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Abstract: To realize tomato growth period monitoring and yield prediction of tomato cultivation,
our study proposes a visual object tracking network called YOLO-deepsort to identify and count
tomatoes in different growth periods. Based on the YOLOv5s model, our model uses shufflenetv2,
combined with the CBAM attention mechanism, to compress the model size from the algorithm
level. In the neck part of the network, the BiFPN multi-scale fusion structure is used to improve
the prediction accuracy of the network. When the target detection network completes the bounding
box prediction of the target, the Kalman filter algorithm is used to predict the target’s location in
the next frame, which is called the tracker in this paper. Finally, calculate the bounding box error
between the predicted bounding box and the bounding box output by the object detection network to
update the parameters of the Kalman filter and repeat the above steps to achieve the target tracking
of tomato fruits and flowers. After getting the tracking results, we use OpenCV to create a virtual
count line to count the targets. Our algorithm achieved a competitive result based on the above
methods: The mean average precision of flower, green tomato, and red tomato was 93.1%, 96.4%,
and 97.9%. Moreover, we demonstrate the tracking ability of the model and the counting process by
counting tomato flowers. Overall, the YOLO-deepsort model could fulfill the actual requirements of
tomato yield forecast in the greenhouse scene, which provide theoretical support for crop growth
status detection and yield forecast.

Keywords: facility agriculture; deep learning; lightweight optimization; yield forecast; object tracking;
tomato

1. Introduction

The development of facility agriculture enables traditional agriculture to gradually
eliminate the shackles of nature and break the seasonal restrictions of traditional agriculture.
As an important representative of agricultural intelligence, facility agriculture is charac-
terized by acquiring all information (such as air temperature, soil temperature, humidity,
light, total radiation, carbon dioxide, atmospheric pressure, and live video data) about the
environment through sensors in real-time [1]. By analyzing the environmental data in the
greenhouse, the favorable natural conditions are maximized, and the biological potential
is realized. Facility agriculture’s fundamental goal is to obtain high-quality, high-yield,
and high-efficiency agricultural products on limited land. The yield estimation and the
specific analysis of the crop’s growth period are realized to determine whether the crop
growth is sufficient due to light, temperature, and water conditions, which are significant
for improving crop yield [2].
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With the development of computer vision technology, target detection algorithms
based on traditional methods have been widely used in yield estimation and crop growth
period recognition. For instance, Using L*a*b* color space to perform K-means clustering
segmentation of tomatoes and using mathematical morphology to denoise tomato overlap
and occlusion to identify ripe tomatoes [3]. Liu G et al. use a support vector machine
(SVM) [4] with a histogram of oriented gradients (HOG). Then, a color analysis method
was used to remove false positives to improve detection accuracy [5]. Amarante M A et al.
divide tomatoes into six ripening stages: Breaker, Turning, Pink, Light Red, and Red. The
color of a tomato can be represented through different color spaces. They focused on con-
verting the picture of the tomato in RGB color space to L*a*b* color space and determined
the ripening stages and nutritional content of tomatoes using a color space conversion
algorithm [6]. However, the feature extraction ability of traditional object detection meth-
ods is minimal, leading to poor robustness of the model. The identification and detection
accuracy of tomatoes cannot meet the actual needs of current agricultural development.

With the continuous development of deep learning methods in recent years, target
detection methods based on deep learning have gradually become the mainstream in the
current computer vision field. In 2014, R-CNN proposed by R. Girshick et al. creatively
used the image classification network [7-9] as a feature extractor and then performed
target detection according to relevant features [10]. The proposal of R-CNN breaks the
bottleneck in the field of target detection, abandons the original image feature extraction
based on machine learning methods, and creates a target detection algorithm based on deep
learning. First, the network generates category-independent candidate regions; secondly,
the network extracts a fixed-length feature vector for each candidate region; finally, the SVM
classifier is used to determine the categories of these objects. Based on R-CNN, Girshick
et al. successively proposed the Fast R-CNN [11] and Faster R-CNN networks [12]. As a
representative of the second-order algorithm, the R-CNN series of networks are known for
their high accuracy.

However, limited by the network structure characteristics of the second-order algo-
rithm, the R-CNN series target detection network has much computational redundancy,
and the network reasoning speed is slow, which makes it challenging to ensure real-time
detection. The YOLO (You Only Look at Once) series network of one-stage structures
proposed by R. Joseph et al. in 2015 divides the feature map into multiple grids. Each
grid is responsible for generating a bounding box of the target. It also takes charge of
predicting the category and bounding box regression parameters of the target predicted,
which fall in this grid. The YOLO network dramatically improves the detection speed of
the network [13]. Still, there is a big gap between the detection accuracy and the two-stage
network, and the ability to predict small targets is insufficient. After that, R. Joseph made
a series of improvements based on YOLO. They proposed YOLOv2 and YOLOv3, which
further improved the detection accuracy of the network while maintaining the detection
speed [14,15]. At the same time, YOLOv2 and YOLOvV3 draw on the prediction method
of the bounding box by the Faster R-CNN network. The bounding box is fine-tuned by
predicting the bounding box regression parameters, abandoning the original form that
directly predicted the bounding box size in YOLO. However, the accuracy of the YOLOv3
network is still lower than Faster R-CNN, and there is still an upper limit on the number
of predicted objects per grid. The proposal of YOLOv4 further improves the network’s
small target detection ability, and the network’s detection accuracy and inference speed
have also been greatly improved [16]. With the continuous development of target detection
based on deep learning methods, its excellent detection accuracy and robustness make
related deep learning methods widely used in agricultural product detection and counting.
Many researchers use deep learning-based object detection methods to identify the growth
stages of crops. Ko K E, et al. [17] propose a novel method for detecting tomato ripeness by
utilizing multiple streams of convolutional neural networks and their stochastic decision
fusion (SDF) methodology. Seo D, et al. [18] presented a method to detect tomato fruits
grown in hydroponic greenhouses using the Faster R-CNN (region-based convolutional



Machines 2022, 10, 489

3 0f20

neural network). In addition, we sought to select a color model that was robust to external
light, and we used hue values to develop an image-based maturity standard for tomato
fruits. Liu G, et al. [19] proposed an improved detection model based on YOLOV3 to deal
with tomato detection. However, the direct application of deep learning methods to the
agricultural domain tasks does not consider the cost control issues. We need models with
lower running and storage costs to complete detection tasks in greenhouses. Therefore,
according to the actual task requirements, it is of great significance to carry out the corre-
sponding lightweight processing of the network model. Magalhes S A, et al. [20] proposed a
method to automatize the tomato harvesting process in greenhouses. The visual perception
system can detect the tomato in any life cycle stage (flower to the ripe tomato). The method
also enables further developments in edge artificial intelligence for in situ and real-time
visual tomato detection. Sun J, et al. [21] use Resnet-50 with residual blocks to replace
the traditional vggl6 feature extraction network, and the K-means clustering method was
used to adjust more appropriate anchor sizes than a manual setting, to improve detection
accuracy. The training model can be transplanted to the embedded system. However,
the lightweight processing of the deep network model will inevitably reduce the model’s
detection accuracy and its robustness.

In recent years, the attention model has become an important method to improve
neural networks’ feature extraction ability and network performance. The attention mecha-
nism was first proposed by Bahdanau D, et al. [22] and was first used in natural language
processing. Later, the attention mechanism was applied to different convolutional neu-
ral network mechanisms, effectively improving neural networks’ ability. The attention
mechanism imitates the human visual system and tends to focus on the information in the
auxiliary judgment part of the image, ignoring the unimportant information. The attention
module gives the network the ability to focus on important regions. Jie H, et al. [23] was
proposed in 2017. The emergence of Squeeze-and-Excitation Networks is to solve the loss
problem caused by the different importance of different channels of the feature map in the
process of convolution pooling. Woo S, et al. [24] improved the model’s integrated perfor-
mance by sequentially combining channel attention and spatial attention modules. CBAM
sequentially infers attention weights along the two dimensions of space and channels
and then multiplies with the original feature map to adjust the features information. The
powerful ability of the attention mechanism has been fully proved in different application
fields. Some researchers modify the model by using the attention mechanism to improve
the detection ability of the model in agricultural scenarios. For example, Zhaoyi Chen,
et al. [25] added the Squeeze-and-Excitation method to improve the model’s sensitivity,
which could accurately recognize plant diseases under complex natural conditions.

Based on the above research, we find that many researchers achieve crop detection and
counting with the help of object detection networks. For illustration, Zhu Y. [26] proposed
an improved YOLOv4 with CBAM (convolutional block attention module), including a
spatial and channel attention model, which could enhance the feature extraction capabilities
of the network by adding receptive field modules to achieve detection and counting of
wheat ears. The growth density of crops in the image is calculated by analyzing the
detection results, and statistical methods are used to predict the crop yield. In addition,
Lu S, et al. [27] and Xue Xia, et al. [28] use the target detection network to detect the
target in the image and count the number of detection frames to achieve leaf or fruit count.
However, due to the unstructured nature of crop growth, fruit counting methods using
object detection networks do not have any practical value. The prediction of the yield of
field crops is far different from the fruits because of the relatively sparse fruit growth, which
means it does not have the conditions for statistical prediction based on the fruit growth
density [26]. Therefore, utilizing an object detection network for yield prediction will make
duplicate counting unavoidable. Thus, we need new methods to achieve greenhouse fruit
yield estimation.

This study proposes a target tracking network for identifying and counting tomatoes
at different growth stages called YOLO-deepsort. YOLO-deepsort is composed of a target
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detection network and a target tracking network. Based on the advanced YOLOv5s model,
the detection part of YOLO-deepsort has better real-time performance and higher accuracy
than the previous target detection algorithm, which could detect targets in different growth
stages of tomatoes in complex agricultural scenarios with few parameters. Not only
that, while improving the model detection ability, we also compress the model from the
algorithm level, reducing the weights of the model. After the detection is completed, the
SORT part of the network is responsible for processing the video stream data, tracking the
target by building the connection between different video frames and defining an ID for
each object in the video to achieve the count [29,30].

Our research is as follows: First, we proposed a new backbone combining the shuffnetv2
module and the CSP module to reduce model redundancy, thereby improving the target
detection speed of the final detection model. To further enhance the model accuracy, we
use the convolutional layer combined with the attention mechanism to extract the shal-
low features of the image. Secondly, we use the BiFPN structure as the Neck part of our
model to maximize the use of the image feature information extracted by the backbone
to balance the decline of the model’s lightweight process. Third, we introduce a target
tracking method called DeepSORT that can track and count targets based on the output
of the detection network. Finally, we realize accurate counting of tomato flowers under
complex backgrounds in the greenhouse and show its effect.

2. Materials and Methods
2.1. Data Processing
2.1.1. Data Acquisition and Experimental Environment

As shown in Figure 1, the collection of the experimental samples and the model effect
test in this paper were all carried out in the National Vegetable Quality Standard Center
(Shouguang, Shandong) Science and Technology Demonstration and Promotion Base. We
set up the experiment in the greenhouse to ensure the engineering applicability of the
algorithm. For the plant growth state data, the camera mounted on the inspection robot
is used to obtain it. The inspection robot uses QR code navigation to conduct inspections
through preset routes, as shown in Figure 2.

Figure 1. National Vegetable Quality Standard Center (Shouguang, Shandong) Science and Technol-
ogy Demonstration and Promotion Base.
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Figure 2. In this experiment, an inspection robot is used to detect and count the growth state of plants.

For video stream data, we intercept the images from the video stream every 10 fps
to obtain images for training and testing of the object detection model. In this study, we
divided the dataset into the training set and test set according to the ratio of 10:1, with
1000 training images and 100 testing images. As shown in Figure 3, we divide the targets
into three categories: flower, tomato red, and tomato green, according to the needs of the
actual production process. When we conducted a feasibility analysis at the beginning of the
study, we found that the network had a low detection ability for tomato flowers and green
tomatoes. Taking YOLOV5 s as an example, when the number of three types of targets in
the training set is about 600, the mAP (0.95) of tomato flower, green tomato, and red tomato
is 60.4%, 87.6%, and 94.3%, respectively. So, it is difficult for the network to distinguish the
two types of objects of tomato flower and green tomato from the background in complex
environments. Therefore, to improve the network’s high and balanced accuracy for these
three objects, we artificially increase the number of tomato flowers and green tomatoes.
The number of targets for each category is shown in Table 1.

Figure 3. Images in the dataset used for object detection model training and testing: (a) tomato
flower; (b) unripe tomatoes; (c) unripe tomatoes.
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Table 1. The number of targets for each category.

Dataset Flower Tomato_Red Tomato_Green Total
Train set 1640 669 1138 3447
Test set 164 68 139 371

To realize the labeling of images, we use labellmg to label the objects in the photos.
The effect after labeling is shown in Figure 4.

Figure 4. Data labeling.

In addition, for the data set of the network in the target tracking part [29,30], we name
it Tracking_tomato_115. The inspection robot collects the video at a constant speed. We use
three camera positions to shoot the target, and each camera position captures one image
every 10 fps for one target, and a total of five shots are captured. We collected and finally
screened a total of 115 tomato and flower targets, and 1711 detected rectangles. At least
two cameras capture each target, as shown in Figure 5.

&

() (b) (©)

Figure 5. Targets were shot from three different camera angles. (a) Shooting angle a; (b) Shooting
angle b; (c) Shooting angle c.
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2.1.2. Data Augmentation

Data augmentation is the most important way to improve model performance by
artificially introducing prior knowledge into training data [31]. Since the samples obtained
after enhancement strongly correlate with the original samples, the network is forced to
learn various potential sample transformation methods. This study uses multiple data
augmentation methods on the training set of the network’s object detection dataset to
improve the robustness of the model in greenhouse scenes [16]. In addition, the images
in the dataset are basically taken in the same scene, and the related data augmentation
method can prevent the model from learning information irrelevant to the target and avoid
overfitting. At the same time, data augmentation can also make up for the lack of data
volume. For deep learning methods, whether the amount of data is sufficient will directly
determine the effectiveness of the network. The specific approach and its parameter settings
are as follows:

1.  The color gamut change is to generate a new image by randomly adjusting the original
image’s color saturation, brightness, and contrast. The random adjustment of the
input image color is vital for improving the robustness of the network and enhancing
the model’s performance in complex greenhouse scenes. The image data’s HSV (Hue,
Saturation, Value) describes the image’s color gamut distortion. The values of these
three parameters are, respectively, Hue (h) is 0.015, Saturation (s) is 0.6, and the
brightness (v) is 0.4.

2. Flip the image from left to right in the horizontal direction, and each image has a 50%
probability of flipping. This data enhancement method can also effectively expand
the data volume of training samples.

3. Toenhance the network’s ability to detect tomato flowers, we use mosaic enhancement
technology and stitch the four images processed by steps 1 and 2 above by random
scaling, random cropping, and random distribution. There are 4 different images are
mixed, while CutMix mixes only 2 images [32]. This method effectively increases the
diversity of images for the training process to improve the model’s ability to detect
the flowers. And this method also effectively increases the number of images. Not
only that, by splicing four images to form one, the batch size is increased in disguise,
which reduces the GPU memory requirements for model training.

2.2. YOLO-Deepsort Model
2.2.1. Object Detection Model

This study proposes a new backbone for feature extraction of the object detection
network based on YOLOVS5 s. This research uses the Shufflenetv2 module to reuse and
blend image features. The Shufflenetv2 module effectively reduces the complexity of the
model [33]. We also use a convolutional module with a CBAM attention mechanism to
minimize the impact of model feature extraction capability degradation caused by model
lightweight [24]. Meanwhile, we use the bi-directional feature pyramid network (BiFPN)
structure in the Neck part, which improves the ability of the network to utilize features [34].
The network structure is shown in Figure 6, and the network Parameters are shown in
Table 2.

From the table, we can see that the object detection model proposed in this study
consists of the following four parts in total:

4.  Inherited from the CSP-1-block of the original YOLOv5’s backbone, this hierarchical
feature fusion mechanism of the CSP structure effectively strengthens the learning
ability of the convolutional neural network. It reduces the number of parameters
of the network. Using the CSP structure can effectively alleviate the problem of
gradient disappearance. In addition, the CSP structure is nested by multiple residual
structures [35]. The basic module in the residual structure is CBL (convolution, batch
normalization, SiLu).
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Figure 6. The structure of the object detection part network of YOLO-deepsort.
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Table 2. The parameters of YOLO-deepsort.

From n Params Module Arguments
0 -1 1 3746 Conv_CBAM [3,32,6,2,2]
1 -1 1 19,170 Conv_CBAM [32, 64, 3,2]
2 -1 1 18,816 CSP_1*1_block [64, 64, 1]
3 -1 1 73,984 Conv + BN + SiLu [64, 128, 3, 2]
4 -1 2 115,712 CSP_1*1_block [128, 128, 2]
5 -1 1 295,424 Conv + BN + SiLu [128, 256, 3, 2]
6 -1 3 625,152 CSP_1*1_block [256, 256, 3]
7 -1 1 203,776 Inverted_Residual_2 [256, 512, 2]
8 -1 1 134,912 Inverted_Residual_1 [512,512,1]
9 -1 1 656,896 SPPF [512,512, 5]
10 -1 1 131,584 Conv + BN + SiLu [512, 256, 1, 1]
11 -1 1 0 Upsample
12 [—1, 6] 1 0 Concat [1]
13 -1 1 361,984 CSP_2*1_block [512, 256, 1]
14 -1 1 33,024 Conv + BN + SiLu [256,128,1, 1]
15 -1 1 0 Upsample
16 [—1,6,14] 1 0 Concat [1]
17 -1 1 90,880 CSP_2*1_block [256, 128, 1]
18 -1 1 147,712 Conv + BN + SiLu [128, 128, 3, 2]
19 [—1,6,14] 1 0 Concat [1]
20 -1 1 361,984 CSP_2*1_block [512, 256, 1]
21 -1 1 590,336 Conv + BN + SiLu [256, 256, 3, 2]
22 [—1,10] 1 0 Concat [1]
23 -1 1 1,182,720 CSP_2*1_block [512,512,1]
24 [17, 20, 23] 1 21,576 Detect

5. The SPPF structure is used to replace the SPP (spatial pyramid pooling) structure
as the output of the last layer of the backbone [36]. The feature map level fusion of
local and global features is achieved through the SPPF module. In addition, the SPPF
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structure dramatically improves the speed of network operations and the feature
information-carrying capacity of feature maps.

6. The feature vector extracted by the shallow network often contains rich location
information, such as contours and texture information. In contrast, the feature vectors
extracted by deep feature extraction networks often contain rich semantic information
and less location information. The location information determines the prediction
accuracy of the target location, and the semantic information determines the accuracy
of the target category prediction. Our model uses BiFPN [34] as the Neck-Part of the
network to maximize the use of the feature information.

7. The Head Part is used for the final detection part, applying anchor boxes on the feature
map and generating regression parameters with class probability, target probability
score, and bounding box [15]. YOLO-deepsort has a total of three heads. The scales of
these heads are (80 x 80 x 21) (40 x 40 x 21) (20 x 20 x 21), each head has a total of
(classes + confidence + coordinate offsets (dx, dy, dw, dh)) x 3 anchor boxes, a total of
21 channels.

2.2.2. Attention Module

CBAM (Convolutional Block Attention Module) is an attention mechanism module
that merges spatial and channel attention [24], as it is shown in Figure 7.

........................................................................................................

\channel attention;

spt|al attention

Input features Output features

Figure 7. The structure of CBAM (Convolutional Block Attention Module).

First, the CBAM attention mechanism performs global average pooling and global
max pooling on the feature map, the processed output feature matrix sizes are (1 x 1 x
channels) and (1 x 1 x channels), respectively. Then, the two groups of channel weights
are combined after passing through the fully connected layer, and then the weights in the
channel dimension are obtained through the non-linear activation layer [23], as shown in
Figure 8.

: MaxPool :
@m [ﬁ:@j channel attention weights | .
i Input features AvgPool Connected Layer :

Figure 8. The structure of channel attention.

Secondly, the feature matrix obtained after the input feature matrix is weighted by the
channels, as mentioned above, also uses global pooling and average pooling to process
the channel dimension of the feature matrix. The resulting output feature matrix shapes
are (h x w x 1) (h x w x 1). Finally, through the convolution layer with a kernel size of
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7, the output feature matrix of size (h x w X 1) is obtained through the convolution and
non-linear activation layer processing, as shown in Figure 9.

Input features ) ) X H
spatial attention weights !

AvgPool

Figure 9. The structure of spatial attention.

The purpose of adding the CBAM attention mechanism in this study is to eliminate
the loss of model feature extraction capability caused by using the lightweight module.

2.2.3. Lightweight Module

Shufflenetv?2 is a lightweight model based on principles of efficient CNN network
design. To improve the defects of shufflenetV1 [37], shufflenetV2 introduces a new opera-
tion called channel split [23]. Figure 10a shows that the input feature map will be equally
divided into two branches in the channel dimension. The left branch is equally mapped, the
right branch contains three convolutions, and the input and output channels are the same.
The two branches are spliced together after completing the operations, respectively. The
network uses a channel shuffle to reorganize the spliced output to ensure the information
exchange between the two branches above. As shown in Figure 10b, there is no additional
channel split for the down sampling module, but each branch directly copies an input, and
each branch has down sampling with a stride is 2. Finally, after stitching these two branches
together, the feature map space size is halved, and the number of channels is doubled.

Channel
Split
1+1 Conv
3+3 DWConv T 111 f°“"
stride=2
o 3'32,’:2‘2’"" 3+3 DWConv
¥ stride=2
1+1 Conv 11 Conv \
\‘(_/ \q{i’i&mv
Concat
! Concat
Channel v
Shuffle Channel
Shuffle
(a) (b)

Figure 10. (a) Inverted Residual_1; (b) Inverted Residual_2.
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2.2.4. BiFPN Module

The difficulty in improving the performance of the target detection network is the
effective representation and processing of multi-scale features. Feature Pyramid Networks
(FPN), a seminal work in this section, proposes a top-down approach to combining multi-
scale features [38]. Based on FPN, a new FPN structure called Path Aggregation Network
(PANet) for Instance Segmentation that strengthens the bottom-up path is proposed, which
improves the utilization efficiency of features of different network layers [39]. To improve
the ability of the model to detect objects of different scales, bi-directional feature pyramid
network (BiFPN) adopts the idea of bidirectional cross-scale connection and weighted
feature fusion to fuse more features without increasing the cost [34]. The BiFPN structure
performs a series of mixing and combining image features and passes the image features to
the prediction layer. Figure 11 shows three different compound scaling methods.

repeated block repeated block repeated block

90
O—0—0O
OO0

—~~

a) (b)
Figure 11. (a) The structure of FPN; (b) the structure of PANAT; (b) the structure of BiFPN.

2.2.5. DeepSort Model

The predecessor of Deepsort was SORT (sample online and real-time tracking) [29].
As a cascade matching algorithm, the network takes the detection result as input (bounding
box, confidence, feature), where confidence is mainly used to filter the bounding box,
and the bounding box and feature match the target with the tracker calculated later. The
Deepsort algorithm uses a Kalman filtering algorithm to generate a tracker based on the
target in the previous frame [40]. The Kalman filter algorithm is divided into two processes,
prediction, and update.

8.  Prediction: When the target passes through a building, parameters such as the target
frame position and speed of the current frame are predicted through parameters such
as the target frame and speed of the previous frame.

9.  Update: The predicted and observed values, the two states of the normal distribution,
are linearly weighted to obtain the state predicted by the current system.

We obtain the corresponding targets in the target box and perform feature extraction
on these targets using a deep neural network. Then the similarity calculation is performed
on the trajectory and appearance features of the target and the tracker. For the trajectory
matching calculation, the model uses the Mahalanobis distance Equation (1) to measure
the differences between the tracker and the target [41].

tD G, ) = (4 —yi) 'St — vi) 1)

where {; represents the target j, y; represents tracker i and S! represents the covariance of ¢
and y. The model measures the similarity between the target and the tracker by the cosine
distance Equation (2).

t?)(i,j) = min{1 — ror,((i) |r,({i)eRi} (2)
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where 1 — r].Tr,(cl) represents cosine distance. The cosine distance is used to measure the
apparent features of the track and the apparent features corresponding to the detection
to predict the ID more accurately. Combining Equations (1) and (2), the comprehensive

matching degree formula of the model is obtained.

cij = MW (i, ) + (1= M)t (i, ) 3)

After the model mentioned above similarity calculation, the model also constructs a
similarity matrix by calculating the IoU of the tracker and the target, and finally obtains the
cost matrix. The Hungarian algorithm matches the predicted tracker with the target in the
current frame [42]. Finally, the parameters of the Kalman filter are updated according to
the matching results. Figure 12 shows the flowchart of the Deepsort algorithm.

Feature extractor

general

1l rnﬁ
|

iou

Kalman fitter ~ [+—— Matching

v

Figure 12. The framework of object tracking.

2.3. Evaluation of Model Performance

In this study, the following metrics are implemented to evaluate the model’s perfor-
mance: precision, recall, F1 score, and mAP (Mean Average Precision). The first letter
represents the correctness of this prediction, T is true, and F is False; the second letter repre-
sents the category predicted by the classifier, P represents the positive samples predicted,
and N represents the negative samples predicted. Our study uses mean accuracy (mAP)
to measure the model performance. The meanings of the relevant parameters and the
consensus are as follows:

TP(True Positive): the prediction result and ground truth are positive samples
FP(False Positive): the detection result is negative, but the prediction result is true
TN(True Negative): the prediction result and ground truth are both negative samples
FN(False Negative): the detection result is positive instead of negative

The calculation function is as follows:

TP

Precision = TP+ EP x 100% 4)
TP o
Recall = 'TIJ_|_—FI\] * 100 /0 (5)

2 % Precision x Recall

F1 =
score Precision + Recall

(6)
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3. Results
3.1. Object Detection Part Training

For model training, the setting of hyperparameters significantly impacts the model’s
training effect. Unlike model parameters, hyperparameters do not depend on data to
dynamically change but are manually adjusted parameters before or during training.
Among them, the design and debugging of the model’s optimization parameters and
regularization parameters, such as learning rate, batch size, optimizer, and weight decay,
will directly or indirectly impact the final effect of the network. The purpose of the
optimization and adjustment of the network model is to find the optimal global solution,
and the regular term hopes that the model will fit as best as possible. Model optimization
seeks to minimize empirical risk, making it easy to fall into overfitting. The regular term is
used to constrain model complexity. So how to balance the relationship between the two
and get the optimal solution is the purpose of hyperparameter adjustment. The results often
confirm that the appropriate setting of hyperparameters is more critical than other methods
for improving network performance. Table 3 shows the setting range of hyperparameters
in this study. The selection of hyperparameters in this study is based on our subjective
judgments based on practice and previous experience, which can be further discussed.
Moreover, to reduce overfitting, after each iteration of 16 images, the network is evaluated
on a validation set of 100.

Table 3. The appropriate values for some hyperparameters and the effect of this hyperparameter
setting on model performance.

Hyperparameter

Selection Notice

If the learning rate is too high or too low, the

learning rate SGD [43] optimization of the model will fail.
Speed up convergence, jump out of the extreme point
momentum 0937 and avoid falling into the local optimal solution
weight_decay 0.0005 Constrain the number of p'ar'ameters, prevent model
overfitting
batch size 8 Updating the weight every 8 images per iteration
box 0.05
cls 0.5 In most cases, the loss function hyperparameters may
cls_pw 1.0 affect the optimization. Inappropriate hyperparameters
obj 1.0 will make it challenging to optimize the model even if
obj_pw 1.0 the loss function is very suitable for the target
Iou_t 0.2 optimization.
anchor_t 4.0

box: box loss gain; cls: cls loss gain; cls_pw: cls BCELoss positive_weight; obj: obj loss gain (scale with pixels);
obj_pw: obj BCELoss positive_weight; IoU_t: IoU training threshold; anchor_t: anchor-multiple thresholds.

At the same time, we use the warm-up method to warm up the learning rate when the
learning rate is updated. The warm-up stage uses a one-dimensional linear interpolation
method to update the learning rate of each iteration. When the warm-up phase is complete,
the model uses the cosine annealing algorithm Equation (8) to update the learning rate
during the rest of the training process.

CUT epoch

totalgpoch #7))/2) ®)

newy, = lrmin + (lrinit - lrmin) * ((1 + COS(

In addition, YOLO-deepsort uses different learning rate adjustment methods for
different layers, including the weight layer, bias layer, and BN layer [9]. This strategy can
make the training process more efficient. To reduce the number of repeated boxes, we
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use non-maxima suppression (NMS) and set a threshold of 0.5. By calculating the overlap
between the output box and the bounding box by CloU Equation (9), the bounding box
that exceeds the threshold will be filtered out. Therefore, when the threshold is set higher,
the number of bounding boxes predicted by the network will decrease, and vice versa, the
number of boxes inference by the network will increase.

2 b bgt
Cloll = Toll — (p(cz) + av) )
4 w8t w\?
v = = (arctanhgt — arctanh> (10)
v
‘= (1—1IoU) +v (1

where b represents the parameters of the predicted box center coordinates, and b$' rep-
resents the parameters of the center of the object bounding box. p? is the square of the
distance between the two center points, and the layer represents the diagonal length of
the minimum circumscribed rectangle of the two rectangles. « and v are aspect ratios, and
w, h, w8!, and h8' represent the height of the predicted box and the height and width of the
bounding box, respectively.

3.2. Object Detection Part Result

The detection algorithm of the YOLO_deepsort model is improved based on the
YOLOV5 s model. We compare the training process between the YOLOv5 s model and our
method to show the algorithm’s performance, as shown in Figure 13.

yolow5s
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(=] @
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Figure 13. (a) The average mean precision of YOLOV5 s and YOLO-deepsort on the train set; (b) the
total loss curve of YOLOvV5 s and YOLO-deepsort on the train set.

Figure 13a shows the model’s mean average precision change during the training
process. For the target detection network, the higher the mAP(0.95), the better the detection
effect of the model. As we can see, the speed of YOLO_deepsort model’s mean average
precision improvement within 100 epochs is better than that of YOLOvS5 s with minor
fluctuation. In addition, the mAP(0.95) of the improved YOLO_deepsort model gradually
stabilizes after 350 epochs, while the YOLOvV5 s model does not gradually stabilize until
the mAP of the 500-epoch model. The loss function curve of the model is often used to
evaluate the model’s performance. As shown in Figure 13b, the loss function curve of the
improved YOLO_deepsort model converges faster in the first 100 epochs than the YOLOv5
s model. The total loss of the improved YOLO_deepsort model is a little lower than that of
YOLOv5 s.
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3.3. Object Tracking Part

The target tracking network uses deep learning methods to extract target features to
help the target tracking network detect and match the bounding box of the network with
the tracker. Therefore, before online tracking, we first train a convolutional neural network
offline for feature extraction of the tracked target. We used a computer configured with an
Intel Core Xeon(R) CPU 2.5 GHz, 64 GB running memory, and 12 GB Nvidia GTX 2080 Ti
GPU to implement the above convolutional neural network training, CUDA version 10.1
parallel computing architecture, and cuDNN version 7.6 network Acceleration library. The
operating environment is Ubuntu 20.04 and PyTorch3.0. The training process of CNN is
shown in Figure 14; we train the CNN offline for over 3500 epochs. Figure 14a shows that
the loss on the test set is close to optimal when it exceeds 2000 epochs. The loss function
evaluates the model by measuring the error between the prediction and true values. In
Figure 14b, the top1 loss of the model gradually decreasing means that even if the shooting
angle of the target changes, the model can still judge whether it is the same target according
to its characteristics. The target features extracted by the CNN network will be used as an
essential basis for matching the bounding box and the tracker, contributing to improving
target tracking accuracy.

104 A
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Figure 14. (a) The loss curve of the training and testing process on the test set; (b) the top1_err of
training and testing process on the test set.

4. Discussion
4.1. Comparison with Other Object Detection Methods

To illustrate the performance of the YOLO-deepsort model, we compare the model
with YOLOV5 s, YOLOv5 m, and YOLOV5 1. The above method is trained with the same
dataset and device, and then the object detection models are compared using the same
test set.

Table 4 shows that YOLO-deepsort has high precision, recall, and mAP (mean average
precision) in the detection tasks of different growth stages of tomato (flowering stage, unripe
fruit, ripe fruit). By comparing the metrics in the table, we can see that our model has better
performance than other YOLO series object detection networks. Specifically, compared with
YOLOVS5 s, the precision of YOLO-deepsort remains unchanged, the Fl-score is improved
by 4.1%, and the mAP (0.95) is improved by 7.1%. The YOLO-deepsort model has fewer
parameters and is very friendly to model deployment, which meets the requirements for the
greenhouse inspection robot to count tomato flowers during travel and provides conditions
for the network to follow up on target tracking. In general, YOLO-deepsort model can
meet the requirements for real-time monitoring in the greenhouse.
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Table 4. The detection results of a series of YOLO networks and YOLO-deepsort.
. . mAP
Model Precision Recall F1-Score (0.5:0.95) Parameters
YOLOV5 s 99.5% 90.6% 94.8% 88.7% 7,018,216
YOLOv5 m 99.5% 95.3% 97.4% 91.6% 13,354,682
YOLOvV51 99.5% 94.1% 96.7% 91.6% 46,119,048
YOLO-deepsort 99.5% 98.4% 98.9% 95.8% 5,072,848

To illustrate the high performance of our method, we drew a heatmap of the above
model, and YOLO-deepsort with different methods added, as shown in Figure 15. The
above results and visual heat map prove that YOLO-deepsort can fulfill the detection of
different periods of tomato and meet the requirements of practical application deployment.
In Figure 15, we show the heatmap of different networks, further demonstrating our
approach’s performance. By setting the target confidence to 0.75 (Filter out targets with
probability scores below 75% to prevent the model from detecting distant targets and
causing double counting), the model can only detect the target of the current row during
the inference process to avoid double-counting. We can see that the detection capabilities
of different models for the tomatoes are similar. However, for flower recognition, the area
of interest of YOLO-deepsort is more concentrated in the area where the target is located,
showing a strong detection ability.

4.2. Comparison with Other Object Lightweight Methods

Complex models often have better performance, but high storage space and computing
resource consumption are difficult to apply. Therefore, in the model design process, we tried
to reduce the consumption of the model’s computing memory and realized the compression
of the model from the algorithm level. Table 5 shows the model size, parameter quantity,
and model performance of YOLO-deepsort and various existing lightweight models. For
scenes where the relationship between the background and the subject is relatively stable,
the existing lightweight network will have better results, but it is not easy to achieve
the expected results in complex agricultural scenes. The number of model parameters of
YOLO-deepsort is only 5.07(Million), the size of the weight file is only 10.5 MB, and the
detection part of the network of YOLO-deepsort can still achieve target recognition and
detection well in agricultural scenarios.

Table 5. The storage cost of YOLO-deepsort and other lightweight models.

Model Input_Size  Params Size(M) Percision =~ mAP(0.5:0.95)
YOLO_nano 416 x 416 - 34.8 30.5% 15.4%
YOLOV3-tiny 416 x 416 8.67M 17.4 95.7% 86.7%

YOLOv5 n 640 x 640 176 M 3.8 96.7% 85.4%
YOLOv5_Lite 640 x 640 539M 10.9 99.2% 91.3%

YOLO-deepsort 640 x 640 507M 10.5 99.5% 95.8%
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Figure 15. (a) Input images; (b) the heatmap of YOLOVS5 s; (¢) the heatmap of YOLOV5 m; (d) the
heatmap of YOLOVS5 1. (e) The heatmap of YOLO-deepsort.

4.3. Performance of Object Tracking and Counting

Our method achieves the function of tracking and counting tomato flowers in complex
agricultural scenarios. We calculate the objects that hit the line by setting a virtual counting
statistic line. Due to the complexity of crop growth in the actual scene, it is difficult for us
to ensure that the camera will not repeatedly collect the target. Our research is based on
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the realization of target tracking to complete the counting task. The algorithm itself can
identify the target in the current video stream, which means that when the same target
repeatedly hits the line, it will not be a repeated count. The counting process is shown in
Figure 16.

Figure 16. Counting the number of tomato flowers in the greenhouse.

The three targets in the images are each assigned a specific ID, and the ID of each
target is still maintained while the camera position is constantly moving. In the greenhouse
environment, the land is uneven, and the inspection robot equipped with a camera has
poor shooting stability during the inspection process. The instability of the video data
can easily lead to the missed detection of the target in some frames. In response to the
above situation, YOLO-deepsort will store the characteristics of the target whose id was
previously determined to ensure that the id of the target does not change when the target is
successfully detected next time.

5. Conclusions

In recent years, given the practical application needs of target detection and yield
prediction in facility agriculture, we propose a tomato counting method based on an object
tracking algorithm and apply it to tomato yield prediction. Overall, the contributions of
this paper are as follows.

To realize the detection and counting of tomatoes at different growth stages, we
propose an improved YOLO model and combine it with the target tracking algorithm
using a deep feature extraction network. In addition, to collecting and labeling images
of tomatoes at different growth stages for training the object detection network, we also
collected a dataset called Tracking_tomato_115 for training the object tracking network. For
the model object detection part of the network, we embedded the lightweight structure and
CBAM module into the backbone network and used the BiFPN structure at the neck of the
model. During the training process, warm-up and cosine annealing algorithms are used to
update the learning rate of the model. Then, we use Deepsort to achieve object tracking
of tomato fruits and flowers. We use the YOLO-deepsort model to test in a greenhouse
environment. The experimental results show that our algorithm can effectively avoid the
occurrence of double counting and achieve good practical results. After getting the tracking
results, we use OpenCV to create a virtual count line to count the targets. Compared with
the original YOLOV5 s model, our method achieved a competitive result. The mean average
precision of flower, green tomato, and red tomato was 93.1%, 96.4%, and 97.9%, which
increased by 17%, 2%, and 2.3%, respectively. Also, our model weights are only 10.5 MB,
and the memory consumption is lower than most lightweight networks under the premise
of ensuring performance. Our model meets the requirements for the greenhouse inspection
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robot to count tomato flowers during travel and provides conditions for the network to
follow up on target tracking.

However, the detection is unstable due to the complex environment of the greenhouse
and the shaking during the inspection process, which will adversely affect the target
tracking and counting. In the future, we will continue improving the model’s speed and
stability for real-time detection in complex scenes.
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