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Abstract: Remaining useful life prediction can assess the time to failure of degradation systems.
Currently, numerous neural network-based prediction methods have been proposed by researchers.
However, most of the work contains an implicit prerequisite: the network training and testing data
have the same operating conditions. To solve this problem, an adversarial discriminative domain
adaption prediction method based on adversarial training is proposed to improve the accuracy
of cross-domain prediction under different working conditions. First, an LSTM feature extraction
network is constructed to mine the source domain data and the target domain data for deep feature
representation. Subsequently, the parameters of the target domain feature extraction network are
adjusted based on the idea of adversarial training to achieve domain invariant feature mining.
The proposed scheme is experimented on a publicly available dataset and achieves state-of-the-art
prediction performance compared to recent unsupervised domain adaptation prediction methods.

Keywords: remaining useful life prediction; transfer learning; domain adaptation

1. Introduction

Remaining useful life (RUL) prediction, an important research component of prognos-
tic and health management (PHM), can estimate the time to failure of complex systems
and reduce maintenance costs and risks [1–3]. In general, RUL prediction schemes can be
divided into two types: physics-based methods and data-driven methods [4].

Physics-based approaches usually use mathematical modeling methods and classical
physical models to describe the health state of mechanical systems [5]. Although these
methods achieve accurate prediction results and have good interpretability, they require
complex domain expertise, which limits the generalizability of these methods [6]. In
contrast, data-driven methods, especially neural network methods, are able to directly
learn the relationship between monitoring data and RUL labels by designing a rational
network structure. A large number of contributing neural network prediction schemes have
been proposed and applied, e.g., Convolutional Neural Network (CNN) [7–11], Gated
Recurrent Units (GRU) [12–14] and Long Short-Term Memory Networks (LSTM) [15–17].

However, in terms of data-driven method, it is challenging (intolerably labor-expensive
and time-consuming) to collect sufficient run-to-failure data, which may reduce the pre-
diction performance of the prognostic method. Even when enough historical data are
available, the pre-trained model under one specific working condition cannot be general-
ized to another although they are similar [2]. To cope with the aforementioned limitations,
models trained under a single operating condition should be adapted to testing data under
other operating conditions, i.e., domain adaptation, a sub-problem of transfer learning [18].

In recently RUL prediction schemes, existing domain adaption methods can be mainly
grouped into two categories: moment matching methods and adversarial training meth-
ods [19,20]. The former methods align feature distributions across domains by minimizing
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the distribution discrepancy. Zhu et al. [1] proposed transfer multiple layer perceptron
(MLP) with Maximum Mean Discrepancy (MMD) loss [21]. The source and target domain
training data feed to the MLP at the same time after feature extraction. By reducing the
source domain regression loss and MMD loss, the domain-invariant features are obtained.
Yu et al. [22] developed a domain adaptive CNN-LSTM (DACL) model with MMD to
align the domain distributions and evaluated the model on C-MAPSS dataset. The latter
methods achieve cross-domain prediction feature extraction by adversarial training [23].
Da costa et al. [18] proposed an RUL domain adaptation network named LSTM-DANN.
Firstly, degraded pattern knowledge is learned in the source domain, and then the source
domain regression model is adjusted to adapt to the target domain feature distribution
with the gradient inversion layer to achieve cross-domain RUL prediction [24].

In this work, LSTM combined with a domain adaptive scheme of adversarial discrimi-
native learning framework is proposed, LSTM-ADDA. The proposed scheme can search
the domain invariant feature space in the training phase using an adversarial training
approach [25] to adjust the network parameters of the LSTM extractor to achieve cross-
domain RUL prediction. Compared with the latest adversarial method, LSTM-DANN,
the proposed method is not required to repeatedly train the source domain regression
model to adapt to different target domains. The extraction of cross-domain RUL prediction
features is achieved by reversing the domain feature labels. The implementation process is
relatively simple and converges faster. To verify the effectiveness of the proposed method,
we conduct experiments on the C-MAPSS datasets and compare the RUL prediction results
of aircraft engines with LSTM-DANN and other adaptation methods.

The contributions can be summarized as follows:

1. A novel unsupervised adversarial learning RUL prediction scheme is proposed, which
can adapt to different fault modes and operating settings domain data.

2. Our experimental results show that the proposed LSTM-ADDA method achieves competi-
tive performance compared with other unsupervised domain adaptation methods.

In Section 2, LSTM and unsupervised domain adaption methods are reviewed.
In Section 3, the proposed LSTM-ADDA architecture and training process are detailed
introduced. In Section 4, we briefly describe the dataset preprocess method and list the
hyperparameter selection in experiments. In Section 5, the superiority of the proposed
method is proved through two sets of comparative experimental results. The conclusion
and future research are drawn in Section 6.

2. Background

In this section, we review the problem definition and generalized adversarial learning
framework. Subsequently, the adversarial discriminative domain adaptation (ADDA)
method and the detailed LSTM structure are introduced.

2.1. Problem Definition

In previous neural network-based prediction methods, training and testing data are
usually acquired under the same operating conditions, as shown in Figure 1a. However, it
is difficult to obtain data under the same operating conditions in the actual data acquisition,
resulting in the limitation of the method’s generalizability. Suppose there are two datasets
for remaining useful life prediction under different operating conditions, one of which
has sufficient training and testing data (source domain dataset), and the other has only
unlabeled training and testing data (target domain dataset). We define this application
scenario as an unsupervised domain adaption scenario [26], i.e., with labeled source domain
training data and unlabeled target domain training data to predict the target testing data
RUL. This paper aims to adaptively implement the prediction of the target domain testing
data by transferring the knowledge of the source domain regression model, as shown in
Figure 1b. Suppose the source domain data is denoted as DS = {(xi

S, yi
S)}

NS
i=1, containing

NS training samples, where xi
S is a subset of source domain feature space χS. Ti denotes



Machines 2022, 10, 438 3 of 14

the length of time and fS denotes the feature dimensions, i.e., xi
S = {xi

t}
Ti
t=1 ∈ <Ti× fS .

Moreover, yi
S = {yi

t}
Ti
t=1 ∈ <

Ti×1
≥0 represents the RUL vector of xi

S. xi
t ∈ <1× fS and yi

t ∈ <1
≥0

denotes the observed feature vector and RUL labels at time ti, respectively. Besides this,
we assume a target domain DT = {xi

T}
NT
i=1, where xi

T ∈ χT and xi
T = {xi

t}
Ti
t=1 ∈ <Ti× fT .

Specially, there are no available RUL labels.

Domain S

Train Test

Model and 
knowledge for S

Model and 
knowledge for S

Model and 
knowledge for T

Transfer

Domain S Domain S Domain T

Train Test

(a)

��, �� ��,  ��, ��

(b)
Figure 1. (a) Traditional neural network prediction scenarios. (b) Unsupervised domain adaption scenarios.

We assume that there are somewhat similar or invariant parts between the deep feature
representation of source and target domain mapping. In the model training stage, source
domain data and RUL value are available, i.e., {(xi

S, yi
S)}

NS
i=1. The target domain data can

only use the training monitoring data without RUL labels, {xi
T}

NT
i=1. It is aimed to adjust the

domain feature extractation network g by both source and target training data to perform
the target testing sample RUL transfer regression, i.e yi

true ≈ yi
predict = g(xi

T).

2.2. Generalized Adversarial Adaptation

Tzeng et al. [25] presented a general adversarial adaptive framework, and pointed
out that unsupervised domain adaptation could be achieved by reducing the source do-
main classification loss and alternately minimizing the domain discriminator loss and the
distribution discrepancy between the source and target mapping distributions.

Adversarial adaptive methods aim to minimize the distance between the source
and target mapping distributions by regularizing the learning of the source and target
mappings, MS and MT . Once the adversarial training is finished, the domain-invariant
feature representations are found. Source classification block network can directly receive
the target domain feature representation for subsequent RUL prediction, C = CS = CT .

The source supervised classification network optimize object function is shown as follows:

min
MS ,C
Lcls(xi

S, yi
S) = −

K

∑
k=1

1(k = yi
S) log C(MS(xi

S)) (1)

In adversarial adaptation training part, the domain discriminator, D, is used to dis-
tinguishing the source of deep domain features. Similarly, the network parameters of the
feature extractor are optimized using the common classification loss, LadvD (xi

S, xi
T , MS, MT).

min
D
LadvD (xi

S, xi
T , MS, MT) =

−Exi
S∼χS

[log D(MS(xi
S))]

−Exi
T∼χT

[log(1− D(MT(xi
T)))]

(2)

Finally, the label of the target domain feature representation is reversed to adjust the
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weights of the target domain mapping structure, achieving the source domain degradation
knowledge transfer. The reversed label training loss is denoted as follows, LadvM (xi

S, xi
T , D):

min
MT
LadvM (xi

S, xi
T , D) = −Exi

T∼χT
[log D(MT(xi

T))] (3)

2.3. Adversarial Discriminative Domain Adaptation

Adversarial discriminative domain adaptation (ADDA), based on general adversarial adap-
tive framework, selects the discriminative base model, untied weights and standard GAN loss.

For the mapping optimization constraints, MT uses the MS model architecture and
weights pre-trained in the source domain during the MT initialization. In adversarial
training, the MS model is fixed, and the source and target data are input into the MS
and MT , respectively, to obtain feature representations for domain discriminative and MT
weights adjustment. The asymmetric feature representation obtained by unshared weight
mappings makes the learning paradigm more flexible.

In adversarial adaptation training, the optimization process is split into two inde-
pendent objectives, domain discriminator and target feature mapping, and alternately
minimizes their loss functions. The LadvD of domain discriminator remains unchanged,
and the target mapping uses the standard loss function of the inverted labels [23].

Similar to the training method of GAN, the mapping feature of the source domain
can be labeled as ‘1’ and the target domain as ‘0’, which are input into the discriminator
for domain discrimination. During the adversarial training, the mapping feature label of
the target is inverted as ‘1’, and input to the discriminator for adversarial training with an
inverting the labels manner [26].

The ADDA method divides the optimization process into two stages. First, the MS
and C are trained using labeled source domain data. After that, the MS is fixed and the
MT is initialized, and the unlabeled target domain data is used to alternately optimize the
LadvD and LadvM to adjust the model parameters of the MT .

2.4. Long Short-Term Memory Neural Network

The temporal feature extractor in our methodology is the LSTM network [27], which
is a subclass of recurrent neural networks (RNNs). LSTM is one of the most exploited RNN
versions because of the capability of detecting long- and short-term dependencies and
relaxes the gradient vanishing or exploding problems. As shown in Figure 2, the LSTM
cell uses input gate, forget gate and output gate to update current cell state ct and output
hidden state vector ht.

1 tc 

1 th 

σ tanhσ σ

tanh

 th

 tc

 th

 tx

 tf  ti  to

 tg

Figure 2. The detail structure of LSTM cell.

Mathematically, the computation of the LSTM cell can be described as follows:
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it = σ(Wixxt + Wih Ht−1 + Bi)

gt = (Wgxxt + Wgh Ht−1 + Bg)

ot = σ(Woxxt + Woh Ht−1 + Bo)

ct = gt ⊗ it + ct−1 ⊗ ft

ft = σ(W f xxt + W f h Ht−1 + B f )

ht = (st)⊗ ot

(4)

where Wgx, Wix, W f x, Wox are weight values between input layer xt and hidden layer Ht
at time t; Wgh, Wih, W f h, Woh are hidden layer weight values between time t and t − 1;
Bg, Bi, B f , Bo are bias of the input layer, input gate, forget gate and output gate, respectively.
Ht−1 is the hidden layer output at previous time. gt, it, ft, ot are the output values. ct
represents the current LSTM cell state. ⊗ is the pointwise multiplication operator. φ, σ
represent different activation functions.

3. Methodology

In this section, we detail the proposed method architecture and training processes. Ad-
versarial discriminative domain adaptation based on LSTM, referred as LSTM-ADDA and
depicted in Figure 3, can be decomposed into three modules: feature extractor, regression
and domain discriminator.

The temporal feature extractor, a combination of LSTMs, establishes a mapping be-
tween the input data and the hidden feature state ht ∈ <h. Later, a dense layer transforms
the LSTM hidden vector to deep feature representation ft ∈ < f , which will be used as
temporal feature space for subsequent regression tasks. The parameters of feature extractor
is denoted as Θ f , i.e., f = g f (xi

S; Θ f ).
Both regression and domain discriminator modules consist of simple fully connected

layers. We regard the RUL prediction as a regression task. The mean absolute error (MAE)
function is selected as the loss function of the source domain regression to minimization.
The parameters in the regression module are denoted as Θŷ, i.e., ŷ = gŷ(g f (xi

S; Θ f ); Θŷ).
The LSTM-ADDA optimization equations applied in regression scenarios are described
as follows:

min
MS ,ŷ
LMAE(xi

S, yi
S) =

∣∣∣ŷ− yi
S

∣∣∣ = ∣∣∣gŷ(g f (xi
S; Θ f ); Θŷ)− yi

S

∣∣∣
min

D
LadvD (xi

S, xi
T , MS, MT) = −Exi

S∼χS
[log D(MS(xi

S))]−Exi
T∼χT

[log(1− D(MT(xi
T)))]

min
MT
LadvM (xi

S, xi
T , D) = −Exi

T∼χT
[log D(MT(xi

T))]

(5)

The training process of the proposed method can be summarized into three phases, as
shown in Figures 3 and 4.

In stage I, the source domain training data and training labels are input to a source
domain regression network consisting of source domain mapping structure and regressor
for standard supervised learning training, as shown by the blue arrows in Figure 3. After
the source domain training is completed, the network parameters of the source domain
mapping structure and regressor will be fixed and will not change with subsequent training.
The purpose of stage I is to learn the deep feature representation and degradation patterns
of the source domain data from the source domain data.

In stage II, the target domain mapping structure first replicates the structure and
parameters of the source domain mapping, which is used as the training starting point
for the target domain mapping. Then, the source domain training data and the unlabeled
training data of the target domain are input to the source domain mapping and target
domain mapping structures to obtain the corresponding deep feature representations,
respectively. Subsequently, the feature representations of the two domains are input to the
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discriminator for adversarial training. The adversarial training is achieved by inverting
the domain labels of the two domains. By alternately inverting the domain labels, the
parameters of the target domain mapping structure are adjusted to automatically adapt
to the data distribution of the target domain, as shown by the orange arrows in Figure 3.
Stage II aims to adjust the feature mapping of the target domain to obtain an adaptive
target domain deep feature representation for subsequent prediction.

In stage III, the trained target domain mapping structure is combined with the regres-
sor to achieve cross-domain RUL prediction for the target domain testing data, as shown
by the green arrows in Figure 3.

For researchers to understand and reproduce the ADDA method, the reference code
can be found in the following Github link: https://github.com/acmllearner/pytorch-adda,
(accessed on 16 May 2022).

Source Mapping

Target Mapping

Dense

Dense

Discriminator

Regression
LSTM LSTM

LSTM LSTM
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sta
ge
3

stage2
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th

Tht

Target domain

Source domain Source 
Regression

Domain 
Discriminator

SigmoidS
tf

T
tf

stage2

stage2

Classifier

Fully-Connected

Fully-Connected

Figure 3. The network structure of the proposed LSTM-ADDA method. The data mapping structure
consists mainly of the LSTM network, and the output of the last time step is input to the dense layer to
obtain the domain deep feature representation. The regressor and the domain discriminator consist of
fully-connected network for obtaining the RUL prediction and domain adversarial training, respectively.
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Figure 4. An overview of the adversarial discrimination domain adaptation method based on LSTM
(LSTM-ADDA). Stage I: Supervised learning of source domain training data and source domain
testing data for degradation pattern extraction. Stage II: Adversarial learning of source domain
training data and target domain training data for domain-invariant feature extraction. Stage III:
RUL prediction and result evaluation of target domain testing data. Dashed lines indicate fixed
network parameters.

https://github.com/acmllearner/pytorch-adda
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4. Experiment Pre-Settings

In this section, dataset description, data preprocessing, evaluation metric and hyper-
parameter selection are introduced in this section.

4.1. Dataset Description

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset
contains four subsets, as shown in Table 1. Each subset has different fault modes and
operating conditions. Each subset contains a training and testing set. Each engine starts
with various initial wear but regarded as healthy at the beginning of the recording cycle.
Every recording cycle is composed of three operational settings and 21 sensor readings. As
the recording cycle increases, each engine performance will gradually degrade until it loses
its function [28].

Table 1. The C-MAPSS datasets.

Data Subset FD001 FD002 FD003 FD004

Training Engine Units (N) 100 260 100 249
Testing Engine Units 100 259 100 248
Operating Conditions (OC) 1 6 1 6
Fault Modes (FM) 1 1 2 2

4.2. Data Preprocessing
4.2.1. Time Windows Processing

The sliding time window method is adopted to obtain the same time-window block
data. Suppose the running time of an engine xi is Ti, i.e., xi = {xi

t}
Ti
t=1. The sequential input

xi divided by the time window Tw is represented as {(xi
t−Tw

, ..., xi
t−1)}

Ti
t=Tw+1. If Ti < Tw,

zero-padding is applied to fulfill the xi, i.e., xi = {
Tw − Ti︷ ︸︸ ︷

0, 0, . . . , 0,xi
1, xi

2, . . . , xi
Ti︸ ︷︷ ︸

Ti

}. This ensures

that each engine unit can generate at least two samples. We use the same length of time
window to preprocess the source and target domain training sets. To make full use of data,
in adversarial training stage, the domain training dataset containing the smaller number of
samples is oversampled.

4.2.2. Data Normalization

The min-max normalization is used to scale the subset data (including operating
conditions and sensor data) and RUL value to the (0–1) range:

x̃i,j
t =

xi,j
t −min(xj)

max(xj)−min(xj)
(6)

where x̃i,j
t denotes the original ith engine unit of the jth feature at record cycle t.

To demonstrate the feature shift between different domains, we perform data distribu-
tion statistics on the last cycle of each engine unit in each subset of C-MAPSS. We selected
two normalized sensor values for visualization. As shown in Figure 5, we can see that the
same operating condition has similar feature distributions for different fault modes. On
the contrary, the feature distribution of the same fault mode with the different operating
conditions has a clear discrepancy.

As in the previous work [29,30], RUL can be estimated as a constant value in normal
operating conditions. Therefore, a piecewise linear degradation model is used to describe
the RUL curve of the observation engine. This paper selects Re = 125 cycles as the constant
RUL before failure and applies it to the training and testing set.
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Figure 5. Visualization of data distribution discrepancy between C-MAPSS subsets.

4.3. Performance Metrics

We use two metrics to measure the LSTM-ADDA prognostic performance. The root
mean squared error (RMSE), shown in (7), is selected to evaluate the error between the
predicted RUL and the actual RUL. We also use the score metric [28], shown in (8), to
evaluate our proposed method. The score metric penalizes positive prediction errors more
than negative prediction errors because it is more meaningful on maintenance policies to
predict failures as early as possible.

RMSE =

√
1
n

n

∑
i=1

( ˆRULi − ActRULi)2 (7)

Score =

∑n
i=1 e−

ŷi−yi
13 − 1 if ŷi − yi < 0

∑n
i=1 e

ŷi−yi
10 − 1 if ŷi − yi ≥ 0

(8)

4.4. Hyperparameter Selection

To obtain better adversarial learning performance, we minimize the regression loss in
source domain. The learning rate of Adam optimizer is set as 0.0001 (λS). Besides this, in the
adversarial learning process, we reduce the domain classification accuracy of the domain
discriminator, i.e., find the domain-invariant representation. For a fair comparison with the
adversarial learning method LSTM-DANN [18], we select the same network parameters as
the LSTM-DANN method, as shown in Table 2.

Table 2. Hyperparameter settings for each group of cross-domain prediction.

Source Target LSTM Layers, f Regression Layers, Discriminator Layers, Batch Optimizer,λT ,λD
Domain Domain (Units),(Dropout) (Units) (Units),(Dropout) (Units),(Dropout) Size

FD001 FD002 1,(128),0.5 (64) 1,(32),0.3 1,(32),0.3 256 SGD,0.0001,0.0001
FD001 FD003 1,(128),0.5 (64) 1,(32),0.3 1,(32),0.3 256 SGD,0.0001,0.0001
FD001 FD004 1,(128),0.7 (64) 2,(32,32),0.3 1,(32),0.3 256 SGD,0.0001,0.0001
FD002 FD001 1,(64),0.1 (64) 1,(32),0.0 2,(16,16),0.1 512 SGD,0.0001,0.0001
FD002 FD003 1,(64),0.1 (512) 2,(64,32),0.0 2,(64,32),0.1 256 Adam,0.01,0.01
FD002 FD004 2,(32,32),0.1 (32) 1,(32),0.0 1,(16),0.1 256 SGD,0.0001,0.0001
FD003 FD001 2,(64,32),0.3 (128) 2,(32,32),0.1 2,(32,32),0.1 256 SGD,0.1,0.1
FD003 FD002 2,(64,32),0.3 (64) 2,(32,32),0.1 2,(32,32),0.1 256 Adam,0.1,0.1
FD003 FD004 2,(64,32),0.3 (64) 2,(32,32),0.1 2,(32,32),0.1 256 Adam,0.1,0.1
FD004 FD001 1,(100),0.5 (30) 1,(20),0.0 1,(20),0.1 512 SGD,0.0001,0.0001
FD004 FD002 1,(100),0.5 (30) 1,(20),0.0 1,(20),0.1 512 SGD,0.0001,0.0001
FD004 FD003 1,(100),0.5 (30) 1,(20),0.0 1,(20),0.1 512 SGD,0.0001,0.0001
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5. Experimental Results

In this section, two comparative experiments are conducted to illustrate the prognostic
performance of the proposed method. First, the comparison with the non-adapted models
proves that the proposed method can effectively improve the engine RUL prediction
under different operating conditions and fault modes. Besides this, compared with other
unsupervised transfer learning methods: CORrelation (CORAL) [31], Transfer Component
Analysis (TCA) [32] and LSTM-DANN [18].

In the experiment, each training subset of the C-MAPSS dataset is regarded as the
source data, and the remaining testing data are regarded as the target data. Therefore,
12 different experiments were performed, and the mean and stand deviations of each
experiment result were recorded. All experiments are performed on an Intel Core i7 8th
generation processor with 24GB RAM and CPU. We implement our method by using
Python 3.6 and Pytorch 1.4.0.

5.1. Non-Adapted Models under Domain Shift

To prove the effectiveness of the proposed adversarial adaption method, we input the
target testing data into the source domain model trained on the source domain training
data as an experiment of the non-adapted method (source-only). Moreover, we input the
target testing data into the target model trained with target domain training data, which
represents the ideal situation when the target domain has sufficient training data (target-
only). We use each subset of C-MAPSS as the source domain to analyze and discuss the
experimental results separately. The results of cross-domain prediction experiments are
shown in Figure 6.

Source FD001: FD001 has single fault mode and operating condition, so it is difficult
to learn the target domain with complex operating conditions and fault modes, causing
the RMSE and prediction scores of LSTM-ADDA higher than the other experiment pairs.
As shown in Figure 6a,c, the prediction curve of the proposed model is similar to the
source-only waveform and is closer to the target-only curve, indicating that the proposed
method can improve the adaptability of the non-adapted model. Compared with the target
domain FD003, which has a low distribution discrepancy between the two subsets, the
prediction curve obtained in Figure 6b is closer at the end stage of the engine.

Source FD002: Compared with FD001, the operating condition of FD002 is six. When
the more complex operating condition dataset as the source domain. as shown in Figure 6d,
the proposed model gives better prediction results. When the target domains are FD003
and FD004, containing two fault modes, the prediction effect of FD004 with less domain
shift is closer to the target-only curve in Figure 6e. Although the operating conditions and
fault modes of FD003 are not the same as FD002, the proposed model can also give better
prediction results than the non-adapted models.

Source FD003: Under the same operating conditions, FD003 with two fault modes
achieved a lower RMSE when performing adversarial training to the target domain FD001
with one fault mode. Besides this, due to the low distribution discrepancy, Figure 6g shows
that the prediction curve obtained by the proposed method also fits the RUL curve of the
engine. For FD002 and FD004 with six operating conditions, LSTM-ADDA also gives better
prediction results than non-adapted models.

Source FD004: FD004 is containing six operating conditions and two fault modes,
which is the most complex subset of the C-MAPSS dataset. When training with the
remaining target domain datasets, as shown in Table 3, lower RMSE and prediction scores
are obtained. In Figure 6j,l, we can observe that the source-only curve has a large deviation
from the RUL curve. For FD002 with a low domain shift, as shown in Figure 6k, the
proposed method shows a better fit with the RUL curve.
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Source: FD001

Source: FD002

Source: FD003

Source: FD004

（a）Target: FD002 （b）Target: FD003 （c）Target: FD004

（d）Target: FD001 （e）Target: FD003 （f）Target: FD004

（g）Target: FD001 （h）Target: FD002 （i）Target: FD004

（j）Target: FD001 （k）Target: FD002 （l）Target: FD003
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Figure 6. RUL predictions of the Target-only, Source-only and LSTM-ADDA models for one target
testing engine.
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Table 3. Score and RMSE comparsion between Source-Only, Target-Only and LSTM-ADDA. (∆%
denotes the percentage of evaluation metric improvement. ± denotes the standard deviation).

Source Target Source-Only LSTM-ADDA Source-Only LSTM-ADDA Target-Only
Score Score RMSE RMSE(∆%) RMSE

FD001 FD002 672,066.60 ± 98,239.28 54,009.20 ± 9943.48 79.63 ± 1.94 49.60(−37.71%) ± 1.77 18.2 ± 0.31
FD001 FD003 30,523.80 ± 6921.48 4209.80 ± 604.88 56.76 ± 2.39 35.95(−36.66%) ± 1.77 15.57 ± 1.09
FD001 FD004 417,110.20 ± 64,229.99 44,055.20 ± 8788.55 75.58 ± 2.29 50.76(−32.84%) ± 2.44 22.5 ± 0.66
FD002 FD001 160,408.40 ± 84,158.79 12,271.80 ± 10,575.78 70.30 ± 10.93 36.71(−47.79%) ± 2.35 16.15 ± 0.19
FD002 FD003 206,608.40 ± 58,285.75 7374.20 ± 1940.64 75.11 ± 5.25 40.03(−46.70%) ± 3.19 15.57 ± 1.09
FD002 FD004 21,064.20 ± 9648.80 19,085.60 ± 7653.34 36.66 ± 4.24 31.68(−13.58%) ± 1.34 22.5 ± 0.66
FD003 FD001 591,873.60 ± 133,669.19 4644.40 ± 2542.30 54.68 ± 1.93 24.96(−54.35%) ± 2.51 16.15 ± 0.19
FD003 FD002 384,836.40 ± 72,675.49 33,100.60 ± 34,567.30 70.49 ± 3.10 44.17(−37.34%) ± 0.69 18.2 ± 0.31
FD003 FD004 400,365.60 ± 45,021.72 25,577.00 ± 14,002.39 71.11 ± 3.26 44.34(−37.64%) ± 1.24 22.5 ± 0.66
FD004 FD001 172,965.00 ± 140,697.91 38,800.40 ± 23,873.15 72.68 ± 14.99 27.72(−61.87%) ± 1.81 16.15 ± 0.19
FD004 FD002 104,305.40 ± 111,864.98 8588.20 ± 4675.55 28.65 ± 3.44 23.01(−19.68%) ± 1.52 18.2 ± 0.31
FD004 FD003 93,694.00 ± 91,901.72 10,711.40 ± 2832.40 59.98 ± 14.55 32.41(−45.96%) ± 1.90 15.57 ± 1.09

In summary, the percentage changes of average RMSE and scoring performance be-
tween the proposed method and the non-adapted case (source-only) are listed in Table 3. It
can be seen that all the prediction performances of the proposed LSTM-ADDA are higher
than that of the non-adapted models. Although source-only models can get reasonable
performance when the domain shift is small, but the proposed method can further im-
prove the effect. Moreover, when the operating conditions and fault modes of the source
domain are complex and the target domain is simple, the LSTM-ADDA model can obtain
a better prediction effect. That is to say, it is easier to transfer training from complex
situations to simple situations, and it is more difficult to learn from simple situations to
complex situations.

5.2. Domain Adaptation Methods Comparison

Two different unsupervised domain adaption methods are used to compare with the
proposed method in this section, Transfer Component Analysis (TCA) [32] and CORrelation
ALignment (CORAL) [33]. Besides this, the average RMSE and Score are compared with
the adversarial method LSTM-DANN.

The distribution of the two domains are mapped together to a high-dimensional
Reproducing Kernel Hilbert Space (RKHS). In this space, minimize the MMD between the
source and target distribution, while retaining their respective internal attributes.

Different from TCA, CORAL aligns the second-order statistics of the source and target
distributions by constructing a differentiable loss function that minimizes the difference
between the source and target correlations—the CORAL loss [31].

In the LSTM-DANN method, the source domain shares the network weights with
the target domain. When predicting a new target domain, the source domain regression
model must be repeatedly trained to extract the degradation knowledge in the source
domain. Unlike the LSTM-DANN method, the proposed scheme is not required to train the
source-domain regression model repeatedly, and the extraction of cross-domain features
can be achieved directly by adversarial training in stage II. Moreover, the significant
difference between the proposed and DANN schemes is the cross-domain degradation
feature training. The LSTM-DANN method uses the gradient inversion layer, while the
LSTM-ADDA method uses the reversed feature domain label. The proposed scheme is
simpler to implement and converges faster.

The comparison of the evaluation metrics is shown in Table 4. We can observe that the
mean of RMSE metric is close to LSTM-DANN and overall better than the TCA and CORAL
models. In addition, we found that the score metric improved by nearly 45%, indicating
that the proposed method can achieve better prediction results in a timely manner while
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maintaining a smaller RMSE metric, which is more in line with the need for advanced
prediction in practical maintenance.

Table 4. Score and RMSE comparsion of unsupervised-domain adaption methods. (∆% denotes the
percentage of evaluation metric improvement. ± denotes the standard deviation).

Source Target TCA−DNN CORAL−DNN LSTM−DANN LSTM−ADDA LSTM−DANN LSTM−ADDA
RMSE RMSE RMSE RMSE Score Score

FD001 FD002 90.0 ± 2.9 77.5 ± 4.6 48.6 ± 6.8 49.60 ± 1.77 93,841 ± 55,493 54,009.2 ± 9943.5
FD001 FD003 116.1 ± 1.0 69.6 ± 5.2 45.9 ± 3.6 35.95 ± 1.77 27,005 ± 12,385 4209.8 ± 604.9
FD001 FD004 113.8 ± 6.9 84.6 ± 7.0 43.8 ± 4.1 50.76 ± 2.44 57,044 ± 60,160 44,055.2 ± 8788.6
FD002 FD001 85.6 ± 5.5 80.9 ± 9.4 28.1 ± 5.0 36.71 ± 2.35 8411 ± 11,855 12,271.8 ± 10,575.8
FD002 FD003 111.5 ± 7.2 79.8 ± 10.1 37.5 ± 1.5 40.03 ± 3.19 17,406 ± 5702 7374.2 ± 1940.6
FD002 FD004 94.4 ± 6.7 43.6 ± 3.6 31.8 ± 1.6 31.68 ± 1.34 66,305 ± 14,723 19,085.6 ± 7653.3
FD003 FD001 90.5 ± 4.6 26.5 ± 1.9 31.7 ± 9.4 24.96 ± 2.51 5113 ± 4865 4644.4 ± 2542.3
FD003 FD002 80.8 ± 4.3 75.6 ± 9.5 44.6 ± 1.2 44.17 ± 0.69 37,297 ± 15,578 33,100.60 ± 34,567.30
FD003 FD004 102.6 ± 3.2 77.2 ± 9.1 47.9 ± 5.8 44.34 ± 1.24 141,117 ± 66,218 25,577.0 ± 14,002.3
FD004 FD001 85.6 ± 5.0 94.0 ± 8.8 31.5 ± 2.4 27.72 ± 1.81 7586 ± 2735 38,800.4 ± 23,873.2
FD004 FD002 80.8 ± 5.8 30.9 ± 1.4 24.9 ± 1.8 23.01 ± 1.52 17,001 ± 12,927 8588.20 ± 4675.55
FD004 FD003 102.9 ± 2.7 68.6 ± 11.2 27.8 ± 2.7 32.41 ± 1.9 5941 ± 1791 10,711.4 ± 2832.4

Average 96.55 67.40 37.01 36.79 (−0.60%) 40,338.92 21,868.98 (−45.79%)

6. Conclusions and Future Work

In this paper, a novel domain adaptation RUL prediction scheme is proposed by com-
bining the LSTM network and adversarial discriminative domain adaptation framework
(LSTM-ADDA). The prediction effect of the proposed model is verified on the C-MAPSS
dataset. The LSTM feature extractor network parameters are adjusted by the target domain
training data to find the domain invariant feature representation.

The proposed method uses the source domain data to obtain source domain degra-
dation knowledge. After that, the target domain data without RUL label is combined for
adversarial learning. Finally, the target feature extractor adjusted by adversarial training
combines with the source domain regression module to implement the target domain RUL
adaption prediction.

To illustrate the effectiveness of the LSTM-ADDA method, we perform two com-
parative experiments. The experimental results show that the prediction result of the
proposed method is better than other methods. In future work, we will try to remove the
target domain data from the training process, and use a generalized model combined with
multi-source data to directly estimate the RUL of the target domain.
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