of sensors on test results, only one sensor is
attached at a time during the test. As shown in Figure 13b, the whole system is arranged as
a total of 72 measuring points. The x and z directions of point 57 are taken as the excitation
directions in the experiment.

Machines 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

as a total of 72 measuring points. The x and z directions of point 57 are taken as the ex-
citation directions in the experiment. 

hammerspecimen testing system

acceleration sensor

(a)

driving point

(b)

 
Figure 13. Experimental system: (a) testing system; (b) layout of measurement points and driving 
point. 

The Time MDOF modal analysis method is used to obtain the modal frequency and 
modal shapes of the specimen. After that, the method proposed in Section 4.1 is carried 
out, and the experimental modal frequency and modal shape, as well as the FRFs, are 
used for physical parameter identification. As the contact radius is determined, only the 
thickness and elastic modulus, as well as the Poisson’s ratio of the joint, are needed to be 
identified. The identification progress is implemented by the MATLAB program and the 
material parameters of the joint are obtained after repeated iterative solutions. The results 
are shown in Table 7. 

Table 7. Parameters identification results. 

Parameters Thickness h (mm) Elastic Modulus Ej (MPa) Poisson Ratio ( μ ) 

Value 0.657 1513 0.201 

Once the joint parameters are identified, the theoretical model of the whole system 
which contained the joints and the sub-dumbbell-like structures can be constructed. The 
theoretical modal parameters can then be obtained by finite element analysis. The vali-
dation of the proposed joint model can be verified by comparing the theoretical modal 
parameters with the experimental results. The modal shapes of both methods are shown 
in Table 8. 

  

Figure 13. Experimental system: (a) testing system; (b) layout of measurement points and
driving point.

The Time MDOF modal analysis method is used to obtain the modal frequency and
modal shapes of the specimen. After that, the method proposed in Section 4.1 is carried
out, and the experimental modal frequency and modal shape, as well as the FRFs, are
used for physical parameter identification. As the contact radius is determined, only the
thickness and elastic modulus, as well as the Poisson’s ratio of the joint, are needed to be
identified. The identification progress is implemented by the MATLAB program and the
material parameters of the joint are obtained after repeated iterative solutions. The results
are shown in Table 7.

Table 7. Parameters identification results.

Parameters Thickness h (mm) Elastic Modulus Ej (MPa) Poisson Ratio (µ)

Value 0.657 1513 0.201

Once the joint parameters are identified, the theoretical model of the whole system
which contained the joints and the sub-dumbbell-like structures can be constructed. The
theoretical modal parameters can then be obtained by finite element analysis. The validation
of the proposed joint model can be verified by comparing the theoretical modal parameters
with the experimental results. The modal shapes of both methods are shown in Table 8.
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Table 8. Comparison of the theoretical modes and experimental modes.

Model Spin Z-Axis Spin X-Axis Spin Y-Axis

Experimental model
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As can be seen from the results in Table 9, the modal frequency errors of all the six
models are less than 7.5%, while for the eight-nodes-hexahedron-element model proposed
in Ref. [9], the frequency errors are up to 15.7%. This is because that the eight-nodes-
hexahedron-element model just considered the coupling relation between the edge nodes
of the joint, and the coupling relationships within the inner contact surface are ignored.
As for the virtual material model proposed by Tian [14], once the material parameter are
calculated by Hertz contact theory and fractal theory, the frequency errors of dumbbell-like
structure in ref are within 10%, which is larger than the proposed transition interface model.
Those comparison results demonstrated that the proposed transition interface model is
accurate for joint modeling.

Based on the proposed transition interface model and the parameter identification
method, a database of bolt joints can be established by the consideration of the diameter of
the bolt, thickness, tightening force, and surface roughness. Additionally, this database can
be used for structural analysis and structural optimization design.

5. Application of the Transition Interface Model to Machine Tools

In this section, an engraving machine tool is used as an example to illustrate the
engineering application of the proposed transition interface model. The major part of the
engraving machine is the bed and the column which are connected by 16 bolts. The frame
and the bolts distribution are shown in Figure 14.
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The connect condition of the bolts is listed in Table 10.
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Table 10. Connect condition of the bolts.

Bolt Number Bolt Diameter Tightening Torque Surface Roughness Thickness

1–16 M12 120 Nm 1.6 µm 25 mm

The connecting area of the bolt can be calculated from the database constructed in
Section 3.2. The Young’s modulus and the Poisson’s ratio of the bed and the colon are
E = 1.5 × 1011 Nm and µ = 0.23. Additionally, the physical parameters of the transition
interface model are calculated to form the physical parameter database and are shown in
Table 11.

Table 11. Parameters of the transition interface model.

Parameters Thickness h Elastic Modulus Ej Poisson’s Ratio µ

Value 0.72 mm 6111 MPa 0.253

The whole meshing of the structure is shown in Figure 15a, the bolt joint-related part
is shown as the partial enlarged part and the virtual material of the bolt joint is marked as
red color. The whole system is modeled as 73,925 3D elements with 348,111 DOFs, and the
free boundary condition is applied in the modal analysis. To construct the free boundary
condition, the real system, s as in Figure 15b, is hung for the impact modal experiment.
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The first five models are shown in Table 12. The difference between the first five
modal frequencies between the theoretical model modal and the experimental results are
less than 3%, which means that the proposed transition interface model and constructed
database have high accuracy. Additionally, it can be used for engineering applications such
as structural optimization design and structural health monitoring.
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Table 12. Result of the theoretical analysis and modal experiment.

Frequency Comparison Experimental Model Shape Analysis Model Shape

First
model

Experimental result (Hz) 145.81
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6. Conclusions

This paper aimed at the dynamic modeling and parameter identification of bolt joints.
The main work can be concluded as follows:

(1) Based on the fact that the characteristics of bolt joints rely on the contact area and
contact pressure of the surface, and assuming there is no discrepancy of the upper and
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lower contacting interfaces for displacement field and the traction, a transition interface
model of bolt joints containing geometric and physical parameters is proposed.

(2) The contact radius of the bolt joint is calculated based on the contact analysis,
and the geometric parameter database of bolt joint on machine tools is established by the
Kriging interpolation method. The error of contact radius estimated by the testing point is
less than 2%, which verified the accuracy of the established geometric parameter database.

(3) The model updating method, which is constructed by the combination of modal
parameters and FRFs, is proposed for physical parameter identification of the transition
interface model. Additionally, a numerical example is used to check the validity of the
proposed identification method. The results show that once the FRFs are added and
weighted with the left and right weight matrix to the identification process, the proposed
method is accurate for parameter identification of the transition interface model.

(4) A dumbbell-like experimental system containing the bolt joints is designed and
manufactured for joint parameter identification and joint model validation. The differ-
ence in the first six order modal frequencies between the theoretical model analysis and
the experimental results is less than 7.5%, which means that the proposed joint model
is accurate.

(5) The frame of the engraving machine tool is used to check the effectiveness of
the proposed transition interface model and the good agreement of the analysis modal
frequency, and the experimental results demonstrated that the proposed model can be
used for engineering applications such as structural optimization design and structural
health monitoring.
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