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Abstract: Fault diagnosis is a challenging topic for complex industrial systems due to the varying
environments such systems find themselves in. In order to improve the performance of fault diagnosis,
this study designs a novel approach by using particle swarm optimization (PSO) with wavelet
mutation and least square support (LSSVM). The implementation entails the following three steps.
Firstly, the original signals are decomposed through an orthogonal wavelet packet decomposition
algorithm. Secondly, the decomposed signals are reconstructed to obtain the fault features. Finally,
the extracted features are used as the inputs of the fault diagnosis model established in this research
to improve classification accuracy. This joint optimization method not only solves the problem
of PSO falling easily into the local extremum, but also improves the classification performance of
fault diagnosis effectively. Through experimental verification, the wavelet mutation particle swarm
optimazation and least sqaure support vector machine ( WMPSO-LSSVM) fault diagnosis model has
a maximum fault recognition efficiency that is 12% higher than LSSVM and 9% higher than extreme
learning machine (ELM). The error of the corresponding regression model under the WMPSO-LSSVM
algorithm is 0.365 less than that of the traditional linear regression model. Therefore, the proposed
fault scheme can effectively identify faults that occur in complex industrial systems.

Keywords: fault diagnosis; PSO; wavelet mutation; LSSVM

1. Introduction

Fault diagnosis and detection for complex industrial systems has been widely investi-
gated and rapidly developed in recent years [1–5]. In essence, fault diagnosis in industrial
environments is pattern recognition based on fault features. In engineering systems, fault
diagnosis is usually carried out in two aspects: model-based and data-based [6]. With
the progress of science and technology, intelligent pattern recognition algorithms for fault
signals have been developed vigorously, such as neural networks [7–9], K-nearest neigh-
bor [10–12], and LSSVM [13–15]. Neural networks have the advantage of being able to
approximate arbitrary complex nonlinearities and have good robustness [6,16]. For ex-
ample, Xu et al. [17] proposed a fault diagnosis method based on neural networks and
fuzzy theory for rotating machinery. In [4], a performance degradation and fault detec-
tion model for industrial systems was proposed based on transfer learning and federated
neural networks, and the analysis illustrated its effectiveness and feasibility for industrial
systems. For the purpose of fault detection, Chen et al. [9] established a data-driven fault
detection scheme based on two neural networks, which can construct the optimal model
adaptively. These methods demonstrate the effectiveness of neural network algorithms
in fault diagnosis for dynamic industrial systems [18]. In another respect, vibration sig-
nals can be converted into two-dimensional digital images representing the patterns of
the permutation entropy of those signals, as in [19], where a deep neural network was
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established for pattern recognition. Usually, a neural network algorithm needs a large
amount of data training to establish a model with high diagnostic accuracy. However, it is
difficult to obtain a large amount of fault data from complex systems in practice. K-nearest
neighbor is one of the simplest algorithms based on data-driven classification technology,
and it is easy to implement and requires no parameter estimations. It is widely applied
in pattern recognition, fault diagnosis, and the multiple classification problem [20–22].
Ma et al. [23] proposed a multilabel learning algorithm based on the K-nearest neighbor
algorithm for managing the prognostics and health of rolling bearings, and Gan et al. [24]
used the K-nearest classifier to identify different rolling bearing conditions for industrial
systems. Nevertheless, K-nearest neighbor is highly dependent on samples, the effect of
this defect on classification accuracy cannot be neglected.

Support vector machine (SVM), as a classical pattern identification method, is widely
used in various fields. For example, a temporal-based support vector machine for the detec-
tion and identification of several toxic gases in a gas mixture was proposed in [25], which
also indicates the great potential of SVM. LSSVM, which is a modification of the SVM, was
proposed by Suykens and Vandewalle in [26]. Inequality constraints in SVM are replaced
by equality constraints in LSSVM, reducing the difficulty of calculation. Zhang et al. [27]
combined a generalized frequency response function and LSSVM to achieve fault classifica-
tion for a nonlinear analog circuit. The results showed that the fault diagnosis method can
obtain high recognition accuracy. Product function correntropy and LSSVM were presented
in [28] to improve the fault diagnosis performance for rolling bearings in varying industrial
conditions. In order to further improve the effectiveness of LSSVM, Zhang et al. [29] used
PSO to optimize LSSVM, and their proposed PSO-LSSVM fault diagnosis method had
a high recognition rate. Similarly, a fault identification method for rolling bearings in
industrial systems was proposed in [30]. In addition, Ren et al. achieved fault detection
and diagnosis in complex industrial systems based on PSO-LSSVM, and their experimental
results showed that this method can be applied well in the field of industry. As mentioned
above, as a classical intelligent optimization algorithm, PSO is widely used due to its
convenience of implementation: it does not require that extra attention be paid to param-
eter tuning. However, the PSO algorithm also has many disadvantages, such as a poor
ability to search locally, and its tendency to fall easily into the local extremum [31–33]. To
solve this problem, many scholars have made great efforts. For example, Zhang et al. [34]
introduced dynamic inertia weights and gradient information to improve PSO. At the same
time, a bearing fault diagnosis method via an LSSVM identification model was presented.
Liu et al. [35] established a fault detection model based on a chaotic PSO algorithm and
a kernel-independent component analysis, and the simulation results showed that the
optimization method can avoid the phenomenon of the PSO algorithm’s susceptibilty
to falling into a local extremum. Furthermore, an improved PSO- and SVM-based fault
diagnosis methodology was presented in [36] to predict faults in nuclear power plants.

Motivated by the above observations, the first contribution of this study is to design a
novel fault diagnosis method based on WMPSO-LSSVM that can achieve a high classifi-
cation accuracy. The second contribution is to solve the problems of the PSO algorithm’s
susceptibilty to falling into a local extremum and its low search precision. In addition, this
study adopts the data-driven method to realize the fault diagnosis and prognostics of the
actual complex parts in an industrial system, and a contrast experiment shows that the
established joint optimization scheme has superior performance and strong robustness,
which can promote the development of mechanical fault diagnosis.

The remaining parts of this study include Section 2, which introduces the signal pre-
processing and feature extraction methods, which are based on an orthogonal wavelet
packet algorithm ( WPT); Section 3, in which the WMPSO-LSSVM-based fault diagnosis
scheme is presented; Section 4, where the effectiveness of this study is verified by actual
fault data and comparison experiments; and finally, Section 5, in which the conclusion
is given.
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2. Signal Decomposition and Feature Extraction-Based Orthogonal Wavelet
Packet Transform

Wavelet transforms have been widely used for vibration signal pre-processing for
industrial systems. Generally, wavelet transforms only decompose the low-frequency part
of the signal, and do not treat the high-frequency portion of the signal at all. However,
the detailed information that can characterize the vibration signal usually exists in the
high-frequency section. Therefore, the orthogonal wavelet packet transform is introduced
to solve this problem. Furthermore, the vibration signal of industrial systems can be
decomposed in this way without information loss, which lays a foundation for obtaining
high fault diagnosis accuracy. The theoretical basis is described as follows.

In multiresolution analysis, L2(R) is a square-integrable space and L2(R) = ⊕
j∈Z

Wj,

indicating that the multiresolution analysis decomposes L2(R) into the orthogonal sum of
all subspaces Wj(j ∈ Z), according to the different scale factors j. Wj(j ∈ Z) is the wavelet
subspace of the wavelet function ψ(t). Then, we hope to further subdivide Wj(j ∈ Z)
through a binary fraction. Therefore, the scale subspace Vj and the wavelet subspace Wj
can be represented through a new subspace Un

j , if there are the following conditions:{
U0

j = Vj j ∈ Z
U1

j = Wj j ∈ Z
(1)

Then, the orthogonal decomposition of the Hilbert space can be expressed as follows:

U0
j+1 = U0

j ⊕U1
j (2)

Suppose Un
j is the wavelet subspace of un(t), U2n

j is the wavelet subspace of u2n(t),
and un(t) is: 

u2n(t) =
√

2 ∑
k∈Z

h(k)un(2t− k)

u2n+1(t) =
√

2 ∑
k∈Z

g(k)un(2t− k)
(3)

where h(k) represents the low-pass filter coefficients and g(k) represents the high-pass filter
coefficients, and g(k) = (−1)kh(1− k). Then, Formula (3) can be rewritten as follows:

u2n(t) =
√

2 ∑
k∈Z

hkun(2t− k)

u2n+1(t) =
√

2 ∑
k∈Z

gkun(2t− k)
(4)

where u0(t) = φ(t) (φ(t) is the scale function), u1(t) = ψ(t) (ψ(t) is the wavelet basis
function), and the sequence {un(t)}n∈Z+

is the orthogonal wavelet packet basis.
Suppose f (n) is the signal to be decomposed. In fact, a wavelet packet transform of

f (n) is a projection coefficient on the wavelet packet basis {un(t)}n∈Z+
:

p f (n, j, k) = 〈 f (t), un(t)〉 =
∫ +∞

−∞
f (t)

[
2−j/2ūn

(
2−j t̄− k

)]
dt (5)

where {ps(n, j, k)}k∈Z is the sequence of transformation coefficients of f (n) on Un
j .

Usually, the transformation coefficients {ps(n, j, k)}k∈Z can be calculated through the
Mallat algorithm: 

p f (2n, j, k) = ∑
l∈Z

hl−2k p f (n, j− 1, l)

p f (2n + 1, j, k) = ∑
l∈Z

gl−2k p f (n, j− 1, l)
(6)

According to the above discussion, the decomposition processing of the original signal
is depicted and illustrated in Figure 1.
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Figure 1. Wavelet decomposition for original signals.

Because of the integrity and orthogonality of the wavelet packet space, the origi-
nal signal f (n) is almost completely intact after wavelet decomposition, which provides
conditions for analyzing signal characteristics.

According to the above definition of the orthogonal wavelet packet transform, the
signal f (n) has been projected adaptively into the orthogonal wavelet packet space; then,
the obtained component can be regarded as the energy distributed in the corresponding
space. If the energy distribution of signals in the space of each orthogonal wavelet packet
can be calculated at a certain decomposition level, then the characteristics can be extracted
by sorting these energies according to the frequency index of Un

j . The energy distribution
in the time-frequency localization space can be interpreted as follows:

E(j, n) = ∑
k∈Z

[
p f (n, j, k)

]2
(7)

Therefore, if the original signal f (t) is decomposed by P levels, the energy feature
vector extracted from the original signal can be expressed as follows:

E∗(P, f ) =
[

E(P, 0), E(P, 1), . . . , E
(

P, 2P − 1
)]

(8)

3. Improved Fault Diagnosis Approach Using WMPSO-LSSVM
3.1. Least Squares Support Vector Machine

The literature of various fields shows that the LSSVM model performs well on various
datasets, so it can process the data generated under unknown working conditions in
complex industrial systems well. In addition, the complete theoretical basis of LSSVM can
also ensure its stability. The principle of LSSVM is as follows:

min
w,b

1
2
‖w‖2 + C

m

∑
i=1

ζ2
i (9)

s.t.yi

(
wTxi + b

)
= 1− ζi, i = 1, 2, . . . , m (10)

where {(x1, y1), (x2, y2), . . . , (xl , yl)} are the samples to be observed, w is the perpendicular
vector of the line, b is the offset of the hyperplane, C is the regularization parameter, and ζi
represents the fluctuations in the error of each sample.
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To obtain an accurate solution to the above optimal problem, the Lagrange function
with slack variables can be established as follows:

L(w, b, ζ, α, λ) =
1
2
‖w‖2 + C ∑

i
ζ2

i + ∑
i

αi(1− ζiyi

(
wT ϕlssvm(xi) + b

)
)−∑

i
λiζi (11)

where αi is the Lagrange multiplier of the original problem, and λi is the Lagrange multi-
plier of the additional slack variables.

Take the derivative of each variable in Formulas (9) and (10) and let them be 0. The
following equalities hold: 

w =
n
∑
i

αixiyi

n
∑

i=1
αiyi = 0

C− αi − λi = 0

(12)

Thus, Formula (11) can be rewritten as follows:

L(ζ, α, λ) = ∑
i

α2
i + ∑i,j αiαjyiyjXT

i Xj (13)

Therefore, the optimal problem of Formulas (9) and (10) can be expressed as follows:
maxαW(α) =

n
∑

i=1
αi − 1

2

n
∑

i,j=1
yiyjαiαj

〈
xi, xj

〉
s.t.

n
∑

i=1
αiyi = 0

(14)

Given the varying conditions of industrial systems, the vibration signal of equipment
follows a nonlinear relationship. In order to solve the problem of linear indivisibility in
primordial space, it is necessary to transform the failure samples into multi-dimensional
distinguishable space by introducing kernel functions. Therefore, Formula (14) can be
written as follows: 

maxαW(α) =
n
∑

i=1
αi − 1

2

n
∑
i,j

y(i)y(j)αiαjk
(

xi, xj
)

s.t.
n
∑

i=1
αiyi = 0

(15)

where k
(

xi, xj
)

is the kernel function, and the selection of the kernel function has great
flexibility. The common kernel functions are described as follows:

1. Linear kernel function:
K
(
xi, xj

)
= xi · xj (16)

2. Polynomial kernel function:

K
(
xi, xj

)
=
(
xi · xj + 1

)l , l = 1, 2, . . . (17)

3. Gaussian kernel function:

K
(
xi, xj

)
= exp

[
−
∥∥xi − xj

∥∥2

2σ2

]
(18)

The Gaussian kernel function selected in this paper can effectively transform the data
from the low-dimensional non-separable space to the high-dimensional separable space,
and it can further improve the classification accuracy of the model. Another advantage
of Gaussian kernels, compared to other kernels, is that the more complex the model,
the stronger the performance. In addition, no matter how many dimensions are the
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characteristics of each sample point, each sample can be transformed into the total sample
quantity dimension after processing by the Gaussian kernel function, which expands the
dimension and the diversity of data.

It is natural to notice that LSSVM’s classification accuracy is closely related to the
penalty factor and parameter σ of the kernel functions. If the kernel function is too small,
there will be an over-fitting phenomenon in the classification; otherwise, there will be an
under-fitting phenomenon. Similarly, the larger the penalty factor, the more likely it is to
overfit; and the smaller the penalty factor is, the more likely it is to underfit. Thus, in order
to improve the accuracy of fault diagnosis for industrial systems, an optimized approach,
named WMPSO-LSSVM, is proposed in the next section.

3.2. WMPSO-Based Parameters Optimization of LSSVM

As mentioned above, the regularization parameter and kernel functions play an
important role in LSSVM. Thus, in this paper, we adopt the proposed WMPSO algorithm to
optimize the parameters and establish a desirable model with high classification accuracy.
Firstly, the basic model of PSO is as follows:

Ci = m× Ci + c1 × rand× (gbest− σi) + c2 × rand× (qbest− σi) (19)

σi = σi + Ci (20)

where Ci is the regulation parameter of the LSSVM as well as the current velocity of PSO,
and σi is the kernel function of the LSSVM as well as the location of particles in PSO. m
indicates the weight coefficient, c1 and c2 are learning factors, and rand is a random number
between 0 and 1. Meanwhile, gbest and qbest store the optimal values corresponding to the
penalty coefficient C and the kernel parameter σ, respectively.

Suppose there is a group of particle swarms S = (S1, S2, . . . , Sn) in an n-dimensional
space; C and σ can be presented as follows:

C = (C1, C2, . . . , Ci) (21)

σ = (σ1, σ2, . . . , σi) (22)

In this paper, the wavelet function µ∗ is used to conduct a random perturbation of all
the dimensions of the contemporary optimal value Qm

g (t) particles, and the perturbation
result is taken as the position of the particles. The calculation model is given as follows:

σ̄m(t) = µ∗Qm
g (t) (23)

For the sake of the accuracy of the WMPSO algorithm, the Morlet function was selected
as the wavelet base in this study, as shown in Figure 2.

The Morlet wavelet has more accurate and high-resolution spectral estimation, and has
thus been widely used. Compared with the Gaussian and Cauchy variations often used in
particle swarm optimizations, the Morlet wavelet searches more effectively in the solution
space because there is an equal probability of producing positive and negative numbers.

In addition, the Morlet wavelet function changes the local solution more frequently in
the solution space, and it is easier to obtain the optimal solution in the local optimization.
The Morlet wavelet function can fine-tune the particle, so it is a remarkable choice to select
the Morlet wavelet for mutation.

Thus, the wavelet function value applied is expressed as follows:

µ∗ =
1√
a

e−
(

ϕ∗
a∗
)2

/2 cos
(

5
(

ϕ∗

a∗

))
(24)
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Meanwhile, the scale parameter a∗ is calculated by Formula (25):

a∗ = e− ln(g)×(1− t
T )

γωm
+ ln(g) (25)

where γωm is the shape parameter, t is the current iteration number, T is the maximum
number of iterations, and g is the limit of a∗.

 Figure 2. Morlet-wavelet function.

Therefore, after the perturbance by using the wavelet mutation function, the new posi-
tions of the particles are σ̄m =

(
σ̄m

1 , σ̄m
2 , . . . , σ̄m

n
)
. Once the position and kernel parameter σ

are determined, the regularization factor C can be confirmed according to Formula (19).
The optimization process for the parameters in this study is given in Algorithm 1:

Algorithm 1 The process of the WMPSO parameters’ optimization

Initialize σi \\ σi is the position of the ith particle
Calculate fitness function \\ Individual extreme values of particles can be calculated by
fitness function
while i <= T do \\ T is the maximum number of iterations performed by the algorithm
i = i + 1

for j = 1 to n do
Update velocity Ci based on Equation (19)
Update position σi based on Equation (20)
if pm > rand then

Calculate a∗ based on Equation (25)
ϕ∗ = 2.5 ∗ a∗ ∗ rand(1, 30)
Calculate µ∗ based on Equation (24)
Update position σi based on Equation (23)

end if
Calculate fitness function
Update Qi and Qg

end for
end while
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3.3. Design of WMPSO-LSSVM-Based Fault Diagnosis Scheme for Industrial Systems

Based on the above analysis, the WMPSO-LSSVM-based data-driven fault diagnosis
approach is designed as follows:

1. Decompose the composite fault data of industrial systems based on the orthogonal
wavelet packet algorithm and extract the fault characteristics;

2. Take the extracted characteristics as the input to the WVPSO-LSSVM identification
model, training to obtain the regularization coefficient C and kernel parameter σ. The
training process is summarized as follows:

• Initialize the following parameters: the evolution algebra of the particles, the
learning factors c1 and c2, the regularization factor C, the kernel parameter σ,
and the historical optimal kernel parameter Qσ;

• Calculate the new information of the C and σ, and update a new generation of
the particles;

• Calculate the fitness value of the particles according to the fitness function, and
update the individual and global optimal values of C and σ on this basis;

• Evaluate whether the maximum number of iterations or searching boundaries
has been reached. If so, store the C and σ, and construct the WMPSO-LSSVM-
based identification model;

3. Take the extracted characteristics as the input to the WVPSO-LSSVM identification
model, testing to obtain the classification result.

The corresponding flowchart is presented in Figure 3.

Original vibration 
signal

The wavelet packet algorithm

Decompose the 
original signal

Extract the fault 
characteristics

Data pre-processing scheme

Initialize the relates 
parameters of the PSO

Calculate the 
fitness value

Store the optimal 
fitness values

Disturb the position of 
the particles through 

wavelet mutation

Update the position 
and velocity of the 

particles

Reach the number of 
iterations 

Yes

No

Test samples

Establish the 
WMPSO-LSSVM

Training 
samples

Input

WMPSO-LSSVM model

Input

Fault diagnosis 
results and 
precision

Output

 

Figure 3. The flowchart of the proposed WMPSO-LSSVM algorithm.

4. Experimental Applications for Industrial Systems Based on WMPSO-LSSVM

The effectiveness and superiority of this study for industrial systems are evaluated
on a database taken from the Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis of China. Meanwhile, some comparative experiments are used
to further prove the fault diagnosis performance of the proposed method.

As shown in Figure 4, the industrial system studied in this section is the main fan motor
of a steam turbine, and the specific research object of this system is the gearbox containing
the rolling bearings. The actual data of the gearbox and bearings are obtained from the
intelligent fault diagnosis system, which consists of an acceleration sensor, a preamplifier
(PMP), an explosion-proof BOX (BOX), a data collector (butylated hydroxytoluene), and a
server (PC-1).
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Generator Gear-box Main fan Flue gas 
turbine

Figure 4. Schematic diagram of the main fan system.

In addition, the acceleration sensor is installed on the generator to obtain the vibration
signals; the role of the BOX is to protect the preamplifier; the preamplifier is installed in
the BOX for signal amplification; the data collector is installed in the steam turbine of the
main fan for signal acquisition and processing; and the server is used for data storage and
management.

The accelerometer used to measure the vibration acceleration mainly contains the fol-
lowing information. The highest amplitude is 50 g, the channel number is 6, the maximum
transmission distance is 300 m, the working power supply is 18–30 VDC, and the working
current is constant (2–10 mA). The actual industrial system operation environment and
data collection situation are shown in Figures 5–8.

Figure 5. The on-site industrial environment.

Figure 6. The local-data acquisition system.
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Guangdong Petrochemical Equipment Laboratory light 

- pressurized device smoke turbine

Intelligent fault diagnosis system data acquisition and 

processing base station

Guangdong Provincial Key Laboratory of 

Petrochemical Equipment Fault Diagnosis

 

Figure 7. The data acquisition base station.

Figure 8. The data acquisition platform.

The data collected by the intelligent fault diagnosis system mainly include seven
states, which are different fault combinations of gears and bearings. Their fault modes
and corresponding indicators are shown in Table 1, and the waveforms of the part of the
original vibration signals are shown in Figures 9–12.

 

Figure 9. The original signals of the inner race fault of the bearings and the tooth loss of gear-box.
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Figure 10. The original signals of the outer race fault of the bearings and the tooth loss of the gear-box.

 

Figure 11. The original signals of balls that are missing bearings and the abrasion of the gear-box.

 

Figure 12. The original signals of balls that are missing bearings and the tooth loss of the gear-box.
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Table 1. Seven fault states of the key components for entire systems.

Description of Seven States Vibration Index Impulsion Index Tolerance Index Peak Index Kurtosis Index

State 1: missing gear teeth and 1.1975 2.5531 2.9015 2.1319 3.0860
outer ring wear of right bearing 1.3132 6.8919 8.2115 5.3947 4.1036
State 2: missing gear teeth and 1.2293 3.1451 3.6689 2.5414 2.7140

lack of balls on left bearing 1.2920 4.9894 5.9483 3.9279 3.5757
State 3: missing gear teeth and 1.2657 4.3240 5.1791 3.3671 3.4370
outer ring wear on left bearing 1.3558 7.5935 9.1797 5.7598 5.4632
State 4: missing gear teeth and 1.2438 3.2264 3.7968 2.5912 2.8526

inner ring wear on right bearing 1.3082 5.6916 6.8665 4.3945 4.3278
State 5: wear of gear and 1.2252 2.2448 2.6442 1.8041 2.3961

inner ring wear on left bearing 1.3433 4.2110 4.9972 3.3652 4.6594
State 6: wear of gear and 1.2257 2.6885 3.3278 2.4035 2.7392

lack of balls on left bearing 1.3227 5.3905 6.7998 4.1221 8.0007
State 7: wear of gear and 1.3007 4.3120 5.1996 3.3152 3.6755

outer ring wear on left bearing 1.3742 7.4453 9.0964 5.5460 5.4385

The numbers in bold in the table represent the time domain index of the faulty
component. Look at the numbers in the table. If the data in the table appears to be
significantly asynchronous, this can be used to distinguish component failures. Taking the
waveform indicator as an example,1.2920 is obviously out of sync with all the numbers in
the second row of the waveform column, and 1.3007 is also out of sync with the numbers
in the first row of the waveform column, so it can be used as the basis for division.

Therefore, according to the indicators in bold in Table 1, the following analysis can be
obtained.

• States 2 and 7 can be distinguished via the vibration index;
• States 3 and 5 can be distinguished via the impulsion and tolerance indices;
• States 5 and 7 can be distinguished via the impulsion and tolerance indices;
• States 3 and 5 can be distinguished via the peak index;
• States 2 and 7 can also be distinguished via the kurtosis index, as can states 2 and 3.

Then, the original signals are decomposed into three layers using the wavelet packet
decomposition algorithm, and the node coefficients are calculated according to Formula (5).
The corresponding results are given in Figure 13. In addition, the wavelet packet coefficients
of the third layer, consisting of nodes 7 to 14 and calculated according to Formula (6), are
shown in Figure 14.

The spectral distributions of the non-stationary vibration signals of the gearbox and
bearings are closely related to their characteristic structures. Therefore, the energy distri-
butions in the wavelet packet space of the original vibration signals decomposed by the
wavelet packet are the fault features of the gears and bearings to be extracted. The parts of
the characteristic extraction results are shown in Figure 15.

Finally, by using 75% of the extracted fault features as the input to establish the optimal
WMPSO-LSSVM and by inputting the test samples into the model, the classification results
can be obtained. The experimental results of LSSVM, PSO-LSSVM, and WMPSO-LSSVM
are given in Figures 16–18, respectively.
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 Figure 13. The decomposition results of the vibration signals.

 

Figure 14. The node coefficients of the wavelet-packet algorithm.
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Figure 15. The fault characteristic extraction results of the gear-box and bearings.
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Figure 16. The classification results of LSSVM.
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Figure 17. The classification results of PSO-LSSVM.
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Figure 18. The classification results of WMPSO-LSSVM.

In order to further verify the superiority of the WVPSO-LSSVM classification model
for key components of industrial systems, ELM and the traditional BP network are used for
comparison purposes; the experimental results are shown in Table 2 and Figures 19–22.

0 10 20 30 40 50 60 70

Test set sample number

1

2

3

4

5

6

7

Te
st

 s
et

 s
am

pl
e 

ca
te

go
ry

Classification results based on ELM
(Accuracy = 84.2857%)

The actual value
 ELM classification result

0 10 20 30 40 50 60 70

Test set sample number

1

2

3

4

5

6

7

Te
st

 s
et

 s
am

pl
e 

ca
te

go
ry

Classification results based on ELM
(Accuracy = 88.5714%)

The actual value
 ELM classification result

Figure 19. Fault diagnosis results based on ELM (1).
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Figure 20. Fault diagnosis results based on ELM (2).
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Table 2. This table contrasts the results of the three mechanisms.

Classification Method BP ELM LSSVM PSO-LSSVM WMPSO-LSSVM

Classification accuracy (%) 64.29 86.50 84.17 90.00 95.71

To evaluate the performance of the WMPSO-LSSVM classification model, the confusion
matrices of the WMPSO-LSSVM and ELM are presented, respectively, in Figures 23 and 24.

In the Figures 23 and 24, the blue square represents the number of correctly classified
samples, while the pink square represents the number of incorrectly classified samples. For
example, in Figure 23, there is only one incorrectly classified sample for the second type,
and the remaining nine are correctly classified. The more diagonally distributed samples
in the matrix, the better the performance of the model. And according to the results, the
WMPSO-LSSVM has a higher precision than ELM.

In order to further verify the effectiveness of the proposed algorithm, the correspond-
ing WVPSO-LSSVM regression model for the bearings and gearbox is established, and the
composite fault characteristic trend is predicted. The comparative results are shown in
Figures 25–28 and Table 3.

 

Figure 23. The confusion matrix of the WMPSO-LSSVM model.

 

Figure 24. The confusion matrix result of the ELM model.
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Figure 25. Bearing inner ring wear and gear tooth loss.

 

Figure 26. Bearing outer ring wear and gear tooth loss.

 

Figure 27. Bearing missing balls and gear tooth loss.
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Figure 28. The state of seven types of faults.

Table 3. Comparison between the WMPSO-LSSVM regression model and the linear regression model.

Fault Types

Method
WMPSO-LSSVM Linear Regression

Bearing inner ring wear and gear tooth loss 0.0707154 0.411682
Bearing outer ring wear and gear tooth loss 0.00146932 0.2976
Bearings missing balls and gear tooth loss 0.00260635 0.545191

Seven types of fault features 0.0224879 0.304906

Since the weight and the deviation of ELM are randomly generated, the inconsistent
networks generated each time will eventually lead to a large performance difference,
although the learning speed of ELM is fast and its generalization performance is good.
Furthermore, because the BP neural network is a gradient descent method, its optimized
objective function is extremely complex, and there will be a zig-zag phenomenon in the
training process, which makes the BP algorithm inefficient. The accuracy of the BP neural
network also depends largely on the sample size, and the number of fault samples obtained
from industrial systems is small. Thus, it is not suitable for limited fault data of complex
industrial systems.

In addition, it can be seen from the comparative experimental results that the WMPSO-
LSSVM model has strong performance. The introduction of the Gaussian kernel function
in WMPSO-LSSVM can expand the diversity and dimension of limited data and solve the
defect of traditional neural networks’ unsuitability for small samples. At the same time,
the model can not only classify complex fault data effectively, but can also predict the
complex fault characteristic trend, which has good applicability to complex fault data in
industrial systems.

5. Conclusions

In this research, aiming to address the difficulty of the low precision of fault diagnosis
methods for industrial systems, a new fault diagnosis methodology, named WMPSO-
LSSVM, is proposed. Based on the decomposition of fault signals for feature extraction, the
gearbox and bearings derived from the composable components are taken as the specific
objects, and the vibration can be decomposed without information loss based on WPT.
By comparing the proposed method with the existing pattern recognition methods, the
results show that the WMPSO-LSSVM method can achieve higher classification accuracy
for multiple fault modes in industrial systems.

In addition, PSO optimized by the wavelet mutation is combined with the LSSVM
algorithm to realize the further optimization of the regularization parameter and kernel
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function in the LSSVM, thereby improving the fault diagnosis accuracy. Particles that jump
out of the local extreme value through the wavelet mutation algorithm will seek the optimal
solution of parameters in the global space, so the optimal hyperplane of the LSSVM model
can be established. As demonstrated via the comparative experiments, the accuracy of the
WMPSO-LSSVM is almost 12% higher than that of the LSSVM, and is 9% higher than the
ELM; moreover, the average error of the regression is 0.365 less than that of the traditional
linear regression model, implying the potency of this scheme.

However, how to better select the parameters in the wavelet mutation function adap-
tively is not yet resolved in this work. Further research on the optimization of parameters
in wavelet mutation is warranted.

In summary, the WMPSO-LSSVM proposed in this paper can significantly improve
the fault diagnosis accuracy for complex industrial systems, and therefore, it offers better
operability and scalability in the actual industrial environment.
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Notations

L2(R) square-intergrable space
Wj wavelet subspace
ψ(t) wavelet function in wavelet packet algorithm
Vj scale subspace
Un

j Hilbert space
un(t) orthogonal wavelet packet basis
h(k) low-pass filter coefficients
g(k) high-pass filter coefficients
φ(t) scale function in wavelet packet
f (n) original signal
p f (n, j, k) a sequence of transformation coefficients in wavelet packet
E(j, n) energy distribution
w the perpendicular vector in LSSVM
b an offset of the hyperplane in LSSVM
C regularization parameter in LSSVM
ζ the fluctuations of the error in LSSVM
α Lagrange multiplier of the original problem
λ Lagrange multiplier of the additional slack variables

K
(

xi, xj

)
kernel function

Ci the velocity of the ith particle
σi the position of the ith particle
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σ kernel parameter of the Gaussian kernel function
m weight coefficient in PSO
c1 learning factor in PSO
c2 learning factor in PSO
rand random number uniformly distributed in [0, 1]
gbest the best particle that indicates the global best
qbest the best particle that indicates the local best
S particle swarm
µ∗ wavelet function in the mutation wavelet algorithm
a∗ scale parameter in the mutation wavelet algorithm
γwm shape parameter
t the current iteration number
T the maximum number of iterations
g limit of scale parameter
σ̄m the new position of the disturbed particle
pm the mutation rate
Qm

g (t) the global best of the ith particle
ϕ∗ wavelet function basis in Morlet
Qg the best particle that indicates the global best of the disturbed particle
Qi the best particle that indicates the individual best of the disturbed particle
Qσ the historical optimal kernel parameter
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