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Abstract: A new image-based robot visual servo control strategy based on a third-order sliding-mode
observer (TOSM) model predictive control is proposed in this study. This new control strategy solves
the problem of robot visual servo control with system constraints and time-varying disturbances when
the camera and model of the robot manipulator are uncertain and the joint velocity is unknown. In the
proposed method, the joint velocity and system centralized uncertainties are estimated simultaneously
based on a third-order sliding-mode observer, and the image-based visual servoing problem is
transformed into a nonlinear optimization problem based on a model predictive control method
considering both visibility constraints and actuator constraints, which minimizes the predicted
trajectory cost function to generate the control signal for each cycle. Simulations were carried out to
verify the effectiveness of the proposed control scheme.

Keywords: visual servoing; third-order sliding-mode observer; model predictive control; robot
manipulator

1. Introduction

To make robots more intelligent and flexible, they are often equipped with vision
sensors as tools for interacting with the outside world. In recent decades, robotic visual
servoing has been fully researched and widely used in various areas, such as robotic produc-
tion logistic [1], robotic service [2,3], robotic navigation and exploration [4,5]. According
to the different feedback information from the camera, the visual servoing system can
be divided into image-based visual servoing [6,7], position-based visual servoing [8,9],
and hybrid visual servoing [10,11]. Refs. [6,7] adopted the image-based visual servoing
method, which takes the deviation between the current and desired image features as
the control deviation. The robustness of different position-based visual servoing systems
was discussed in [8,9], where the control deviations are the deviations of relative pose
between the end-effector and the target in the Cartesian coordinate system. The hybrid
visual servoing method combines the above two visual servoing methods, and the control
deviation is composed of two-dimensional (2D) and three-dimensional (3D) deviations.
Refs. [10,11] discussed the applications of the hybrid visual servoing method in mobile
robots and parallel robots, respectively. Among these, image-based visual servoing has
been the most widely studied and is discussed in this study.

In the image-based visual servo system, the hand-eye mapping relationship is rep-
resented by the dynamic relationship between the velocity of the feature points and the
joints of the manipulator, which is usually expressed as a Jacobian matrix. Because the
Jacobian matrix contains the robot kinematics model and internal and external parame-
ters of the camera, the traditional Jacobian matrix requires a tedious calibration process,
and accurate calibration results are difficult to obtain in practical application scenarios.
Uncalibrated visual servoing directly defines the error in the image space according to
the image features of the manipulator end effector and target and estimates the Jacobian
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matrix or other nonlinear mapping models during the real-time operation of the system.
Yoshimi and Allen proposed an online Jacobian matrix estimation method to solve the
jacking task on the plane. In each servo cycle, the manipulator moves through tentative
motion and records the image feature changes at the end of the manipulator in the image
plane, and uses the parameter identification method. Estimating the current-image Jacobian
matrix value, due to its sampling nature, the real-time performance of the system cannot be
satisfied [12]. Wang and Liu [13] put forward a neural network algorithm of mixed genetic
majorization back-propagation with an aim of model compositing the Jacobian matrix.
Zhong put forward an algorithm that combines an Elman neural network and robust
Kalman filter to determine the interaction matrix online, taking into account composite
noise [14]. The authors of [15,16] both utilize the limit learning machine to evaluate the
interaction matrix pseudo inverse for avoiding noise interference and matrix singularity. A
six-degree-of-freedom visual servo control method based on image-moments was proposed
to solve the problem of underwater vehicle dynamic positioning [17]. In [18], the authors
solved the problem of quality inspection of remote radio units (RRUs) through image-based
visual servo control. A depth-independent interaction matrix was designed that relates
the depth information with the area of the region of interest surrounding the power port
in the controller. The stability of the proposed visual servoing controller was analyzed
by Lyapunov’s theory. However, the aforementioned studies do not fully consider the
linear and nonlinear constraints in visual servoing. For example, if visibility constraints
are not considered, the image feature points may be out of the field range of the camera
during visual servo control. If the torque constraints are not considered, the joint torque
given by the controller may exceed the physical limitation of the robot manipulator. These
behaviors will lead to the loss of control quality and failure of the visual servoing task.
Therefore, it is crucial to consider the system constraints in designing the controller of visual
servoing. One strategy for dealing with constraints is through the path planning technique.
In [19], a visual servoing technique based on optimized trajectory planning was proposed
to optimize the control process and determine the trajectory parameters by minimizing
image-feature deviation. In this technique, the majorization problem is converted into
the convex problem, and the trajectory tracking problem for a four-degree-of-freedom
manipulator is realized by combining it with the depth-estimation method. The artificial
potential field was used in [20] to obtain the initial path, then the initial path was checked
and corrected based on the genetic algorithm, and finally, the visual servoing task under
the constraint environment was completed. The intelligent control approach has also been
utilized to deal with the visual servo system constraint problem. A finite-time optimal
control framework was used in [21] to solve feature correspondence and control problems
simultaneously, and a small unmanned quadrotor was taken as an example to verify the
theoretical research. In [22], a deep reinforcement learning-based visual servo approach was
put forward to deal with the problem of feature loss, and an adaptive adjustment controller
gain based on DRL was designed to enhance the visual servoing efficiency in the context
of meeting the visual field constraints. An approach based on Lyapunov was presented
in [23] to realize the semi-global asymptotic (exponential) regulation of the HVS system
under unconstrained conditions, and the system’s local asymptotic stability was verified
considering the driving-speed constraint. In [24], a method based on the sliding-mode
control method was advanced to meet the constraints of robot vision servoing, and 2D and
3D cases were simulated separately. The robustness and feasibility of this approach were
confirmed by using the traditional six-axis manipulator. Model predictive control (MPC)
methods can solve the constraints explicitly and are often used in constrained systems.
Ref. [25] developed a novel visual servo-based model predictive control method to steer
a wheeled mobile robot (WMR) moving in a polar coordinate toward the desired target,
where kinematic and dynamic constraints are both considered. A predictive controller
of visual servo based on the traditional image Jacobian matrix was designed in [26]. A
depth-independent Jacobian matrix was used in [27] to verify the robustness of MPC in
eye-in-hand (ETH) and eye-to-hand (EIH) visual servoing systems without considering
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the robot dynamics model. In [28], a quasi-min-max MPC method for visual servoing was
presented, in which the depth value is a fixed constant in the Jacobian matrix. In [29],
a constrained predictive visual servoing method for fully actuated underwater robots
was introduced.

Motivated by the works mentioned above, this paper aims to discuss the visual
servoing problem of the robot manipulator considering system model uncertainty, system
constraints and time-varying disturbances with the joint velocity unknown using a third-
order sliding-mode observer-based model predictive control (MPC-TOSM) method.

The main contributions of this paper are given as follows:

• A new MPC control strategy is proposed based on the TOSM observer. Considering
the nonlinear dynamics of the robot, the MPC controller output the optimal sequence
of joint torque with visibility constraints and actuator constraints, and the TOSM
observer is employed to observe the system centralized uncertainties together with
joint velocities.

• Compared with the classical traditional control method in [30,31], the proposed strat-
egy in this paper can achieve better servo performance with model errors and system
constraints in a 2-DOF robot manipulator. Compared with the recent visual servo
control method proposed in [27], the proposed strategy in this paper provides faster
convergence speed and more accurate control with time-varying disturbances in both
2-DOF and 6-DOF robot manipulators.

• The global stability of the system when combining MPC controller and TOSM observer
is proved by the Lyapunov stability theory.

These contributions are validated by various comparative experiments.
The residual parts of the paper are organized as follows. Section 2 presents the visual

servo model. In Section 3, the sliding-mode observer and MPC controller of the image-
based visual servoing are designed. Simulation analysis results are detailed in Section 4.
Finally, simulation results that could verify the effectiveness of the proposed image-based
visual servo control method are presented in Section 5.

2. Visual Servoing System Modeling

In the current section, the kinematics of visual servoing and robot dynamics modeling
are introduced.

2.1. Kinematics of Visual Servoing Systems

In accordance with the positional correlation between robot and camera, a visual
servoing system can be divided to eye-in-hand (EIH) and eye-to-hand (ETH) configurations,
as shown in Figures 1 and 2, respectively. In both of these configurations, we give a unified
coordinate mapping correlation between the image and camera coordinate system. The
feature points in the image coordinate system are defined as sn = (un, vn)T and can be
formulated by

sn =
1
zi

[
mT

1
mT

2

]
Ω
[yc

1

]
, (1)

where zi stands for the depth information of a feature point existing in the camera coor-
dinates, mT

i the ith row of the camera parameter matrix which is unknown M ∈ <3×4,
and Ω ∈ <3×4 the coordinate transformation matrix which is determined by kinematics,

expressed as Ω=

(
R P

01×3 1

)
, where R ∈ <3×3 is a matrix representing the rotation rela-

tionship and P ∈ <3×1 is a matrix representing translation relationship, and yc represents
the unknown feature point in Cartesian coordinates.
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Figure 1. Eye-in-hand configuration of 2-DOF robot manipulator.

Figure 2. Eye-to-hand configuration of 2-DOF robot manipulator.

Different configurations correspond to different matrices. In the configuration of

Figure 1, M = DΩc
e,Ω =

(
Ωb

e

)−1
. In the configuration of Figure 2, M = DΩc

b,Ω = Ωb
e .

The above symbols are defined as follows.
D ∈ <3×4 is a matrix that involves the camera’s internal parameters, Ωc

e stands for
the coordinate transformation matrix of the robot base framework relative to the camera
framework, Ωb

e represents the coordinate transformation matrix of the robot base relative
to the end-effector framework relative to the robot base framework, and it can be gathered
from the forward kinematics of robot, and Ωc

b the coordinate transformation matrix of the
robot base framework relative to the camera framework.

The depth zican be expressed as

zi = mT
3 Ω
[yc

1

]
. (2)

Differentiating the above formula relative to time, we can acquire the relationship
between the joint velocity and variation of the feature point with time as

ṡn =
1
zi Cq̇, (3)

where q̇ ∈ Rn×1 denotes the velocity of robot joints, n the freedom degrees of the robot, and
C ∈ R2×n the image Jacobian matrix where the depth is independent, which is expressed as

C =

[
mT

1 − unmT
3

mT
2 − vnmT

3

]
1
∂q

(
Ω
[

yc
1

])
. (4)

The unknown robot kinematic parameters together with the camera parameters iden-
tified the components of the depth-independent image Jacobian matrix. In the above
formula, both the Jacobian matrix and depth information in it are nonlinear. Therefore, the
following properties are introduced herein, and the nonlinear elements are linearized by
the regression matrix and unknown parameter vector.
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Property 1. The product Dηfor a vector η ∈ <n×1 can be parameterized linearly as below
equations:

Dη = B(sn, η, q)θ, (5)

dTη = b(sn, η)θ, (6)

where B(sn, η, q),b(sn, η) denote the regression matrices, while θ represents the associated unknown
parameter vector identified through the products of the unknown robot kinematic parameters together
with the unknown camera parameters .

Property 2. The depth zi can be expressed as the unknown parameters linear form as below

zi = Y(q)θz, (7)

where Y(q) represents the regression matrix, while θz stands for the unknown parameters influenced
via the products of an unknown camera parameters together with feature position.

2.2. Robot Dynamics

The dynamic control system of robot manipulators can be regarded as a kind of second-
order uncertain nonlinear system. The dynamic model of the robot manipulator is given in
Lagrangian form as follows:

H(q(t))q̈(t) + K(q(t), q̇(t))q̇(t) + G(q(t)) = τ(t) + τe(t), (8)

where H(q(t)) ∈ <n×n denotes the inertia matrix, K(q(t), q̇(t)) denote the centripetal and
Coriolis torque matrix, G(q(t)) ∈ <n×n the gravitational torques, τ(t) ∈ <n×1 the input
torque vector, and τe(t) ∈ <n×1 the slowly varying external disturbances.

The modeling deviation between the real and mathematical models ∆H0(q(t)),
∆K0(q(t), q̇(t)), and ∆G0(q(t)) can be expressed as

∆H(q(t)) = H(q(t))− H0(q(t)), (9)

∆K(q(t), q̇(t)) = K(q(t), q̇(t))− K0(q(t), q̇(t)), (10)

∆G(q(t)) = G(q(t))− G0(q(t)), (11)

respectively, where H0(q(t)), K0(q(t), q̇(t)), and G0(q(t)) denote the corresponding nomi-
nal parts of the model. Then, Equation (8) can be written as

H0(q(t))q̈(t) + K0(q(t), q̇(t))q̇(t) + G0(q(t)) = τ(t) + τe(t)

− ∆H(q(t))q̈(t)− ∆K(q(t), q̇(t))q̇(t)− G(q(t))
(12)

By defining variables F(q, q̇, t),

F(q, q̇, t) = τe(t)− ∆H(q(t))− ∆K(q(t), q̇(t))− ∆G(q(t)), (13)

Equation (12) can be rewritten as

H0(q(t))q̈(t) + K0(q(t), q̇(t))q̇(t) + G0(q(t)) = τ(t) + F(q, q̇, t). (14)

The joint acceleration can be expressed as

q̈(t) = −H0(q(t))
−1K0(q(t), q̇(t))q̇(t)− H0(q(t))

−1G0(q(t))

+H0(q(t))
−1τ(t) + H0(q(t))

−1F(q, q̇, t).
(15)
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Considering the uncertain parameters and external disturbances, the approximate
dynamic model can be defined as

q̈(t) = f (q(t), q̇(t)) + ∆ f , (16)

where f (q(t), q̇(t)) = −H0(q(t))
−1K0(q(t), q̇(t))q̇(t)− H0(q(t))

−1G0(q(t))
+ H0(q(t))

−1τ(t) ,∆ f = H0(q(t))−1F(q, q̇, t).

3. Third-Order Sliding-Mode Observer

As a multi-variable complicated nonlinear system with multi-variable and strong
coupling characteristics, the manipulator is easily affected by various internal and external
factors during operation, and its own joint velocity measurement is often accompanied
by noise. At the same time, it is difficult to ensure the modeling accuracy and hand-eye
calibration accuracy of the manipulator in the visual servo system. Therefore, in the current
section, a third-order sliding-mode observer is introduced to estimate the system speed and
centralized uncertainty, and then the estimated information is input to the model predictive
controller as a feed-forward signal. The robot dynamics model (15) is reconstructed into
state space equations.

Variables x1 = q,x2 = q̇ are proposed to rewrite the kinetic model as

ẋ1 = x2 (17)

ẋ2 = f (x) + g(x)u(t) + Π(x, t) (18)

where f (x) = H0(q(t))
−1(−K0(q(t), q̇(t))q̇(t)− G0(q(t))),g(x) = H0(q(t))

−1,
u(t) = τ(t) ,and Π(x, t) = H0(q(t))

−1F(q̇, q, t).
The following TOSM observer is presented:

˙̂x1 = σ1|x1 − x̂1|2/3sign(x1 − x̂1) + x̂2 (19)

˙̂x2 = f (x̂) + g(x̂)τ(t) + σ2|x1 − x̂1|1/3sign(x1 − x̂1)− ŷ (20)

˙̂y = −σ3sign(x1 − x̂1) (21)

where x̂ denotes the observation value of the disturbance observer and σ1,σ2,σ3 denotes
the suitable observer gain value. Subtracting (17) and (18) to (19)–(21), and defining the
system state’s estimation errors x̃ = x− x̂, we have

˙̃x1 = −σ1|x̃1|2/3sign(x̃1) + x̃2 (22)

˙̃x2 = −σ2|x̃1|1/3sign(x̃1) + Π̂(x, x̂, t) + ŷ (23)

˙̂y = −σ3sign(x̃1) (24)

By introducing variables ŷ0 = Π̂(x, x̂, t) + ŷ, the sliding-mode observer becomes

˙̃x1 = −σ1|x̃1|2/3sign(x̃1) + x̃2 (25)

˙̃x2 = −σ2|x̃1|1/3sign(x̃1) + ŷ0 (26)

˙̂y0 = −σ3sign(x̃1) +
˙̂Π(x, x̂, t) (27)

The estimation errors (25)–(27)is the standard form of the second-order robust accurate
differentiator, and its finite-time stability has been successfully proved in [32].

4. MPC Controller Design

In the preceding section, joint velocities and system centralized uncertainty were
effectively estimated by designing an SMO. In this section, an MPC-based controller is
designed for solving system constraints and model uncertainty, so that image feature points
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converge to expected values. Figure 3 reflects the overall control scheme. The control
instruction is the joint torque of the robot manipulator and the output is the joint angle q.
The system uncertainty is estimated using an SMO in the feedforward loop.

Deep-

Independence

jacobian

Third-order 

sliding mode 

controller

Robot
Constrained

optimization

Camera

+

Feature

extraction

TOSM-based MPC 

Visual Servoing

Image

_

qt

ns

ds

2x̂

Figure 3. The control system architecture.

The model predictive controller obtains the optimal control input for each control
cycle by solving a constrained optimization problem. The design of the model predictive
controller is described below.

The visual servo system model is represented by the following discrete-time model:(
sn(k + 1)
q̇(k + 1)

)
=

(
sn(k)
q̇(k)

)
+

( 1
zi C(k)q̇(k)Td

( f (q(t), q̇(t)) + ∆ f )Td

)
, (28)

where Td denotes the sampling period. The servoing system control inputs can be counted
through dealing with the below constrained finite-time optimization problem:

J(k) =
Np

∑
i=1
‖s̄(k + i)− sd‖2

QF
+

Np

∑
i=1
‖ ¯̇q(k + i)‖2

QG

+
Nc

∑
i=1
‖τ̄(k + i− 1)‖2

R

(29)

where s̄(k + i), ¯̇q(k + i), and τ̄(k + i− 1) denote the image which is predicted by the MPC,
joint velocity, and output torque, respectively, to be modified at time k. sd denotes the
desired coordinates of image features. Np denotes the prediction step length, horizon and
Nc the control step length, which is usually Nc ≥ Np. The cost function J(k) consists of
three parts: image-feature bias, joint velocity, and torque. QF ≥ 0,QG ≥ 0 and R represent
the associated weighting matrices.

The MPC-based visual servo system with constraints can be described as

Ψ min J(k)
q̇(k)

. (30)

To make sure that the feature points are in the camera’s visual field, the visibility
constraint is defined as

smin
n 6 sn(k) 6 smax

n , (31)

where smin
n and smax

n denote the range of coordinates, respectively, of the image plane.
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The torque constraint is expressed as

τmin 6 τ(k) 6 τmax, (32)

where τmin and τmax stand for the boundary value of the force torque. The sequential
quadratic programming (SQP) algorithm is an algorithm that converts complex nonlinear
constrained optimization problems into simpler quadratic programming (QP) problems.
Therefore, this paper adopts the SQP algorithm for the optimal control problem.

The Lyapunov function is defined as as follows:

V(k) =
N

∑
i=1
‖s̄(k + i)− sd‖2

QF
+

N

∑
i=1
‖ ¯̇q(k + i)‖2

QG
+

N

∑
i=1
‖τ̄(k + i− 1)‖2

R (33)

Here, for the sake of brevity, the control time domain and the prediction time domain
are made equal, that is NP = NC = N. Let

R(i) = ‖s̄(k + i)− sd‖2
QF

+ ‖ ¯̇q(k + i)‖2
QG

+ ‖τ̄(k + i− 1)‖2
R, i ∈ I[1, N] (34)

then

V(k + 1)= min
τ

{
N

∑
i=1
‖s̄(k + i + 1)− sd‖2

QF
+

N

∑
i=1
‖q̇(k + i + 1)‖2

QG
+

N

∑
i=1
‖τ̄(k + i)‖2

R

}]

= min
τ

{
N

∑
i=1

R(i)− R(1) + R(N)

}

= −R(1) + min
τ

{
N

∑
i=1

R(i) + R(N)

}

≤ −R(1) + V(k) + min
τ

{
N

∑
i=1

R(N)

}
(35)

and R(1) ≥ 0, minτ

{
∑N

i=1 R(N)
}
= 0. As a result, V(k + 1) ≤ V(k), namely, V(k + 1)−

V(k) ≤ 0.
Therefore, the stability of the closed-loop system is proven.

5. Simulation Results

In order to verify the effectiveness and robustness of the MPC-TOSM method, the
comparative simulations are carried out in this section.

5.1. Comparative Simulations with Model Uncertainty

First of all, the comparative simulations of visual servoing with model uncertainty are
carried out in this part. Three control strategies used for the comparative simulations are
shown below.

• Case 1: The control strategy is the traditional visual servo control method in [30].
• Case 2: The control method is MPC and the observer is a traditional SMO in [31].
• Case 3: The control strategy is the MPC-TOSM method proposed in this paper.

The simulation object adopts the two-degree-of-freedom (2-DOF) manipulator from [27].
In the parameters of the 2-DOF robot manipulator, for the first and second links, their
lengths, masses, mass centers and inertia are expressed as l1 and l2, m1 and m2, lc1 and lc2,
I1 and I2, respectively. In the initial rough parameters of the 2-DOF robot manipulator, for
the first and second links, their lengths, masses, mass centers and inertia are expressed as l̂1
and l̂2, m̂1 and m̂2 and lc2 , l̂c1 and l̂c2 , Î1 and Î2 , respectively. The specific values are shown
in Tables 1 and 2.
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Table 1. Parameters of the 2-DOF robot manipulator.

ith Joint li (m) mi (kg) lci (m) Ii (kgm2)

1 0.18 23.9 0.091 1.27
2 0.15 4.44 0.105 0.24

Table 2. Initial rough parameters of the 2-DOF robot manipulator.

ith Joint l̂i (m) m̂i (kg) l̂ci (m) Îi (kgm2)

1 0.05 20 0.05 1.0
2 0.05 4 0.05 0.2

Furthermore, we assume that the exact camera parameters are unknown in the com-
parative simulations. The real camera parameters and initial rough camera parameters are
shown in Table 3. In this paper, the focal length is denoted by f .The real and initial rough
coordinates of the camera stagnation point are (u0, v0) and (û0, v̂0), which are in the image
frame. The real and initial rough scaling factors along the u and v axes are (ku, kv) and
(k̂u, k̂v). The range of the u axis are umin = 0, umax = 1292 pixels. The range of the v axis
are vmin = 0, vmax = 964 pixels. The minimum and maximum torques of the actuator are
−t10 Nm and 10 Nm. Both visibility constraints and actuator constraints manifest in the
visual servoing task. The real and initial rough camera parameters are shown in Table 3.

Table 3. Camera parameters.

Focal Length (m)
Coordinates of the Camera

Stagnation Point in the
Image Frame (pixels)

Scaling Factors along u Axis
and v Axis (pixels/m)

Real camera parameters 0.0005 (646, 482) (269,167, 267,778)
Initial rough camera

parameters 0.0005 (500, 500) (250,000, 250,000)

The Cartesian coordinates of Feture Point 1 to Feture Point 4 that relative to the
robot base are (0.0618, 0.0516, 0.3)T m, (−0.0159, 0.0516, 0.3)T m, (0.0618, 0.023, 0.3)T m,
and (−0.0159, 0.023, 0.3)T m, respectively. The initial 2D coordinates of the image feature
points are (500, 300)T pixels, (700, 300)T pixels, (500, 425)T pixels, and (700, 425)T pixels.
The desired 2D coordinates of the image-feature points are (425, 525)T pixels, (425, 325)T

pixels, (625, 525)T pixels, and (625, 325)T pixels. The initial states of robot manipulator are
chosen as q1(0) = q2(0) = π

6 ,q̇1(0) = q̇2(0) = 0. The coordinate transformation matrix of
the end-effector framework relative to the camera framework He

c is expressed as

He
c =


−1 0 0 0.01
0 −1 0 −0.02
0 0 1 0.015
0 0 0 1

. (36)

In the experiments, setting the initial rough estimation of camera extrinsic parameter
matrix Ĥe

c as

Ĥe
c =


−1 0 −0.25 0.005
0 −1 0 0
0 0 0.95 0.01
0 0 0 1

. (37)

The parameters in the third-order sliding mode are chosen as σ1 = 2.2L1/3, σ2 = 2L2/3,
σ3 = L,with L = 6. The parameters in the MPC controller are chosen as QF = 30I8×8,
QG = 0I2×2, and R = 5I2×2, Np = 10, and Nc = 8.
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With an aim of comparing the control effects of several methods, the same initial
positions of the image features are set, which are represented by circles in Figure 4, and the
same desired positions of the image features are represented by boxes. Figure 4 displays the
trajectories of features in the image plane in Case 1, 2, and 3 control strategies, respectively.
The trajectories of Feture Point 1 to Feture Point 4 are shown in red, green, blue and black,
respectively. In Case 1, the rough initial parameters make the classical image-based visual
servoing invalid, the feature points deviate from the desired positions, and the visual
servoing task cannot be completed. In Case 2 and 3, the image features both reach the
desired final position. However, the trajectory of image features fluctuates during the
convergence process in Case 2. In Case 3, the trajectory of image features converges to
the desired position smoothly and quickly. Figure 4c indicates that the proposed method
can obtain satisfactory control effects without joint-angle measurement in the company
of visibility constraints, actuator constraints, and system model uncertainty. Figure 5
displays the feature response deviations in the image plane in Case 1, 2, and 3 control
strategies, respectively. The deviation is defined as the difference between the current
feature point coordinates and the desired point coordinates. In Figure 5b,c, it can be seen
that the stabilization time of the control system is about 10 s in Case 3, faster than in Case
2 (15 s). In Figure 6, it can be observed that the traditional SMO control strategy leads to
the chattering phenomenon of the joint torques, while the proposed MPC-TOSM method
can suppress the chattering phenomenon effectively and better complete the visual servo
goals. Figures 7 and 8 display the estimation errors of the joint velocities together and the
uncertainty estimation errors of the observers in Case 2 and Case 3. We can see that the
TOSM observer has higher estimation accuracy than the traditional sliding mode observer.
Higher estimation accuracy brings better control performance to the control system.
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Figure 4. Trajectories of the image features of comparative simulations with model uncertainty.
(a) Trajectories of the image features in Case 1. (b) Trajectories of the image features in Case 2.
(c) Trajectories of the image features in Case 3.
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Figure 5. Image errors of comparative simulations with model uncertainty. (a) Image errors in Case 1.
(b) Image errors in Case 2. (c) Image errors in Case 3.
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Figure 6. Torque of the robot manipulator with model uncertainty in Case 2 and Case 3.
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Figure 7. Velocity estimation errors with model uncertainty in Case 2 and Case 3.
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Figure 8. Uncertainty estimation errors with model uncertainty in Case 2 and Case 3.

5.2. Comparative Simulations with Time-Varying External Disturbances

The simulation results in the previous section prove that the visual servo controller
proposed in this paper can effectively realize the visual servoing by considering system
constraints and model uncertainty without measurements of joint velocity. However time-
varying disturbances always exist in practical application scenarios, such as joint torque
friction. Therefore, we discuss the control effect of the proposed method in visual servoing
tasks with time-varying external disturbances in this subsection. The comparative simu-
lations are divided into two parts, which are conducted on the 2-DOF robot manipulator
and 6-DOF robot manipulator, respectively. The comparative simulations are carried out
between the control strategies proposed in this paper and in [27], which is called Case 4 in
this paper.

5.2.1. 2-DOF Robot Manipulator

The parameters of the robot manipulator and camera are the same as in the previous
section. The special condition added is that the time-varying external disturbances were
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given asτd =
[
4 sin

( 3π
7 t
)
, 4 sin

( 3π
7 t
)]T

, which is time-varying.The simulation results are
as follows. Figure 9 displays the trajectories of the image features with time-varying
external disturbances in Case 3 and Case 4, respectively. The trajectories of Feture Point
1 to Feture Point 4 are shown in red, green, blue and black, respectively. Although there
exist fluctuations and turn-back in the trajectories, the image features both respond from
the initial positions to the desired positions in Case 3 and Case 4 successfully. However as
we can see from Figure 9 and Figure 10, the convergence speed of image errors in Case 3
(about 10 s) is faster than in Case 4 (about 15 s). At the same time, the absolute value of
steady-state image errors in Case 3 (about 7 pixels) is smaller than errors in Case 4 (about 18
pixels), as shown in Figure 10. Figure 11 shows the response of the torques under the two
strategies. Compared with Case 3, Case 4 brings more frequent ripple to the joint torques as
shown in Figure 11, which means a better quality of control. It can also be considered that
the input torques are more stable in Case 3. Figure 12 displays the estimation errors of joint
velocities in Case 3 and Case 4. It can be seen in Figure 12 that the joint velocities are more
accurately estimated by the TOSM observer in Case 3. Figure 13 displays the estimation
errors of uncertainties in Case 3. The estimation of uncertainties is given accurately by the
TOSM observer in Case 3, then feed back to the controller. While the observer in Case 4
does not have the ability to estimate the uncertainties. As shown in Figures 9–13, it can be
concluded that the control strategy of Case 3 is superior to that of Case 4 in 2-DOF robot
manipulator visual servoing with time-varying external disturbances.
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Figure 9. Trajectories of the image features of comparative simulations with time-varying external
disturbances for the 2-DOF robot manipulator. (a) Trajectories of the image features in Case 3.
(b) Trajectories of the image features in Case 4.
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Figure 10. Image errors of comparative simulations with time-varying external disturbances for the
2-DOF robot manipulator. (a) Image errors in Case 3 . (b) Image errors in Case 4.
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Figure 11. Torque of the 2-DOF robot manipulator in Case 3 and Case 4.
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Figure 12. Velocity estimation errors with time-varying external disturbances in Case 3 and Case 4
for the 2-DOF robot manipulator.
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Figure 13. Uncertainties estimation errors with time-varying external disturbances in Case 3 for the
2-DOF robot manipulator.

5.2.2. 6-DOF Robot Manipulator

The 6-DOF robot manipulators are most widely used in practical applications. There-
fore, it is necessary to verify the effectiveness of the MPC-TOSM method on a 6-DOF
robot manipulator. The dynamic parameters and model of 6-DOF robot manipulator
are given in [33]. The initial rough camera parameters are given the same settings as
above experiments. The Cartesian coordinates of Feture Point 1 to Feture Point 4 that rel-
ative to the robot base are (0.6237, 0.4651, 2)T m,(−0.16, 0.4651, 2)T m, (0.6237, 0.25, 2)T

m, and (−0.16, 0.25, 2)T m, respectively. The initial 2D coordinates of the image fea-
ture points are (600, 300)T pixels, (1000, 300)T pixels, (600, 425)T pixels, and (1000, 425)T

pixels. The desired 2D coordinates of the image-feature points are (450, 525)T pixels,
(450, 325)T pixels, (850, 525)T pixels, and (850, 325)T pixels. The initial states of robot
manipulator are chosen as q1(0) = q2(0) = 0,q3(0) = q4(0) = π

6 , q5(0) = q6(0) = π
12 ,

q̇1(0) = q̇2(0) = q̇3(0) = q̇4(0) = q̇5(0) = q̇6(0) = 0. The coordinate transformation matrix
of the end-effector framework relative to the camera framework He

c is expressed as

He
c =


−1 0 0 0.01
0 −1 0 −0.02
0 0 1 0.015
0 0 0 1

. (38)

In the experiments, setting the initial rough estimation of camera extrinsic parameter
matrix Ĥe

c as

Ĥe
c =


−0.98 0 −0.25 0.005

0 −0.96 0 0
0 0 0.95 0.01
0 0 0 1

. (39)

The parameters in the third-order sliding mode are chosen as σ1 = 3L1/3, σ2 = 2L2/3,
σ3 = 2L, with L = 6. The parameters in the MPC are chosen as QF = 25I8×8, QG = 0.2I6×6, and
R = 1I6×6, Np = 4, and Nc = 2. The minimum and maximum torques of the actuator are−80 Nm
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and 80 Nm. The system uncertainty was given as τd =
[
5 sin

( 2π
5 t
)
, 5 sin

( 2π
5 t
)
, 2 sin

( 2π
5 t
)
,

sin
( 2π

5 t
)
, sin

( 2π
5 t
)
, sin

( 2π
5 t
)]T

, which is time-varying.
The simulation results are given as follows:
Figure 14 displays the trajectories of image features in Case 3 and Case 4 with time-

varying external disturbances, respectively. The trajectories of Feture Point 1 to Feture Point
4 are shown in red, green, blue and black, respectively. Although there exist fluctuations
and turn-back in the trajectories, the image features both respond from the initial positions
to the desired positions successfully in Case 3 and Case 4. However as we can see from
Figures 14 and 15, the convergence speed of image errors in Case 3 (about 8 s) is faster
than in Case 4 (about 10 s). At the same time, the absolute value of steady-state image
errors in Case 3 (about 10 pixels) is smaller than errors in Case 4 (about 20 pixels), as
shown in Figures 14 and 15. Figure 16 shows the response of the torques under the two
strategies. Compared with Case 3, Case 4 brings more frequent ripple to the joint torques as
shown in Figure 16. It can also be considered that the input torques are more stable in Case
3. Figure 17 displays the estimation errors of joint velocities with time-varying external
disturbances in Case 3 and Case 4. It can be seen that the joint velocities are estimated
more accurately by the TOSM observer in Case 3. Figure 18 displays the estimation errors
of uncertainties with time-varying external disturbances in Case 3. The estimation of
uncertainties is given accurately by the TOSM observer in Case 3, then fed back to the
controller. According to Figures 14–18, it can be concluded that the control strategy of Case
3 is superior to that of Case 4 in 6-DOF robot manipulator visual servoing.

To sum up, according to the simulation results and discussions above, the proposed
MPC-TOSM strategy is a satisfactory method to deal with IBVS tasks by considering
system constraints, model uncertainty and time-varying external disturbances with joint
velocity unknown.
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Figure 14. Trajectories of the image features of comparative simulations with time-varying external
disturbances for the 6-DOF robot manipulator. (a) Trajectories of the image features in Case 3.
(b) Trajectories of the image features in Case 4.
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Figure 15. Image errors of comparative simulations with time-varying external disturbances for
the 6-DOF robot manipulator. (a) Image errors in Case 3 with time-varying external disturbances.
(b) Image errors in Case 4 with time-varying external disturbances.
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Figure 16. Torque of the 6-DOF robot manipulator with time-varying external disturbances in Case 3
and Case 4.
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Figure 17. Velocity estimation errors with time-varying external disturbances in Case 3 and Case 4
for the 6-DOF robot manipulator.
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Figure 18. Uncertainties estimation errors with time-varying external disturbances in Case 3 for the
6-DOF robot manipulator.

6. Conclusions

For dealing with the image-based visual servoing problem of robot manipulators
with model uncertainty, system constraints, unmeasurable joint angles, and time-varying
disturbances, a new MPC method on the basis of a third-order sliding-mode (TOSM)
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observer is presented in this current research. A TOSM observer is designed for evaluating
the joint velocity and system centralized uncertainty simultaneously, and feed-forward the
estimated value to the model predictive controller. Using an MPC strategy, the optimal
input torque is calculated by decreasing the cost function on the basis of image deviation
as far as possible while fully considering the visibility constraints and actuator constraints.
Simulation results verify the effectiveness of the proposed MPC-TOSM visual servoing
control strategy. In planned subsequent work, we will study the visual servoing problem
of tracking dynamic feature points and fully consider the time-delay sensitivity of visual
feature feedback in the dynamic tracking process.
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