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Abstract: The production of pipe assembly for a rocket engine has experienced challenges owing to
the higher requirements of the joining and sealing performance. An adjustable laser bending pipe is
a flexible and economical means of compensating for production errors after welding, located in the
“closing” segment. To improve the productivity and accuracy of the adjustable laser bending pipe,
inline measurement systems are integrated into production to develop an adaptive control system.
The models of adjustable laser bending pipe to compensate for pipe assembly production errors are
established using kinematics and the displacement screw system, and the proposed adaptive control
system is validated by the experiment based on the springback-free laser pipe bending process.
Using the proposed adaptive control system, the angle deviation decreases from 7.086◦ to 0.154◦, and
the distance deviation decreases from 5.076 mm to 0.104 mm. The validation results satisfactorily
meet the requirement of the welding axis alignment of the pipe ends. These models demonstrate
significant potential to be applied for calculating the feedback parameters required in the adjustments
to compensate for pipe assembly production errors.

Keywords: errors compensation; pipe production; laser bending; adaptive

1. Introduction

The pipe assembly process is commonly encountered in various fields, such as the
aircraft, aerospace, and ship building industries. Pipe assembly plays an important role
in product quality, including the safety, reliability, performance, and life cycle of the
product [1]. In an aero-engine, approximately 50 accessories, hundreds of clamps, and
100–250 pipes exist within the narrow space between the engine casing and nacelle. These
pipes connect the engine components, accessories, and aircraft to transmit fluids and
ensure that the engine operates. Academic researchers and practitioners in engineering
disciplines generally pay considerable attention to pipe routing algorithms in the field of
pipe assembly design [2]. Pipe routing is a time-consuming and difficult task, even for
skilled designers, owing to the complexity of 3D space and the vast amount of engineering
rules involved, such as avoiding obstacles, closely following obstacle contours, and meeting
assembly feasibility requirements. In practice, there are equally significant difficulties in
pipe assembly production. Certain digital assembly and measurement techniques have
been realized. For example, a simulation technology for the pipe bending process has
been applied to collision detection [3]. A 3D measurement system for pipe assembly was
developed to improve the assembly productivity and accuracy [4]. Simulation of the pipe
assembly process has been utilized for interference checking and sequence optimization in
pipe assembly [5].

Aimed at locating and clamping different pipe types during assembly, a flexible
combine-clamp and flexible pipe assembly platform represent a good solution. Moreover,
pipe recognition and measurement systems [6] were used to calculate and control robot mo-
tion in an automatic pipe assembly system. However, the production of pipe assembly for
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a rocket engine not only experiences similar difficulties, but is also even more challenging,
owing to the higher requirements of the joining and sealing performance. In the production
of a rocket engine, welding is the preferred process for connecting pipes, components, and
accessories. In comparison with a threaded connection, welding offers superior sealing
performance, which directly affects the rocket engine safety and reliability. Meanwhile,
errors after welding are inevitable and easily propagated during production, which often
result in the pipe ends not fitting into their corresponding interfaces located at the “closing”
segment (see Figure 1). In order to compensate for these production errors, which often
result in rework and slow assembly, appropriate steps could be considered. First, the
design for assembly (DFA) approaches, employing tolerance analyses, could be utilized to
minimize errors [7]. DFA is an important engineering technique in machining and assembly
process planning, and such methods offer an effective procedure for error evaluation. Nev-
ertheless, it is difficult to predict welding distortions, which makes this approach ineffective
in reducing production errors. Similarly, flexible assembly and welding platforms could be
developed to improve the location and clamping of different pipe types. However, errors
after welding still exist and cannot yet be completely reduced. Therefore, using a pipe
adjustment tool (“forced closing”) is a common approach for solving the accumulating
errors located at the “closing” segment. However, this method is only suitable for minor
production errors and requires further investigation on the installation stress and strain
to avoid exceeding the allowable values [8]. Large installation stresses caused by major
production errors, coupled with welding residual stress and dynamic loading located at the
“closing” segment, will directly reduce rocket engine safety and reliability. An adjustable
pipe is a flexible and economical means of compensating for major production errors (see
Figure 1). For welding purposes, the pipe ends are normally longer. Therefore, a certain
portion of each end should be cut off to match the corresponding interface, as shown
in Figure 1. Moreover, when faced with major production errors, a useful approach of
inserting a bend section could be executed, as illustrated in Figure 2.

Figure 1. Illustration of pipe assemblies: (a) a real rocket engine; (b) CAD model for pipe and main
body (corresponding to physical body shown in dashed circle in Figure 1a.

Formally, using an adjustable pipe to compensate for production errors involves the
following three sub-problems:

(i) Collecting real-time 3D information, including the limited installation space, the 3D
shape of the adjustable pipe, and 3D pose of interfaces;

(ii) Meeting the requirements of the welding axis alignment for each pipe end; and
(iii) Calculating the final pose of the adjustable pipe, cutting length of each end, and

bending parameters.

As can be seen in Figure 2, if the axis is aligned at one of the ends, three different
approaches can be executed to adjust the pose of the other end to match the corresponding
interface. The first option is to shorten the beginning of the pipe, which represents one
translational degree of freedom (DOF), as shown in Figure 2. The second alternative is
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to rotate around the axis of the beginning segment and represent one rotational DOF.
The third possibility is to insert a bend section located at the beginning or end of the
pipe, which indicates three DOFs (namely, position, orientation, and angle). However,
considering nonlinear coupling in 3D space when using multiple adjustment approaches,
and the welding axis alignment requirement of the pipe end, it is often difficult to finish
the process manually.

Figure 2. General approaches for adjustable pipe.

To improve the productivity and accuracy of the adjustable pipe in this work, inline
measurements systems are integrated into production to develop an adaptive control
system. Cost-efficient inline 3D sensing technologies, such as laser scanning and digital
photogrammetry, are currently available to gather real-time 3D information [9]. In this
study, dimensional chains analyses are used to evaluate the nonlinear coupling in 3D space
when using multiple approaches. A dimensional variation propagation model is established
to describe the geometric relationship between the adjustment approaches and pipe end.
The welding axis alignment requirement is modeled to describe the motion/displacement
(that is, the position and orientation) between the pipe end and corresponding interface. In
general, the proposed adaptive control system described in this research, as illustrated in
Figure 3, consists of the following four levels:

Data: The production errors as well as the shape and pose of the adjustable pipe
should be extracted from the inline measurement data. Furthermore, various engineering
rules exist, such as the maximum shortening length of each pipe end.

Model: Using the real-time data from the previous step, a dimensional variation
propagation model needs to be developed. The welding axis alignment requirement of the
pipe end also needs to be described and modeled.

Solution: The nonlinear equation set between the established models must be solved
under geometric constraints and engineering rules.

Output: Local feedback parameters required for the necessary adjustment approaches
must be arranged using the global calculation results obtained from the previous step.
These include shortening lengths, rotate angle, and bending parameters.

The remainder of this paper is organized as follows. The models and solution method
of adjustable laser bending pipe [10–12] to compensate for pipe assembly production errors
are provided in Section 2. Experimental results and discussions are presented in Section 3
to verify the feasibility and accuracy of the proposed adaptive control system, and the
paper is concluded in Section 4.
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Figure 3. Adaptive control system of adjustable pipe.

2. Models and Solution

The matching method [13,14] was used in the adaptive control algorithm of lightweight
space-frame-structures, which are increasingly being used in the automobile and aircraft
industries. Meanwhile, in building construction, a kinematics model of a pipeline with mul-
tiple pipes was established for automatic realignment by means of the Denavit–Hartenberg
(D-H) matrix [15]. However, when faced with major production errors, the specific position
and orientation of an inserted bend section are uncertain, making it difficult to establish
the local D-H parameters and to extract the key point from the measurement data of the
adjustable pipe required in the matching method. In this study, the production of exponen-
tials (POE) formula is an alternative method and is used to model dimensional chains when
using multiple adjustment approaches. In a global POE formula, all kinematics chains are
related to the inertial frame and only two coordinate frames are required: a spatial frame
{S} and tool frame {T} [16].

In this section, robotic kinematics studies are first introduced, and then the dimensional
variation propagation model is developed along with the required functions, and the
welding axis alignment model is also described combined with the incompletely specified
displacement screw system related theories. Finally, the solution method is presented to
solve the nonlinear equation set between the established models.

2.1. Robotic Kinematics

Robotic kinematics describes the position and orientation of the end-effector connected
by robotic joints, and includes two robotic kinematics problems [17]. Forward robotic
kinematics generally refers to describing the relationship between the variables (joint angles
and displacements) and end effector pose (position and orientation) in robotic systems.
Meanwhile, inverse kinematics generally refers to the calculation of variables for a given
end effector pose. That is, forward robotic kinematics aims to model the nonlinear coupling
relationship between joints and end effector pose, while inverse kinematics provides the
corresponding solution method. Generally, the forward robotic kinematics can be expressed
based on the POE formula [18], as follows:

T(θ1, θ2 . . .) = eθ1Ŝ1 eθ̂2S2 . . . T0 (1)
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where θ1,θ2 . . . are joint variables; T0 is the initial pose; and Ŝ1,Ŝ2 . . . represent the joint
screw in the form of

Ŝ =
(
⇀
s ;

⇀
r ×⇀

s + h·⇀s
)

(2)

In the above, × is the usual cross-product of 3D vector algebra;
⇀
s is a unit vector

defined on the joint axis;
⇀
r is a vector directing the point O to an arbitrary point on the

joint axis; and h is the screw pitch [18], as shown in Figure 4.

Figure 4. Definition of joint screw.

For pure rotation, the screw can be expressed as

ŜRotate =
(
⇀
s ;

⇀
r ×⇀

s
)

(3)

For pure translation, the screw can be expressed as

ŜTranslate =
(
[0, 0, 0]T ;

⇀
s
)

(4)

Moreover, it is common to use Newton–Raphson iterative methods for inverse kine-
matics [19], based on computation of the Jacobian matrix. When using the POE formula,
the Jacobian matrix has the following linear form:

J(θ1, θ2, · · · ) = [Jθ1 , Jθ2 , · · · ] = [
∂

∂θ1
T(θ1, θ2, · · · ), ∂

∂θ2
T(θ1, θ2, · · · ), · · · ] = [Ŝ1, Ŝ2, · · · ] (5)

2.2. Dimensional Variation Propagation Model of Adjustable Pipe

The dimensional variation propagation model of the adjustable pipe describes the
geometric relationship between the adjustment approaches and pipe end in the global
frame. As illustrated in Figure 5, when using multiple adjustment approaches shown in
Figure 2, the kinematics chains model can be expressed by three joint screws: ŜTranslate,
ŜRotate, and ŜBend, respectively.

ŜTranslate is a translation screw, which results from the one-translation DOF by means
of shortening the beginning of the pipe, and can be described using the global POE formula:

T(ds) = e(dS ŜTranslate)T0, d1 ≤ ds ≤ d2 (6)

ŜTranslate = ([0, 0, 0]T ;
⇀
k
(Beginning)

) (7)

where ds represents the shortening length of the beginning of the pipe; both d1 and d2 are

constant numbers and depend on the actual installation space; and
⇀
k
(Beginning)

is the unit
orientation vector of the beginning segment axis of the pipe.
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ŜRotate is a rotation screw, which results from the one-rotation DOF by rotating around
the beginning segment axis, and can be written as follows:

T(θR) = e(θR ŜRotate)T0, θ1 ≤ θR ≤ θ2 (8)

ŜRotate = (
⇀
k
(Beginning)

; (P×
⇀
k
(Beginning)

)) (9)

where ŜRotate is a rotation screw; θR represents the rotation angle around the axis of the
beginning of the pipe; both θ1 and θ2 are constant numbers and depend on the actual
installation space; P is an arbitrary point located on the axis of the beginning of the pipe

(see Figure 5); and
⇀
k
(Beginning)

is the unit orientation vector of the axis of the beginning of
the pipe.

ŜBend is a screw that results from the third approach of inserting a bend section located
at the end or beginning of the pipe. Owing to the elastic recovery of the pipe, significant
spring-back occurs following the plastic pipe bending process, which leads to an increase in
the bending radius and a decrease in the bending angle [20]. This has a significant influence
on the bend section shape. Laser bending is a new flexible forming process that is free of
spring-back [21]. In this study, pipe laser bending is used to verify the geometric accuracy
of the established model. A schematic of the equivalent motion of a 2D bend section is
presented in Figure 6a, in which a pipe segment AB with pipe diameter d is irradiated by
a laser beam on CE, and a bend section with bending angle and bending radius R + d/2
is obtained. In addition, pipe end B moves to B′. A bend section sample using pipe laser
bending is shown in Figure 6b.

The equivalent motion of the pipe end when inserting a bend section can be described
by using the syntheses of two basic motions: the rotation of end B around point D to point
B
′′

with angle θ, and the translation of B
′′

along the axial direction of the pipe to B′.
Assuming that the neutral layers of a bend section are invariable,

‖AC‖+ ˆCE′ + ‖E′B′‖ = ‖AC‖+ ‖CD‖+ ‖DB‖ = ‖AB‖, (10)

‖CD‖ = ‖DE′‖ = tan
(
θ
/

2
)(

R +
d
2

)
, (11)

ˆCE′ = θ

(
R +

d
2

)
= ‖CE‖, and (12)

‖DB′′‖ = ‖DB‖. (13)
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Figure 6. The schematic of equivalent motion of pipe end when inserting bend section.

Combining Equation (10) through (13) yields

‖CD‖ =
tan
(
θ
/

2
)

θ
‖CE‖ and, (14)

‖B′B′′‖ =
(
2 ∗ tan

(
θ
/

2
)
− θ
)

θ
∗ ‖CE‖. (15)

As can be seen from Figure 7, when considering a bend section located in a 3D
space, three bending parameters exist, including the bending position Pi(C), bending

orientation
⇀
l i, and bending angle θBendP′i (D), which is the equivalent bend-rotation point.

A 3D straight pipe
⇀

AB can be represented as
(
⇀
k ;
(

P0 + λi
⇀
k
)
×

⇀
k
)

, where
⇀
k is the unit

orientation vector of the segment
⇀

AB; P0 is the foot of the perpendicular through origin

point o of
⇀

AB; λi is the distance between points Pi and P0 along
⇀
k ; and θBend represents the

bending angle. Combined with Equation (14), P′i (D) can be expressed as follows.

P′i (D) = Pi(C) + (
tan(θBend

/
2)

θBend
∗ ‖CE‖) ∗

⇀
k
(End)

= P0 + λi
⇀
k
(End)

+ (
tan(θBend

/
2)

θBend
‖CE‖)

⇀
k
(End)

(16)

In the above,
⇀
l 0 is the unit orientation vector of the perpendicular of

⇀
AB;

⇀
n 0 is the

cross-product of
⇀
k and

⇀
l 0; αi represents the included angle between

⇀
l i and

⇀
l 0 around

the axis of the pipe
⇀

AB; and the bending orientation
⇀
l i can be expressed as

⇀
l i = cos(αi)

⇀
l 0 + sin(αi)

⇀
n 0 (17)

ŜBend is the syntheses screw of bending, and can be divided into ŜBend−Rotate and
ŜBend−Translate, where ŜBend−Rotate is a screw of equivalent bending-rotation and ŜBend−Translate
is a screw of equivalent bending-translation, and can be expressed as follows:

ŜBend−Rotate =

(
⇀
l i; P′i (D)×

⇀
l i

)
and (18)
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ŜBend−Translate =

(
[0, 0, 0]T ;

⇀
k
(End)

)
(19)

Figure 7. Insert a bend section located in a 3D space.

In summary, the dimensional chains of the third approach of inserting a bend section
can be described using Equation (14) in the form of Equation (1)

T(θBend, αi, λi) = e(θBend ŜBend−Rotate)e
((

(2 tan(
θBend
/

2
)−θBend)

θBend
‖CE‖)ŜBend−Translate)T0

(−pi
2 ≤ αi ≤

pi
2 , λ1 ≤ λi ≤ λ2)

(20)

With the established kinematics models of the three approaches, respectively, including
Equations (6), (8), and (20), the dimensional variation propagation model when using three
different adjustment approaches includes five adjustable DOFs, and can be written as in
the form of Equation (1)

T(ds, θR, θBend, αi, λi) =

e(θBend ŜBend−Rotate)e
((

(2 tan(
θBend
/

2
)−θBend)

θBend
‖CE‖)ŜBend−Translate)

e(θR ŜRotate)e(dS ŜTranslate)T0

(θ1 ≤ θR ≤ θ2, λ1 ≤ λi ≤ λ2, d1 ≤ ds ≤ d2, −pi
2 ≤ αi ≤

pi
2 )

(21)

where ds represents the shortening length of the beginning of the pipe; θR is the rotation
angle around the axis of the beginning of the pipe; θBend represents the bending angle; αi is

the included angle between the orientation vectors
⇀
l i and

⇀
l 0 around the axis of the pipe;

λi is the distance between points Pi and P0 along the axial direction of the pipe; both d1 and
d2 are constant numbers that depend on the actual pipeline assembly space; θ1 and θ2 are
constant numbers that depend on the actual installation space; and λ1 and λ2 are constant
numbers that depend on the actual pipe shape.

2.3. Welding Axis Alignment Model of Pipe End

The welding axis alignment model of the pipe end describes the motion/displacement
(i.e., position and orientation) between the pipe end and corresponding interface. It can
be seen in Figure 1b that the pipe end should be cut off to match the corresponding
interface, resulting in the axis alignment model having two unconstrained DOFs: the
cutting length and the rotation angle of the pipe end around its axis. It is well known
that the displacement of a rigid body can be represented by six independent parameters.
Therefore, the welding axis alignment model of the pipe end requires four DOFs. Compared
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with the completely specified alignment (position and orientation) of a flange connection,
the motion/displacement of the welding axis alignment requirement of the pipe end is
incompletely specified [22]. A completely specified body motion corresponds to a finite
twisting motion, according to Chasles’ theorem [23], and can be expressed using differential
kinematics, as follows:

∆TEnd ≈
(

vex(RInter f aceREnd
T − I)

PInter f ace − PEnd

)
(22)

where the pose of the pipe end and interface are represented by (REnd, PEnd) and (RInter f ace,
PInter f ace), respectively, and vex() indicates the conversion of a skew-symmetric matrix into

a vector. For example, given a vector v =
(
vx, vy, vz

)T , the skew-symmetric matrix S and
vex() can be expressed as follows:

S =

 0 −vz vy
vz 0 −vx
−vy vx 0

, v =

 vx
vy
vz

 = vex(S)

For incompletely specified displacement problems, Tsai [24] introduced a systematic
approach based on the screw theory, in which the displacement screw was divided into
two component screws. One of these is a specific screw used for displacing the specified
body element, while the other is a screw used for displacing the body without affecting
the specified element displacement. Incompletely specified displacement problems were
investigated based on the concept of the screw triangle (see Figure 8). When three body
positions, namely Σ1, Σ2, and Σ3, are specified, three corresponding screws, namely Ŝ12,
Ŝ23, and Ŝ13, exist, but only two are independent. The axes of these three screws and
their normals, N̂1, N̂2, and N̂3, form a spatial figure known as the screw triangle [25,26].
The normals and screw axes are displaced from one another by distances and angles
corresponding to one-half of the screw translations, tij/2, and one-half the screw rotations,
θij/2. For further details on the triangle screw and incompletely specified displacement
screw system, the reader can refer to [27]. The resultant twist Tij of two successive screw
displacements Ŝ12 and Ŝ23 can be expressed as follows [28].

T13 = 2 tan θ13
2 Ŝ13 = 2[

1−tan θ12
2 tan θ23

2 (Ŝ12·Ŝ23)
] (tan θ12

2 Ŝ12 + tan θ23
2 Ŝ23

+ tan θ12
2 tan θ23

2 Ŝc − tan θ12
2 tan θ23

2
t23
2 Ŝ12p − tan θ12

2 tan θ23
2

t23
2 Ŝ23p)

(23)

where Ŝc is the screw product of Ŝ12 and Ŝ23; the axis of Ŝc is the common perpendicular to
the axes of Ŝ12 and Ŝ23; and Ŝ12p and Ŝ23p are pure-translation screws that are parallel to
the axes of Ŝ12 and Ŝ23, respectively.

A simplified form of Equation (23), when assuming θ12, θ23, and θ13 are small, tan
θij
2 ≈

θij
2 , and tan θ12

2 ≈
θ23
2 ≈ 0, can be expressed as follows:

T13 ≈ θ13Ŝ13 ≈ θ12Ŝ12 + θ23Ŝ23 (24)

For welding axis alignment required of the pipe end, the incompletely specified
displacement can be divided into two successive displacements, as illustrated in Figure 9,
as follows.

The first is a completely specified displacement (that is, position and orientation):
Position: PEnd and PInter f ace, where PEnd is the perpendicular foot through PInter f ace of

the end segment axis, which indicates one unconstrained DOF.

Orientation:
[
⇀
k End

⇀
l 0End

⇀
n 0End

]
and

[
k̂Inter f ace

⇀
l 0Inter f ace

⇀
n 0Inter f ace

]
, which are rep-

resented by R0End and R0Inter f ace, respectively, where
⇀
n 0 is the product of

⇀
k and

⇀
l 0.
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Figure 9. Incompletely specified displacement of welding axis alignment of pipe end.

The second is an unconstrained displacement that does not affect the axis alignment of
the pipe end: the rotation of the pipe end around its axis is ŜEnd, while the unconstrained
parameter is the rotation angle θEnd, which represents an additional unconstrained DOF.

In summary, the welding axis alignment model of the pipe end requires four DOFs, and
can be approximately expressed using the simplified incompletely specified displacement
screw system, as per Equation (24).

∆TEnd ≈ ∆T0End + θEndŜEnd (25)

∆T0End ≈
(

vex(R0 Inter f aceR0End
T − I)

PInter f ace − PEnd

)
(26)

R0End =
[

⇀
k End

⇀
l0 End

⇀
n0End

]
, R0 Inter f ace =

[ ⇀
k Inter f ace

⇀
l0 Inter f ace

⇀
n0 Inter f ace

]
(27)

2.4. Solution Method

The equations set between the dimensional variation propagation and welding axis
alignment models include highly nonlinear coupling. The Newton–Raphson iterative algo-
rithm is used to solve the nonlinear equations set in this study. Based on the computation
of the Jacobian matrix, the nonlinear equations set can quickly converge.
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Using Equation (21), the Jacobian matrix of the dimensional variation propagation
model of an adjustable pipe can be calculated in Equation (5).

J(ds, θR, θBend, αi, λi) =
[

Jds , JθR , JθBend , Jαi , Jλi

]
=
[
ŜTranslate, ŜRotate, JBend

]
θ1 ≤ θR ≤ θ2, λ1 ≤ λi ≤ λ2, d1 ≤ ds ≤ d2, −pi

2 ≤ αi ≤
pi
2

(28)

where JBend =
[

JθBend , Jαi , Jλi

]
JθBend

= ∂
∂θBend

(θBendŜBend−Rotate + ((2 tan(θBend
/

2)− θBend)(R + d/2)ŜBend−Translate)

= ŜBend−Rotate + θBend
∂

∂θBend

(
ŜBend−Rotate

)
+ tan2(θBend

/
2)(R + d/2ŜBend−Translate

Jαi = ∂
∂αi

(θBendŜBend−Rotate) =θBend
∂

∂αi
(ŜBend−Rotate)

Jλi = ∂
∂λi

(θBendŜBend−Rotate) =θBend
∂

∂λi
(ŜBend−Rotate)

Using Equations (16)–(19), JBend can be represented in detail as follows:

JBend =
[

JθBend , Jαi , Jλi

]
=

[
RBend 0

0 RBend

]


0

cos(αi)

sin(αi)

‖ P0 ‖ sin(αi) + tan2(θBend /2
)(

R + d/2

)
−
(

λi +
(
tan
(

θBend /2
)
+ 0.5 sec2(θBend /2

))(
R + d/2

))
sin(αi)(

λi +
(
tan
(

θBend /2
)
+ 0.5 sec2(θBend /2

))(
R + d/2

))
cos(αi)

0

−θBend sin(αi)

θBend cos(αi)

θBend‖ P0 ‖ cos(αi)

−θBend

(
λi+(tan

(
θBend /2

)(
R + d/2

))
cos(αi)

−θBend

(
λi+(tan

(
θBend /2

)(
R + d/2

))
sin(αi)

0

0

0

0

−θBend sin(αi)

θBend cos(αi)



where REnd =

[
⇀
k

⇀
l 0

⇀
n 0

]
(see Figure 7), depending on the actual pose of the adjustable

pipe.

3. Experimental Results and Discussions

In this study, a multi-mode pulse Nd: YAG laser (Rofin StarWeld 250, Max. 250 W,
1064 nm) is used to heat and bend the pipe, as seen in Figure 10. One end of the pipe
is fixed with a triangular chuck. A high-power laser is incident on the pipe surface at a
constant laser power. The triangular chuck rotates around the pipe axis with a constant
scanning speed. A camera is mounted coaxially to the laser beam, and a real-time image of
the bend section is captured on site.

Figure 10. The schematic of laser bending pipe.
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In this experiment, the number of scans varied for different bending angles required.
To avoid melting of the pipes, the laser bending experiment was carried out with constant
process parameters as follows:

1. Laser output power (W): P = 24 W
2. Laser spot diameter: d = 1 mm
3. Scanning velocity: v = 500 mm/min
4. Scanning length: L = 10 mm
5. Scanning wrap angle: 180◦

Figure 11 illustrates the initial state for the virtual assembly of an adjusted pipe. An
adjustable pipe and pair of interfaces were measured by employing 3D laser scan (FARO®

Quantum), following the production process after welding, as shown in Figure 11a. The
shapes and characteristics of the adjustable pipe and interfaces were reconstructed and
extracted based on the measurement data, as illustrated in Figure 11b,c. In the current case,
the existing angle deviation is 7.086◦, while the existing distance deviation is 5.076 mm, as
indicated in Figure 11d. The initial poses of the adjustable pipe and interfaces are given in
Table 1.

Figure 11. Initial state for virtual assembly of adjustable pipe: (a) adjustable pipe; (b) measurement
and reconstruction of pipe following production process; (c) pair of interfaces; and (d) existing
deviations of the end.

Table 1. Initial poses of adjustable pipe and pair of interfaces.

Position Orientation

Adjustable pipe Beginning Coaxial with interface
(beginning) [0; 1; 0]

End [109.432; 401.708; 61.736] [−0.486; 0.839; −0.244]

Interfaces
Beginning [−139.148; −28.957; 206.42] [0; 1; 0]

End [110.342; 403.583; 66.365] [−0.579; 0.766; −0.279]

It can be seen from Equation (21) that an adjustable pipe has five adjustable DOFs.
In contrast, the welding axis alignment model of the pipe end requires four DOFs, as
illustrated in Figure 9. Owing to the higher adjustable DOF, a series of feasible calculation
solutions exist that satisfy the actual geometry constraints and engineering rules, as given
in Table 2.
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Table 2. Series of feasible calculation solutions for adjustable pipe.

No. Jdx
(mm) θR (deg) θBend (deg) αi (deg) λi (mm) Res. Angle

Deviation (deg)
Res. Distance

Deviation (mm)

1 0.384 −1.266 −7.188 103.038 254.276 0 0.0075
2 1.319 −1.236 −7.184 102.875 250.171 0 0.0070

3 2.431 −1.200 7.181 −77.316 245.599 0 0.0077

4 3.150 −1.179 −7.178 102.259 242.054 0 0.0069

5 4.477 −1.139 −7.174 102.354 236.135 0 0.0067

6 5.133 −1.121 7.172 −77.747 233.177 0 0.0070

7 6.360 −1.085 −7.169 102.059 227.694 0 0.0066

8 7.496 −1.054 7.166 −78.108 222.572 0 0.0061

9 8.455 −1.028 −7.163 101.750 218.199 0 0.0055

10 9.293 −1.006 −7.161 101.629 214.394 0 0.0052

11 10.155 −0.983 7.159 −78.471 210.467 0 0.0047

Figure 12 illustrates the virtual assembly following calculation of the adjustable pipe,
where the feedback parameters used are from No. 5 in Table 2. In the current case, the
adjustable pipe was adjusted with respect to the corresponding interface, including the
position and orientation. The residual deviation of the pipe end is only 0.0067 mm.

Figure 12. Virtual assembly after using the calculation parameters from No. 5.

Figure 13 shows the final assembly by means of three adjustments approaches. The
shortening length of the beginning is 4.477 mm. The rotation angle around the axis of the
beginning is 1.139◦. Six scans were executed for inserting the bend section by the pipe laser
bending process. The bending angle obtained is 7.456◦. The deviation analysis indicates
that the calculation-actual contour for the adjustable pipe declined by approximately
−0.836, to 0.932 mm. The residual angle deviation is 0.154◦, while the residual distance
deviation is 0.104 mm. The results demonstrate that the proposed adaptive control system
for an adjustable pipe to compensate for production errors in rocket engine production is
feasible and accurate. The poses of the adjustable pipe end and corresponding interface are
provided in Table 3.
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Figure 13. Final assembly by means three adjustment approaches.

Table 3. Actual poses of adjustable pipe end and corresponding interface.

Position Orientation Res. Distance
Deviation (mm)

Res. Angle
Deviation (deg)

Adjustable pipe end [110.315; 403.532; 66.283] [−0.58; 0.765; −0.28]
0.104 0.154Interface [110.342; 403.583; 66.365] [−0.579; 0.766; −0.279]

4. Conclusions

This paper presents a case study of the proposed adaptive control system, which
adopted the screw theory to improve the productivity and accuracy of an adjustable
bending pipe. Inline measurement systems are integrated to compensate for pipe assembly
production errors. The important conclusions are as follows:

(1) The case adopted the robotic kinematics related studies. This, the dimensional chains
of an adjustable bending pipe can be modeled to evaluate the nonlinear coupling in
3D space when using multiple adjustment approaches.

(2) The welding axis alignment model of the pipe end can be described using the related
theories of the incompletely specified displacement screw system.

(3) In the case of No. 5, the existing angle deviation is 7.086◦, while the existing distance
deviation is 5.076 mm. Using the proposed adaptive control system, the residual angle
deviation is 0.154◦, while the residual distance deviation is 0.104 mm.

(4) The case results show that the established models and solution have significant poten-
tial to be applied for calculating the feedback parameters required in the necessary
adjustments to compensate for pipe assembly production errors.
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