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Abstract: Reliability is of great significance in ensuring the safe operation of modern industry,
which mainly relies on data analysis and life tests. However, as the life of mechanical systems
becomes increasingly longer with the rapid development of the manufacturing industry, the collection
of historical failure data becomes progressively more time-consuming. In this paper, a few-shot
reliability assessment approach is proposed in order to overcome the dependence on historical data.
Firstly, the vibration response of a bearing was illustrated. Then, based on a vibration response
analysis, a morphological component analysis (MCA) method based on sparse representation theory
was used to decompose vibration signals and extract impulse signals. After the impulse components’
reconstruction, their statistical indexes were utilized as the input observation vector of a Mixture of
Gaussians Hidden Markov Model (MoG-HMM) for a reliability estimation. Finally, the experimental
dataset of an aerospace bearing was analyzed via the proposed method. The comparison results
illustrate the effectiveness of the proposed method of a few-shot reliability assessment.

Keywords: few-shot reliability assessment; morphological component analysis; condition monitoring;
bearing

1. Introduction

Reliability assessment is a critical consideration with regard to the proactive mainte-
nance of equipment [1], which refers to the capability of a system or component to execute
its essential functions under stated conditions in a given period of time. Statistics and mass
production are enablers in the birth of reliability engineering.

Compared to reliability, the literature regarding operational reliability is much smaller.
Abaei et al. proposed a systematic approach to evaluate the reliability of an autonomous
system under the influence of uncertain disruptions, and to predict failure rates of unat-
tended machinery plants [2]. Varshney et al. presented a performance analysis-based
reliability estimation of a self-excited induction generator (SEIG) using the Monte-Carlo
simulation (MCS) method, with data obtained from a self-excited induction motor oper-
ating as a generator [3]. Norouzi proposed a Pahlev reliability index for the resilience
of power generation technologies versus climate change [4]. Cai used a proportional co-
variate model to construct the relationship between operation reliability and condition
monitoring information [5]. Hu et al. introduced a decision-dependent uncertainty (DDU)
in an operational reliability evaluation and proposed a power system operational reliability
evaluation method [6]. Chai et al. proposed an operational reliability assessment method
for photovoltaic inverters with considerations of voltage/VAR control functions [7], which
can quantify reliability degradation and estimate the lifetime of PV inverters.
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From the above literature and methods, it can be summarized that operational relia-
bility methods mainly focus on feature extraction and mapping features to the reliability
space. Deep learning provides an effective way to automatically extract features, which
relies on a large number of training samples.

However, with the increase in mechanical component quality and service time, it
becomes increasingly difficult and more time-consuming to obtain enough historical failure
data. Therefore, the development of intelligent models with the ability of few-shot learning
is urgent. Ren et al. proposed a capsule auto-encoder model that can extract vector
features and achieve good results with few-shot samples [8]. Hu et al. proposed a task-
sequencing meta-learning method to address the few-shot fault diagnosis problem. The
experiment results illustrate that the proposed method can identify new categories with
few samples [9]. Chen et al. proposed a hierarchy-guided transfer learning framework
for few-shot fault recognition, which can learn a hierarchical structure of classes by multi-
granularity clustering and by filtering out irrelevant categories, overcoming the problem of
negative transfer [10]. In this paper, a few-shot reliability assessment method for a bearing is
proposed, which shows a robust diagnosis performance with limited data, and is capable of
working well under complex working conditions. In this method, the oscillation mechanism
of a rotating mechanical system is first analyzed and discussed. Because both the vibration
impact and the harmonic component will change with the variation of system condition
according to the analysis, the system condition can be reflected by these sensitive fault
components. Therefore, a morphological component analysis (MCA) approach based on a
dual dictionary is used to extract the sensitive fault components as features. Meanwhile,
it also mitigates the effect of noise. After separation and reconstruction, different signal
components can be extracted from the original signals. Then, several classical statistical
indexes of the impulse component are used as the input observation sequence O for MoG-
HMM. This step includes two phases: the off-line phase, in which some initial normal
condition signals are used to estimate the model λ of a corresponding MoG-HMM, and on-
line phase, which continuously assesses the current health state of the physical component
and estimate the maximum likelihood probability. Figure 1 shows a schematic sketch of the
computational framework.
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Figure 1. Flowchart of the few-shot reliability assessment approach.

The remaining sections of this paper are organized as follows: Section 2 illustrates the
vibration response of bearing and the proposed few-shot reliability assessment method;
Section 3 presents the case studies; and discussions and conclusions are drawn in Section 4.
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2. Methodology

When a signal contains components with distinct properties, its components can be
separated via conventional LTI filters. However, in engineering practice, LTI filters often
fail to apply because the harmonic component and impulse component are not separated in
frequency. Sparse representation is a useful tool for solving this problem [11], and the use
of sparsity to separate components of a signal is called morphological component analysis
(MCA). MCA is an effective algorithm that has been widely used in the image processing
field to separate smooth and textured components.

Therefore, a novel few-shot reliability assessment methodology is proposed in this
study. This approach consists of two procedures: sparse components separation and
few-shot reliability assessment.

2.1. Vibration Response of Bearing

Rotational machines are widely used in the manufacturing industry, and many me-
chanical structures can be simplified into a bearing–rotor system. The key component of
rotational machines is a roller bearing–rotor system, which includes a rotational rotor and
several roller bearings. Localized defects, such as cracks and spalls, may be generated dur-
ing operations. When rolling elements roll over defects, shock pulses with short duration
are generated, and excessive vibration may lead to a failure of the whole system [12].

In order to predict the dynamic behavior and vibration responses of a whole bearing–
rotor system, dynamic modeling of the system is necessary. In this section, the dynamic
model and vibration analysis are briefly described to accomplish the methodology [13].

When external forces are applied on the bearing, the distance between the curvature centers
of raceway will be changed. ∆δx, ∆δy, ∆δz, ∆γy and ∆γz are defined as the relative displacements
of the five degrees of freedom in the inner raceway and outer raceway, respectively.

After the appearing deformation of the bearing, the distances between the ball center
and the curvature center of inner and outer raceway are [13]:

∆ik = ri − D
2 + δik = ( fi − 0.5)D + δik

∆ok = ro − D
2 + δok = ( fo − 0.5)D + δok

}
(1)

where ri and ro are the curve radius of the inner and outer raceways, D is the diameter of balls,
fi and fo are the ratios of the radius of the inner and outer raceways to the ball diameter, δik
and δok are the contact deformation displacements of the ball at the inner and outer raceways,
respectively. Then, displacement equations of geometric relations can be obtained [13]:

(Uik −Uk)
2 + (Vik −Vk)

2 − ∆ik
2 = 0

Uk
2 + Vk

2 − ∆ok
2 = 0

}
(2)

and the equilibrium equations for the ball can be given [10]:

Qik sin θik −Qok sin θok −
Mgk
D (λik cos θik − λok cos θok) = 0

Qik cos θik −Qok cos θok −
Mgk
D (λik sin θik − λok cos θok) + Fck = 0

}
(3)

where Qik and Qok are the contact forces between the ball and the raceways, Mgk is the gyro-
scopic moment, θik and θok are the contact angles of the inner and outer raceways, and Fck is
the centrifugal force. Let λik = λok = 1. By Newton–Raphson method, Equations (2) and (3)
and the force equilibrium equation can be solved, and Uik, Uk, Vik, Vk, ∆ok, and ∆ik can be
obtained. Then, by adding all the forces between balls and the inner or outer raceways,
the total force vector Fi (acting on the inner raceway) and Fo (acting on the outer raceway)
can be obtained.
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When the ball rolls in the raceway defect, the values of ∆ok and ∆ik will change, which
will lead to change of the vibration response. When the ball comes into contact with the
defect on the outer raceway, ∆ok and ∆ik become [13]:

∆ik = ri − D
2 + δik = ( fi − 0.5)D + δik

∆ok = ro − D
2 + δok = ( fo − 0.5)D + δok + ∆so

(4)

where ∆so is the additional deflection caused by an outer raceway defect. The acceleration
response of the spindle nose in y direction is shown in Figure 2.
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Figure 2. The acceleration response when the defect is on the outer raceway.

In the same way, the acceleration response of the spindle nose in y direction when the
defect is located on the inner raceway is shown in Figure 3.
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2.2. Sparse Components Separation Based on Dual-Basis Pursuit (Dual-BP)

Both the impulse and harmonic vibration increase with the operational time increase.
In order to assess the few-shot reliability of a bearing–rotor system, these two components
should be separated from the whole vibration signals. An MCA method based on BPDN [14]
is applied in this study, which shows advantages in vibration information presentation and
components separation, including super resolution, sparsity and noise reduction.

First of all, we used the l1 and l2 norms, which are defined as:

‖x‖1 =
N−1
∑

n=0
|x(n)|

‖x‖2
2 =

N−1
∑

n=0
|x(n)|2

(5)

where N represents the length of x(n).
A discrete signal s(n) can be represented as:

s(n) = Ax(n) (6)

where s(n) is an N-length vector. A is an over-complete dictionary, which is an N × M
redundant matrix. x(n) is the sparse coefficient sequence, which is an M-length vector. For
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vibration signal of the bearing, A can be chosen as Fourier basis. To solve x(n), l1-norm
regularizer was used here [15]:

argmin
x
‖x‖1

such that s = Ax
(7)

When s is noisy, Equation (7) can be solved by minimizing the cost function, which is
called the basis pursuit denoising (BPDN) problem:

argmin
x
‖s−Ax‖2

2 + λ‖x‖1 (8)

When a signal contains several components with distinct properties, two components
in this application, the observed signal s(n) can be written as:

s(n) = s1(n) + s2(n) (9)

If s1(n) and s2(n) are in distinct frequency bands, they can be separated using con-
ventional LTI filters. However, in real signals collected from mechanical system, different
components are never separated by frequency or other variables. Therefore, it is more chal-
lenging to separate these components. According to the morphological component analysis
(MCA) method [16,17], it is assumed that each of the two components is best described
using distinct transforms A1 and A2. As in Equation (6), s1(n) and s2(n) can be written as:

s1 = A1x1, s2 = A2x2 (10)

Therefore, to solve Equation (9), the MCA method is to find x1 and x2 such that:

s = A1x1 + A2x2 (11)

which leads to the dual-basis pursuit (Dual-BP) problem:

argmin
x1,x2

λ1‖x1‖1 + λ2‖x2‖1

such that s = A1x1 + A2x2

(12)

If s(n) is noisy, which is bound to occur in the actual vibration signals, Dual-BP problem
turns into an MCA optimization problem:

argmin
x1,x2

‖s−A1x1 −A2x2‖2
2 + λ1‖x1‖1 + λ2‖x2‖1 (13)

Parameters λ1 and λ12 should be chosen depending on the operating condition, which
are usually set between 0 and 1. As λ1 becomes larger, x1 gains more weight. This paper
employs the discrete Fourier basis and short-time Fourier basis as A1 and A2 because
discrete Fourier basis can obtain a highly sparse representation of harmonic component,
and short-time Fourier basis is suitable for sparse impact component representation.

Several algorithms are applicable for solving BP problem, such as iterative shrink-
age/thresholding algorithm (ISTA) [18], block coordinate relaxation method [19], split
variable augmented Lagrangian shrinkage algorithm (SALSA) [14], etc. SALSA is used to
solve the MCA problem in this study.

Using the coefficients x1 and x2, the two components s1 and s2 can be obtained by
Equation (10), and the impulse and harmonic components can be separated from the whole
signal with proper parameters and basis. Because abrasion will take a long time to become
faulty and cannot immediately lead to system damage, harmonic components are not
as important as impulse components for reliability estimations. Then, several statistical
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indexes are utilized as the input observation sequence O for a Mixture of Gaussians Hidden
Markov Model (MoG-HMM).

2.3. Few-Shot Reliability Assessment via Mixture of Gaussian Hidden Markov Models (MoG-HMM)

HMM is a stochastic technique for modeling signals that evolves through a finite
number of states. The states are assumed to be hidden, and responsible for producing
observations [20,21]. A basic HMM can be defined by three parameters: the transition
probability matrix A, the observation model B, and initial state probability distribution π.
Therefore, an HMM λ can be notated by λ = (A, B, π). Define S = (S1, S2, . . . , ST) as the
hidden state sequence and O = (O1, O2, . . . , OT) as the observation sequence.

HMMs are usually used to solve the following three basic problems [22–26]:

1. Detection: given the model λ and observation sequence O, compute the probability
P(O|λ) of the sequence given the model. This problem can be solved the using the
forward-backward algorithm.

2. Prediction/Decoding: given the model λ and observation sequence O, find the hidden
state sequence S that most likely produced the observation sequence. This problem
can be solved by the Viterbi algorithm.

3. Learning: given observation sequence O, find the model parameters λ that maximize
the probability P(O|λ). This problem can be solved by the Baum–Welch algorithm.

Usually, HMMs assume the observation sequence O is discrete. In practice, how-
ever, the observations are always continuous signals. To use a continuous observation
density, the parameters of the probability density function (PDF) are re-estimated. The
most general method represents the PDF with a finite mixture of PDFs using Gaussian
mixture model (GMM):

bj(O) =
M

∑
m=1

Cjmξ
(
O, µjm, Ujm

)
, 1 ≤ j ≤ N (14)

where M is the number of Gaussians, Cjm is the mixture coefficient for the mth mixture in
state j. ξ is the Gaussian probability density with mean vector µjm and covariance matrix
Ujm for the mth mixture component in state j. Therefore, a MoG-HMM can be notated by
λ = (A, B, π, µ, U).

After the sparse components separation, mean value, root mean square value, root
value and kurtosis of the impulse components were used as the observation sequence O
for GMM, as listed in Equations (15)–(18):

1
N

N

∑
i=1

si (15)

√√√√ 1
N

N

∑
i=1

s2
i (16)


√√√√ 1

N

N

∑
i=1

√
|si|

2

(17)

1
N

N

∑
i=1

(si − x1)
4 (18)

There are two main phases in this step: learning and on-line predicting. In the
learning phase, mean value, root mean square value, root value and kurtosis of the impulse
components are applied as an observation sequence O of a MoG-HMM to learn a model
under normal condition. In the on-line predicting phase, the indexes of current unknown
condition are input into the learned model to calculate the maximum likelihood probability
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P(O|λ). To eliminate the influence of initial states fluctuation, the maximum likelihood
probability was normalized by state parameter method, and the operational reliability can
be computed as:

R =


1 P(OT |λ) > P(O1|λ)
1− P(OT |λ)−P(O1|λ)

P(Omax|λ)−P(Omin|λ)
0 < P(OT |λ) ≤ P(O1|λ)

0 P(OT |λ) = 0

(19)

where P(O|λ) represents the current reliability of the bearing. When P(O|λ) is large, the
current condition is more likely to be normal; when P(O|λ) is small, the current condition
is more likely to be faulty. Therefore, the probability P(O|λ) can be used as an index to
reflect system health condition and reliability. Furthermore, no more samples are needed in
this step. Therefore this reliability assessment methodology can be disregarded depending
on statistical analysis and large-failure samples.

3. Case Studies

In this section, a real-life test dataset of a bearing is analyzed. The result vali-
dates the effectiveness of the proposed method. Detailed information is introduced in
the following section.

This experiment is a part of the bearing life prediction program tested on an aerospace
bearing test rig held in Xi’an Jiaotong University [8,27]. There are two N312 cylindrical roller
bearings used for support, which are fixed at the middle of the shaft and two 30311 tapered
roller bearings used for the test, which are installed on both ends of the shaft. Axial load
Fa is 15 kN and radial load Fr is 27 kN. They are applied on bearing 4 and the bushing,
respectively. Rotation speed is set to 1500 r/min constantly.

The vibration signal was exported and collected by the Lance LC0401 High Sensitivity
ICP accelerometer and the YE6267 dynamic data collection and analysis system. The
sampling frequency was 12 kHz per channel; 32,768 points is collected every five minutes.
At the end of the test, the system fails with a rolling element defect, as illustrated in Figure 4.
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Figure 4. Defects of the failure bearings.

After the system failure, the vibration data were processed by Dual-BP and MCA,
respectively. As with the previous case, three representative moments were analyzed: 25 h
(300th group, normal stage), 60 h (533th group, incipient fault) and 95 h (1140th group, fault
stage). The raw vibration signals and the reconstructed signals via Dual-BP and MCA are
shown in Figures 5–7, respectively. The short-time Fourier transform (STFT) of harmonic
component and impulse component are shown in Figures 8–10, respectively.
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Figure 6. In 60 h: (a) Raw vibration signals; (b) reconstructed component via Dual−BP; (c) recon-
structed component via MCA. 
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Figure 7. In 95 h: (a) Raw vibration signals; (b) reconstructed component via Dual−BP; (c) recon-
structed component via MCA. 
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To verify the advantage of the proposed method, the same signals were analyzed
via the state-of-the-art method in [28], which was constructed based on EMD and match
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pursuit. The raw vibration signals, the reconstructed signals, and the STFT of impulse
component are shown in Figures 11–13, respectively.
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From Figures 5–10, it can be seen that, after adding a penalty term to noise, MCA
becomes more applicable for operational information extraction of the bearing–rotor system.
Although the results of Dual-BP also reflect the fault degree, they are unsuitable as an
index to reflect system reliability due to the serious noise interference. By comparison, the
results of MCA are cleaner and more effective. Compared with the normal stage (Figure 5),
the number of impulse components increased when faults occurred (Figure 6), although
amplitudes did not substantially change. With the development of the fault, not only
did the Impulse components increase in number, but their amplitudes also became larger
(Figure 7). However, in Figures 11–13, it is hard to distinguish the operational condition
from the reconstructed component and the STFT results of impulse components via the
comparison method. Therefore, the proposed method can extract more accurate operational
information compared to the state-of-the-art method.

After sparse components separation, the few-shot reliability of the system can be
calculated, as shown in Figure 14.

From Figure 14, it can be seen that the curve of reliability declines at 80 h. It can also be
seen that the incipient fault occurred at this moment. While at 90 h, reliability rises to 0.98,
which is the same case as example 1. This is because after running for a period, the defect
was smoothed and the system ran smoothly again. Therefore, not only was the impulse
component reduced, but also the vibration of all whole signals. After a slow decline, the
value of reliability rapidly decreased to 0 at 96 h, which represented system failure. It can
be seen that the proposed method can properly and accurately reflect the system condition.

In this study, we started from the system failure mechanism and discovered the
vibration response of defects. Aiming to extract the fault vibration response, an MCA
method was used for sparse components separation.
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Figure 14. (a) Few-shot reliability estimation result via statistical indexes; (b) local enlargement. 
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4. Conclusions

Traditional reliability estimation methods are mainly based on statistical analysis and
life tests and may not be suitable for an increasingly diverse and precise set with high
reliability requirements, which will be the inevitable result of the rapid development of
technology and science. In this study, we started from the system failure mechanism and
discovered the vibration response of defects. Aiming to extract the fault vibration response,
an MCA method was used to extract the valuable component and remove other useless
components or noise. Then, few-shot reliability could be estimated by the evaluation system
and the output log-likelihood probability P(O|λ) of operational information sequence.
Furthermore, this method does not rely on statistical analysis and large-failure samples
because the evaluation process is accomplished by comparing the current condition with
the normal condition of the same system. However, the construction of the basis relies on
the vibration response of the bearing in this paper, which is still a scientific research gap
that needs to be addressed.

Author Contributions: Conceptualization, Y.F. and W.L.; methodology, Y.F.; software, R.L.; validation,
R.L. and K.Z.; formal analysis, W.L.; investigation, X.L.; resources, R.L.; data curation, X.L.; writing—
original draft preparation, Y.F.; writing—review and editing, K.Z.; visualization, W.C.; supervision,
R.L.; project administration, X.L.; funding acquisition, X.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Machines 2022, 10, 435 13 of 13

References
1. Wang, F.; Chen, X.; Liu, C.; Yan, D.; Li, H. Reliability assessment of rolling bearing based on principal component analysis and

Weibull proportional hazard model. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), Turin, Italy, 22–25 May 2017.

2. Abaei, M.M.; Hekkenberg, R.; Bahootoroody, A. A multinomial process tree for reliability assessment of machinery in autonomous
ships. Reliab. Eng. Syst. Saf. 2021, 210, 107484. [CrossRef]

3. Varshney, L.; Vardhan, A.; Vardhan, A.; Kumar, S.; Sanjeevikumar, P. Performance characteristics and reliability assessment of
self-excited induction generator for wind power generation. IET Renew. Power Gener. 2020, 15, 1927–1942. [CrossRef]

4. Norouzi, N. The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate
change. Nucl. Eng. Technol. 2021, 53, 1658–1663. [CrossRef]

5. Cai, G.; Chen, X.; Li, B.; Chen, B. Operation reliability assessment for cutting tools by applying a proportional covariate model to
condition monitoring information. Sensors 2012, 12, 12964–12987. [CrossRef]

6. Hu, B.; Pan, C.; Shao, C.; Xie, K.; Niu, T.; Li, C.; Peng, L. Decision-Dependent Uncertainty Modeling in Power System Operational
Reliability Evaluations. IEEE Trans. Power Syst. 2021, 36, 5708–5721. [CrossRef]

7. Qc, A.; Cz, A.; Zhao, Y.; Yan, X.B. Operational reliability assessment of photovoltaic inverters considering voltage/VAR control
function. Electr. Power Syst. Res. 2021, 190, 106706.

8. Ren, Z.; Zhu, Y.; Yan, K.; Chen, K.; Kang, W.; Yue, Y.; Gao, D. A novel model with the ability of few-shot learning and quick
updating for intelligent fault diagnosis. Mech. Syst. Signal Process. 2020, 138, 106608.1–106608.21. [CrossRef]

9. Hu, Y.; Liu, R.; Li, X.; Chen, D.; Hu, Q. Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited
Data. IEEE Trans. Ind. Inform. 2022, 18, 3894–3904. [CrossRef]

10. Chen, H.; Liu, R.; Xie, Z.; Hu, Q.; Dai, J.; Zhai, J. Majorities help minorities: Hierarchical structure guided transfer learning for
few-shot fault recognition. Pattern Recognit. 2022, 123, 108383. [CrossRef]

11. Liu, R.; Yang, B.; Zhang, X.; Wang, S.; Chen, X. Time-frequency atoms-driven support vector machine method for bearings
incipient fault diagnosis. Mech. Syst. Signal. Process. 2016, 75, 345–370. [CrossRef]

12. Niu, L.; Cao, H.; He, Z.; Li, Y. Dynamic modeling and vibration response simulation for high speed rolling ball bearings with
localized surface defects in raceways. J. Manuf. Sci. Eng. 2014, 136, 041015. [CrossRef]

13. Li, Y.; Cao, H.; Chen, X. Modelling and vibration analysis of machine tool spindle system with bearing defects. Int. J. Mechatron.
Manuf. Syst. 2015, 8, 33–48. [CrossRef]

14. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61. [CrossRef]
15. Elad, M.; Milanfar, P.; Rubinstein, R. Analysis versus synthesis in signal priors. Inverse Probl. 2007, 23, 947. [CrossRef]
16. Starck, J.L.; Elad, M.; Donoho, D. Redundant multiscale transforms and their application for morphological component separation.

Adv. Imaging Electron. Phys. 2004, 132, 287–348.
17. Starck, J.L.; Elad, M.; Donoho, D.L. Image decomposition via the combination of sparse representations and a variational approach.

IEEE Trans. Image Process. 2005, 14, 1570–1582. [CrossRef] [PubMed]
18. Daubechies, I.; Defrise, M.; Mol, C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.

Commun. Pure Appl. Math. 2010, 57, 1413–1457. [CrossRef]
19. Sardy, S.; Tseng, B.P. Block coordinate relaxation methods for nonparametric wavelet denoising. J. Comput. Graph. Stat. 2000, 9, 361–379.
20. Baruah, P.; Chinnam, R.B. HMMs for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 2005, 43, 1275–1293.

[CrossRef]
21. Chinnam, R.B.; Baruah, P. Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering. In

Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 4, pp. 2466–2471.
22. Wang, Y.; Yan, H.; Zhang, H.; Shen, H.; Lam, H.K. Interval Type-2 Fuzzy Control for HMM-Based Multiagent Systems Via

Dynamic Event-Triggered Scheme. IEEE Trans. Fuzzy Syst. 2021. [CrossRef]
23. Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N.; Tripot, G. A data-driven failure prognostics method based on mixture of gaussians

hidden markov models. IEEE Trans. Reliab. 2012, 61, 491–503. [CrossRef]
24. Deng, Q.; Söffker, D. A Review of the current HMM-based Approaches of Driving Behaviors Recognition and Prediction. IEEE

Trans. Intell. Veh. 2021. [CrossRef]
25. Li, F.; Zheng, W.X.; Xu, S. HMM-Based fuzzy control for nonlinear Markov jump singularly perturbed systems with general

transition and mode detection information. IEEE Trans. Cybern. 2021. [CrossRef]
26. Lee, W.L.J.; Burattin, A.; Munoz-Gama, J.; Sepúlveda, M. Orientation and conformance: A HMM-based approach to online

conformance checking. Inf. Syst. 2021, 102, 101674. [CrossRef]
27. Sun, C.; Zhang, Z.; He, Z.; Shen, Z.; Chen, B.; Xiao, W. Novel method for bearing performance degradation assessment—A kernel

locality preserving projection based approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 548–560. [CrossRef]
28. Liu, Z.; Ding, K.; Lin, H.; He, G.; Du, C.; Chen, Z. A Novel Impact Feature Extraction Method Based on EMD and Sparse

Decomposition for Gear Local Fault Diagnosis. Machines 2022, 10, 242. [CrossRef]

http://doi.org/10.1016/j.ress.2021.107484
http://doi.org/10.1049/rpg2.12116
http://doi.org/10.1016/j.net.2020.10.013
http://doi.org/10.3390/s121012964
http://doi.org/10.1109/TPWRS.2021.3081765
http://doi.org/10.1016/j.ymssp.2019.106608
http://doi.org/10.1109/TII.2021.3112504
http://doi.org/10.1016/j.patcog.2021.108383
http://doi.org/10.1016/j.ymssp.2015.12.020
http://doi.org/10.1115/1.4027334
http://doi.org/10.1504/IJMMS.2015.071686
http://doi.org/10.1137/S1064827596304010
http://doi.org/10.1088/0266-5611/23/3/007
http://doi.org/10.1109/TIP.2005.852206
http://www.ncbi.nlm.nih.gov/pubmed/16238062
http://doi.org/10.1002/cpa.20042
http://doi.org/10.1080/00207540412331327727
http://doi.org/10.1109/TFUZZ.2021.3101581
http://doi.org/10.1109/TR.2012.2194177
http://doi.org/10.1109/TIV.2021.3065933
http://doi.org/10.1109/TCYB.2021.3050352
http://doi.org/10.1016/j.is.2020.101674
http://doi.org/10.1177/0954406213486735
http://doi.org/10.3390/machines10040242

	Introduction 
	Methodology 
	Vibration Response of Bearing 
	Sparse Components Separation Based on Dual-Basis Pursuit (Dual-BP) 
	Few-Shot Reliability Assessment via Mixture of Gaussian Hidden Markov Models (MoG-HMM) 

	Case Studies 
	Conclusions 
	References

