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Abstract: As a classification model, a broad learning system is widely used in wind turbine fault
diagnosis. However, the setting of hyperparameters for the models directly affects the classification
accuracy of the models and it generally relies on practical experience and prior knowledge. In order
to effectively solve the problem, the parameters of the broad learning system such as the number of
feature nodes, the number of enhancement nodes, and the number of mapped features layer were
optimized by the improved pelican optimization algorithm, and a classification model was built
based on the broad learning system optimized by the improved pelican optimization algorithm.
The classification accuracy of the proposed model was the highest and reached 98.75%. It is further
shown that compared with the support vector machine, deep belief networks, and broad learning
system models optimized by particle swarm optimization algorithm, the proposed model effectively
improves the accuracy of wind turbine fault diagnosing.

Keywords: fault classification; wind turbine; broad learning system (BLS); pelican optimization
algorithm (POA); parameter optimization

1. Introduction

As a clean renewable energy source, wind energy does not produce pollutants [1], and
WT is an important contributor toward energy production free of CO2 [2]. According to the
most recent report of the WWEA, the global wind power capacity reached 840 Gigawatt
in 2021 [3]. Wind farms are generally located in remote areas such as plateaus or coastal
areas, with inconvenient transportation, a poor working environment, and susceptibility to
extreme weather conditions, which bring many difficulties to the operation and mainte-
nance of wind turbines [4]. With the increase in operation time, various types of failures
may occur in the electrical system, transmission system, and control system of WT, leading
to the WT’s abnormal operation, and high operation and maintenance costs [5].

Fault diagnosis technology plays an important role in the running safety of WT, and
maintenance staff use this technology to detect abnormality in time, handle it accordingly,
and to extend the lifetime of WT [6]. An analysis of the series data obtained by a SCADA
system is usually used to diagnose a WT’s condition [7]. A large number of variables
related to WT operating characteristics, such as wind speed, output power, temperature,
current, and voltage are collected in the SCADA system, which can provide a rich source of
data for WT diagnosis [8].

Artificial intelligence (AI) methods such as machine learning (ML), artificial neural
network (ANN), and deep learning (DL) are commonly used in the WT fault diagnosis,
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because of their robustness and self-adaptive capabilities. ML is to improve computer
intelligence by independently learning the patterns that exist in large amounts of data and
gaining new experience and knowledge to have a human-like decision-making ability. The
ML algorithms that are most widely used in fault diagnosis are mainly K-nearest neighbor
(KNN) [9], SVM [10], random forest (RF) [11], and extreme learning machine (ELM) [12].
ANN is a complex network that simulates the structure of the biological nervous system,
with a large number of simple interconnected neurons. It performs the parallel processing
of information and non-linear transformation by imitating the way a human brain neural
processes information [13]. In the past decades, it has been developed rapidly and widely
used in fault diagnosis of WT, for example, ANN methods have been used to diagnose
faults in gearboxes [14–17] bearings [18,19], and generators [20,21].

Although ANN and ML have been broadly applied for fault diagnosis in recent
decades, their diagnostic performance largely relies on feature extraction and selection.
Instead, the DL algorithm has gradually become the main method for WT fault diagnosis
due to its powerful feature extraction ability. At present, DL methods such as convolutional
neural networks (CNN) [22,23], stacked automatic encoders (SAE), recurrent neural net-
works (RNN) [24], and deep belief networks (DBN) [25] are used in the fault diagnosis of
rotating machinery.

Due to the complex deep structure of DL, which involves a large number of hyperpa-
rameters, the DL network is trained slowly and easily falls into a locally optimal solution.
To overcome these problems, Chen et al. [26] proposed the BLS, which not only has a
simple structure, fast training speed, and high accuracy rate but also has the advantage
of enhanced learning. After BLS was proposed, researchers have successively proposed
many improvements of BLS [27,28] and applied them to image classification [29], pattern
recognition [30], numerical regression [31], automatic control [32], and other fields.

As a novel learning method, BLS solves the problem that the traditional neural network
training methods are not applicable to multi-layer network training, effectively prevents
the network from falling into local optimum, and improves the effectiveness of network
convergence. In order to build a BLS model that satisfies the requirements, it is necessary to
adapt the relevant parameters, and researchers often set the parameters according to their
practical experience and a priori knowledge. For different problems, it may be necessary to
repeatedly manually tune the relevant parameters.

To solve such problems, the parameters of BLS are optimized using the IPOA algo-
rithm, hence, constructing the IPOA-BLS classification model. The experimental results
indicate that the proposed model can better classify the faults of WT. The main contributions
are highlighted as follows:

(1) The experimental SCAD data were preprocessed and fault-related features were
selected based on the principal component analysis (PCA) method [33,34];

(2) The original POA algorithm was improved and was tested with benchmark functions;
(3) The parameters of the BLS such as the number of feature nodes N f , number of

enhancement nodes Ne, and number of mapped feature layers N f l were optimized by
the IPOA algorithm;

(4) The processed WT fault data were used as the experimental sample with the
SVM, DBN, BLS, PSO-BLS, POA-BLS, and IPOA-BLS models to classify and
compare performance.

The rest of this paper is organized as follows: BLS, POA, and IPOA algorithms are
introduced in Section 2. Section 3 describes SCADA data preprocessing, the IPOA-BLS
classification model, and relevant parameter settings. Some graphical results with an
analysis are given in Section 4. Finally, Section 5 concludes this paper.

2. Description of BLS, POA, and IPOA
2.1. BLS

BLS is a novel learning method proposed on the basis of a random vector functional-
link neural network (RVFLNN) [35,36]. It does not require a time-consuming training
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process and has a strong function approximation capability. The structure diagram of
RVFLNN and BLS is shown in Figure 1.

Figure 1. Structure of RVFLNN and BLS.

As can be seen from Figure 1, RVFLNN consists of three parts, namely the input
layer, the enhancement node, and the output layer, and the output layer connects both the
input layer and the enhancement nodes (EN). In contrast to RVFLNN, the BLS maps to the
mapped feature (MF) first before the input layer data is mapped to EN, and the output
layer connects both MF and EN.

In terms of network structure, the network of BLS is horizontally expanded and
vertically fixed, which is very different from deep neural networks, and the number of
layers is greatly reduced, and its structure is shown in Figure 2. A feature node Zi, maps
the original data to obtain the following formula:

Zi = θi

(
XW f i + B f i

)
, i = 1, 2, . . . , n (1)

where X is the input layer data; W f i and B f i denote the weight and bias of the input layer
X to Zi, respectively, which is generally fine-tuned by a sparse autoencoder to produce the
optimal value; θi is a linear or nonlinear activation function; Zi is the i-th group of feature
nodes containing p neurons.

Figure 2. Structure of BLS.
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All feature nodes can be represented as Zn = [Z1, Z2, . . . , Zi, . . . , Zn], after obtaining
the feature node Zn, it can be used to calculate the enhancement node Hm.

Hj = ξ j

(
ZnWhj + Bhj

)
, j = 1, 2, . . . , m

Hm =
[
H1, H2, . . . , Hj, . . . , Hm

] (2)

where Hj is the j-th group of enhancement nodes containing q neurons; ξ j is the nonlinear
activation function; Whj and Bhj represent weights and biases, respectively. The model of
the BLS can be obtained by further calculations:

Y = [Zn|ξ(ZnWh1 + Bh1), . . . , ξ(ZnWhm + Bhm) ]Wm

= [Zn|H1, . . . , Hm ]Wm

= [Zn|Hm ]Wm if A=[Zn |Hm ]→ Y = AWm
(3)

where Wm represents the weight between the output layer and the hidden layer formed by
the feature nodes and enhancement nodes. In the BLS, parameters such as W f i, B f i, Whj,
Bhj are randomly generated and fine-tuned by a sparse autoencoder, and remain constant
during the training process; the metrics learned in the network are only Wm. The objective
function of the BLS is:

arg min
Wm

: ‖AWm − Y‖2
2 + λ‖Wm‖2

2 ⇒Wm =
(

ATA + λI
)−1

ATY (4)

where ‖AWm − Y‖2
2 is used to control the minimization of training error; λ‖Wm‖2

2 is used
to prevent overfitting of the model; λ is the regularization factor; Y is the output; AT is the
transpose matrix of A; I is the unit matrix.

2.2. POA

The POA is a new meta-heuristic optimization algorithm [37] inspired by pelican
hunting behaviors. It has the advantages of few adjustment parameters, fast convergence
speed, and simple calculation. Pelicans are found in the warm waters of the world and live
mainly in lakes, rivers, coasts, and swamps [38]. Pelicans generally live in flocks; they are
not only good at flying but also good at swimming [39]. They have sharp eyesight in flight,
as well as excellent observation skills, and they mainly feed on fish. After determining
the location of the prey, the pelicans rush towards the prey from a height of 10–20 m and
dive straight into the water to hunt [40]. If pelicans find schools of fish, they will arrange
themselves in a line or U-shape to swoop down from the sky towards the fish in the water
and use their wings to flap the water, forcing fishes to move upwards, and then collect the
fishes in their throat pouch. Depending on the above explanation, the mathematical model
of the POA algorithm was built.

(1) Initialization: Assuming that there are N pelicans in an M dimensional space, the posi-
tion of the i-th pelican in the M dimensional space is Pi = [pi1, pi2, . . . , pim, . . . , piM],
the position P of the N pelicans is expressed as follows:

P =



P1
P2
...

Pi
...

PN


=



p11 p12 . . . p1m . . . p1M
p21 p22 . . . p2m . . . p2M

...
...

...
...

...
pi1 pi2 . . . pim . . . piM
...

...
...

...
...

pN1 pN2 . . . pNm . . . pNM


, i = 1, 2, . . . . . . , N (5)
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where pim denotes the position of the i-th pelican in the m-th dimension. At the initialization
stage, pelicans are randomly distributed within a certain range, and the position update of
the pelican is described as

Pim = lowm + random·(upm − lowm), i = 1, 2, . . . , N; m = 1, 2, . . . , M; (6)

where lowm, upm is the search range of the pelican; random is a random number between (0, 1).

(2) Moving towards prey: In this phase, the pelican identifies the prey’s location and then
rushes to the prey from a high altitude as shown in Figure 3. The random distribution
of the prey in the search space increases the exploration ability of the pelican, and the
update of the pelican’s location during each iteration is described as

Pt+1
im =

{
Pt

im + rand · (St
m − λ · Pt

im), F(PS) < F(Pi)
Pt

im + rand · (Pt
im − St

m), F(PS) ≥ F(Pi)
(7)

where t is a current iteration number; Pt
im denotes the position of the i-th pelican in the m-th

dimension; St
m is the position of the prey in the m-th dimension; λ is randomly equal to 1

or 2; F(Ps) is the objective function value; F(Pi) denotes the value of the fitness function of
i-th pelican in the m-th dimension.

Figure 3. Diagram of the pelicans moving towards prey.

(3) Winging on the water surface: After the pelicans reach the surface of the water,
they spread their wings on the surface of the water to move the fish upwards, then
collect the prey in their throat pouch. This behavior of pelicans during hunting is
mathematically simulated

Pt+1
im = Pt

im + γ ·
(

T − t
T

)
· (2 · random− 1) · Pt

im (8)

where t is a current number of iterations; T is a maximum iteration number; γ ·
(

T−t
T

)
is

the neighborhood radius of Pt
im, and it represents the radius of the neighborhood of the

population members to search locally near each member to converge to a better solution;
random is a random number between (0, 1).

2.3. IPOA

After improving the original POA algorithm, the optimization efficiency could be
further improved. The specific improvement strategy is as follows.
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(1) Initialization strategy: The Tent chaotic map [41] is used to replace the randomly
generated method in the original POA to initialize the pelicans after the Tent chaotic
mapping is introduced, and the Equation (6) can be rewritten as follows:

pim = lowm + Tent·(upm − lowm), i = 1, 2, . . . , N; m = 1, 2, . . . , M; (9)

Tentt+1 =

{
Tentt

z , Tentt ∈ [0, z)
(1−Tentt)
(1−z) , Tentt ∈ [z, 1]

(10)

where t is a current number of iterations; T is a maximum iteration number; where z ∈ (0, 1),
Tentt ∈ [0, 1], t = 1, 2, . . . , T.

At this stage, the position of the pelicans is initialized using the Tent chaotic map,
which helps to improve the global search performance of the POA algorithm.

(2) Moving towards prey: At this stage, the dynamic weight factor [42] θ helps the pelican
to constantly update its position. At the beginning of the iteration, θ has a large
value, when the pelican is able to perform a better global search, and at the end of the
iteration θ decreases adaptively, and this time the pelican is able to perform a better
local search while increasing the convergence speed. the Equation (7) can be rewritten
as follows:

Pt+1
im =


θ = e2(1−t/T)−e−2(1−t/T)

e2(1−t/T)+e−2(1−t/T)

Pt
im + rand · (St

m − Pt
im) · θ, F(PS) < F(Pi)

Pt
im + rand · (Pt

im − St
m) · θ, F(PS) ≥ F(Pi)

(11)

To prove the correctness and validity of the IPOA algorithm, ten benchmark func-
tions were tested using PSO, GWO, WOA, POA, and IPOA. The value of each algorithm
parameter is shown in Table 1.

Table 1. Parameter setting of PSO, GWO, WOA, POA, and IPOA.

Algorithm Parameter Setting

Common setting Maximum iteration T = 1000

Population number: N = 30

Runs: r = 30

PSO C1 = 2

C2 = 2

W = 0.7

GWO m1 = 0.3

WOA L1 = 3

L2 = 5

POA Λ= round (random (1,2))

γ = 0.2

IPOA λ = θ

γ = 0.2

Descriptions of the benchmark functions are shown in Table 2. In this table, f 1–f 4 are
the unimodal test functions, f 5–f 7 are the multimodal test functions, and f 8–f 10 are the
composite benchmark functions.
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Table 2. Benchmark functions.

Benchmark Function Function Name D Range f opt

(1) Unimodal test functions

f1(x) = Σn
i=1x2

i Sphere 30 [−100,100] 0

f2(x) = ∑D
i=1|xi |+ ΠD

i−1|xi | Schwefel 2.22 30 [−10,10] 0

f3(x) = ∑D
i=1 (ΣD

j−1xi)
2 Schwefel 1.2 30 [−100,100] 0

f4(x) = maxi{|Xi |, 1 ≤ i ≤ D} Schwefel 2.21 30 [−100,100] 0

(2) Multimodal test functions

f5(x) = ∑D
i=1
(

x2
i − 10 cos(2πxi) + 10 sin(2πxi)

)
Rastrigin 30 [−5.12,5.12] 0

f6(x) = 20 + e− 20 exp
(
−20

√
(1/D)ΣD

i=1x2
i )− exp((1/D)∑D

i=1 cos(2πxi)
)

Ackley 30 [−32,32] 8.8818 × 10−16

f7(x) = (1/4000)∑D
i=1
(
x2

i

)
−
(

∏D
i=1 cos

(
xi/
√

i
))

+ 1 Griewank 30 [−600,600] 0

(3) composite benchmark functions

f8(x) =
(
(1/500) + ∑25

j=1

(
1/
(

j + ∑2
i=1
(
xi − aij

)6
)))−1 Foxholes 2 [−65.53,65.53] 0.998004

f9(x) = ∑11
i=1
(
ai −

(
x1
(
b2

i + bi x2
)
/b2

i + bi x3 + x4
))−1 Six hump 4 [−5,5] 0.0003075

f10(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 Langerman 10 4 [0,10] −10.5364

Tables 3–5 report the relevant statistical experiment results from running each algo-
rithm 30 times in the benchmark function independently. In these tables, “Best”, “Worst”,
“Average”, and “Std.” represent the best value, the worst value, the average value, and the
standard deviation of the algorithm, respectively.

Table 3. Statistical results for unimodal benchmark functions.

Function Statistics PSO GWO WOA POA IPOA

f 1 Best 8.0606 × 10+1 1.3824 × 10−58 1.3904 × 10−130 8.1414 × 10−207 0

Worst 2.1442 × 10+4 6.7429 × 10+4 7.2836 × 10+4 7.1909 × 10+4 1.1224 × 10+4

Average 1.4696 × 10+3 3.3884 × 10+2 4.0963 × 10+2 1.4462 × 10+2 1.0947 × 10+2

Std. 2.6760 × 10+3 3.4928 × 10+3 4.1509 × 10+3 2.5477 × 10+3 1.3498 × 10+3

f 2 Best 2.7469 × 10+1 8.8984 × 10−35 3.7388 × 10−95 2.3633 × 10−107 0

Worst 5.3174 × 10+12 7.3390 × 10+12 7.2151 × 10+13 3.6333 × 10+13 5.9060 × 10+12

Average 1.2499 × 10+10 7.3536 × 10+9 7.3708 × 10+10 3.6522 × 10+10 5.9060 × 10+8

Std. 2.0235 × 10+11 2.3208 × 10+11 2.2820 × 10+12 1.1490 × 10+12 1.8676 × 10+11

f 3 Best 9.8883 × 10+3 6.1321 × 10−14 3.0153 × 10+4 1.8928 × 10−204 0

Worst 6.4994 × 10+4 1.4551 × 10+5 1.6016 × 10+5 1.6112 × 10+5 1.9157 × 10+4

Average 1.5945 × 10+4 1.6766 × 10+3 6.6527 × 10+4 5.8836 × 10+2 2.1205 × 10+2

Std. 6.8243 × 10+3 9.3954 × 10+4 2.9123 × 10+4 7.8845 × 10+3 6.0947 × 10+3

f 4 Best 4.5408 1.5182 × 10−14 3.8109 × 10+1 2.1908 × 10−105 2.6256 × 10−308

Worst 5.9368 × 10+1 8.8048 × 10+1 8.8640 × 10+1 8.7096 × 10+1 9.5583 × 10+1

Average 1.2826 × 10+1 1.8448 5.0235 × 10+1 3.5377 × 10−1 1.1376 × 10−1

Std. 9.5704 9.5534 1.4559 ×10+1 3.9212 3.0484
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Table 4. Statistical results for multimodal benchmark functions.

Function Statistics PSO GWO WOA POA IPOA

f 5 Best 1.9909 × 10+2 2.3932 × 10−1 0 0 0

Worst 4.4057 × 10+2 4.4237 × 10+2 4.4746 × 10+2 4.5905 × 10+2 5.6918 × 10+2

Average 2.4516 × 10+2 1.4587 × 10+1 1.3139 × 10+1 4.4417 8.4287 × 10−1

Std. 4.0864 × 10+1 5.2324 × 10+1 4.9471 × 10+1 3.0706 × 10+1 1.8966 × 10+1

f 6 Best 8.0718 1.6046 × 10−14 3.9672 × 10−15 4.2040 × 10−15 8.8818 × 10−16

Worst 2.0233 × 10+1 2.0699 × 10+1 2.0725 × 10+1 2.0740 × 10+1 2.1099 × 10+1

Average 1.1201 × 10+1 3.9652 × 10−1 4.3575 × 10−1 1.6615 × 10−1 3.6062 × 10−2

Std. 2.7873 2.2655 2.1693 1.4060 7.2128 × 10−01

f 7 Best 1.7694 2.7510 × 10−3 6.1431 × 10−3 0 0

Worst 1.4914 × 10+2 6.2027 × 10+2 6.3457 × 10+2 6.5070 × 10+2 1.0007 × 10+3

Average 1.2120 × 10+1 3.1599 3.9032 1.4482 1.0140

Std. 1.8168 × 10+1 3.2284 × 10+1 3.7483 × 10+1 2.3843 × 10+1 3.1645 × 10+1

Table 5. Statistical results for composite benchmark functions.

Function Statistics PSO GWO WOA POA IPOA

f 8 Best 9.9800 × 10−1 4.7160 3.6734 1.0311 1.5871

Worst 4.4687 × 10+1 1.8978 × 10+2 2.3138 × 10+2 1.7590 × 10+2 1.4355 × 10+2

Average 1.2597 5.0814 4.3297 1.3977 1.0184

Std. 1.6981 6.1179 7.7406 5.9295 4.6540

f 9 Best 9.8558 × 10−3 5.7168 × 10−3 6.9056 × 10−4 1.7361 × 10−3 4.3471 × 10−4

Worst 2.0059 × 10−1 1.9738 × 10−1 3.7275 × 10−1 8.3830 × 10−1 8.4090 × 10−1

Average 1.0510 × 10−2 6.1706 × 10−3 1.7122 × 10−3 3.4990 × 10−3 1.5492 × 10−3

Std. 7.2294 × 10−3 6.3856 × 10−3 1.3101 × 10−2 3.0524 × 10−2 2.6717 × 10−2

f 10 Best −1.0177 × 10+1 −1.0357 × 10+1 −7.9845 −9.6350 −1.0520 × 10+1

Worst −7.7636 × 10−1 −7.4272 × 10−1 −7.2858 × 10−1 −7.6370 × 10−1 −6.1054 × 10−1

Average −9.1388 −7.8546 −7.2752 −9.3844 −9.6476

Std. 1.6680 2.1716 1.1787 8.9320 × 10−1 1.5835 × 10−1

The convergence curve of the f 1–f 10 functions is shown in Figure 4: the red line
denotes the IPOA algorithm, and the blue line represents the POA algorithm. It implies
that the fitness value of the IPOA algorithm is lower and the convergence speed faster than
other algorithms.
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Figure 4. The convergence curves of benchmark functions.
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3. Wind Turbine Fault Classification
3.1. SCADA Data Preprocessing

In this study, the information from the SCADA system recorded from 38 Vestas 1.5 MW
wind turbines in a wind farm in Liu He from 1 January 2018 to 31 December 2018 was
used as experimental data and the time resolution of the data was ten minutes. After data
cleaning, the fault categories were coded in the experimental data set such as the gearbox
overheated (F1), yaw system fault (F2), generator overheated (F3), inverter system fault
(F4), and pitch system fault (F5). Each fault includes 640 training samples and 160 test
samples. A total of 4000 samples were selected, among them 3200 samples for training and
800 samples for testing.

In this experimental SCADA data, there were 52 observation feature parameters of
the Vestas wind turbine. After feature extraction with the PCA method and comparison
with Pearson correlation coefficient values, 35 characteristic parameters were chosen as the
observation parameters of fault diagnosis. The relevant feature codes and their description
are specified in Table 6. The feature code and its Pearson correlation coefficient of each fault
are shown in Table 7.

Table 6. Feature code and its description.

Feature Code Feature Description Feature Code Feature Description

X1 impeller speed (rpm) X19 pitch bearings temperature (◦C)

X2 generator active power(kVA) X20 pitch oil pressure (mPa)

X3 average reactive power (kVA) X21 pitch system motor speed (rpm)

X4 average blade angle (deg) X22 nacelle temperature (◦C)

X5 bias of blade (m) X23 converter cabinet temperature (◦C)

X6 blade temperature (◦C) X24 converter cabinet fan temperature (◦C)

X7 paddle motor temperature (◦C) X25 yaw bearing radial force (kN)

X8 paddle system temperature (◦C) X26 yaw drive temperature (◦C)

X9 ambient temperature (◦C) X27 yaw bearing axial force (kN)

X10 generator stator winding temperature u (◦C) X28 average wind speed (m/s)

X11 generator stator winding temperature v (◦C) X29 yaw inverter cabinet temperature (◦C)

X12 generator stator winding temperature w (◦C) X30 yaw bearings temperature (◦C)

X13 stator temperature (◦C) X31 yaw control cabinet temperature (◦C)

X14 rotor temperature (◦C) X32 wind direction angle

X15 rotor speed (rpm) X33 transformer temperature (◦C)

X16 gearbox oil temperature (◦C) X34 generator torque (kN·m)

X17 gearbox bearing temperature (◦C) X35 tower temperature (◦C)

X18 gearbox oil pressure (mPa)

Table 7. Feature code (Fc) and its Pearson correlation coefficient (Pcc) of each fault.

Fc Pcc Fc Pcc Fc Pcc Fc Pcc Fc Pcc

gearbox overheated (F1)

X2 0.3872 X9 0.1736 X10 0.4436 X11 0.4507 X12 0.4523

X13 0.3154 X14 0.3511 X15 0.4625 X16 0.7831 X17 0.8865

X18 0.3221 X22 0.1023 X28 0.4178
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Table 7. Cont.

Fc Pcc Fc Pcc Fc Pcc Fc Pcc Fc Pcc

yaw system fault (F2)

X2 0.3661 X25 0.3622 X26 0.6134 X27 0.3531 X28 0.3164

X29 0.5171 X30 0.5731 X31 0.5463 X32 0.5273

generator overheated (F3)

X2 0.4175 X3 0.4336 X10 0.6734 X11 0.6804 X12 0.6779

X13 0.7863 X14 0.7162 X15 0.5153 X22 0.1227 X34 0.5271

converter system fault (F4)

X14 0.4267 X22 0.1103 X23 0.6832 X24 0.6054 X33 0.3762

X35 0.1272

pitch system fault (F5)

X1 0.3874 X2 0.3642 X25 0.4623 X26 0.6723 X27 0.4167

X28 0.3465 X29 0.5732 X30 0.6264 X31 0.6114 X32 0.4178

3.2. IPOA-BLS Classification Model

As shown in Figure 5, the classification process of the proposed model is described
as follows:

Step 1: The relevant data of WT were collected by the SCADA system.
Step 2: PCA was used to reduce the dimensionality of the preprocessed SCADA data,
and fault-related features were selected. After cleaning and dimensionality reduction,
4000 groups were taken as experimental samples, and each sample had 35 features.
Step 3: Training samples and testing samples were taken from the experimental samples. In
Figure 5, each of the five fault types included 640 training samples and 160 testing samples.
Xi,j represents the j-th feature value of the i-th sample, and Yi,j represents the j-th fault type
of the i-th sample.
Step 4: The IPOA-BLS model was used for training and testing, respectively, and in
this step:

(1) The BLS
{

N f , Ne, N f l

}
parameter and the IPOA algorithm parameters, including

the pelican’s population N, the maximum iterations T, the upper limit of argument
up, the lower limit of argument low, the dimension M, and the sample data were
initialized.

(2) The data of the fitness value were calculated. The classification accuracy obtained by
the BLS was used as the fitness value, within the iteration range. Equations (9), (11),
and (8) were used to calculate the location of the pelican. If the current new location
was better, the old location was updated.

(3) According to the optimal parameter combination
{

N f , Ne, N f l

}
, the BLS was

trained, and testing samples were used to classify and save the result.

Step 5: The results from Step 4 were anti-normalized.
Step 6: The final classification results were obtained and outputted with graphical.
Step 7: The relevant evaluation metrics were calculated.
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3.3. Parameters Setting

In this paper, algorithms such as PSO, POA, and IPOA were used to optimize the
hyperparameters of the BLS, and the relevant parameter values are shown in Table 8.

Table 8. The parameter values of PSO-BLS, POA-BLS, and IPOA-BLS.

Model Name Parameter Name Parameter Value

PSO-BLS Iterations N 30

Population P 8

C1 4

C2 4

W 0.9

Lower band lb [10 10 10]

Upper band ub [100 100 100]

POA-BLS Iterations N 30

Population P 8

Lower band lb [10 10 10]

Upper band ub [100 100 100]

Λ round (random (1,2))

γ 0.2

IPOA-BLS Iterations N 30

Population P 8

Lower band lb [10 10 10]

Upper band ub [100 100 100]

Λ θ (dynamic weight factor)

γ 0.2

4. Experimental Results and Analysis

In order to state the advantages of the IPOA-BLS model in fault diagnosis, the classifi-
cation results were compared with SVM, DBN, BLS, PSO-BLS, and POA-BLS diagnostic
models. The classification results of each model are shown in Figure 6. In Figure 6, the blue
circle (#) and red star (R) mean the actual and predicted classification of the testing set
samples, respectively. The blue circles and red stars overlap each other when the actual and
predicted values of the classification are equal. If they are different, the blue circle and the
red star do not overlap. The more overlapping means the fault resolution of the model is
higher. In Figure 6a, the blue circle and red star overlap less, and the classification effect of
the SVM model plays worse. In Figure 6f, the red star and the blue circle overlap each other
the most times, which indicates that the IPOA-BLS model has the best classification effect.

To further visually reflect the fault identification capabilities of the model, the confu-
sion matrix was used to visualize the fault recognition ability of SVM, DBN, BLS, PSO-BLS,
POA-BLS, and IPOA-BLS models. The confusion matrix of each diagnostic model was
calculated and plotted separately, and the results are shown in Figure 7. The diagonal
elements of the confusion matrix indicate the number of samples that can be accurately
classified, and the greater the number of diagonal elements, the better the classification
performance of the model. The off-diagonal elements of the confusion matrix represent the
number of samples that can be wrongly classified, and the smaller number of off-diagonal
elements, the better the classification efficiency of the model.
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Figure 6. Classification result of the different models.

In Figure 7a, the SVM model can only accurately classify fault-F3. In total, 14 samples
originally belonging to fault-F1 were misclassified as fault-F2. Two samples originally
belonged to fault-F2; however, one of them was misclassified as fault-F1, and another one
was misclassified as fault-F4, respectively. Altogether, 45 samples originally belonged to
fault-F4; however, 1 of them was misclassified as fault-F5, 12 of them were misclassified as
fault-F1, and 32 of them were misclassified as fault-F1, respectively. In total, 37 samples
originally belonged to fault-F5, but 1 of them was misclassified as fault-F4, and 36 of
them were misclassified as fault-F2, respectively. In Figure 7f, the IPOA-BLS model almost
accurately classified fault-F1, fault-F2, fault-F3, and fault-F5. Only nine samples originally
belonging to fault-F4 were misclassified as fault-F1.
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Figure 7. Confusion matrices of the different model.

It can be seen from Figure 7 that among the 800 test samples, the SVM model accurately
classified 702 samples with an accuracy of 87.75%. The DBN model accurately classified
730 samples, and its accuracy was 91.25%. The BLS model exactly categorized 734 samples
with an accuracy of 91.75%. The PSO-BLS model accurately classified 759 samples with an
accuracy of 94.875%. The POA-BLS model rightly classified 774 samples, and its accuracy
was 96.75%. The IPOA-BLS model exactly classified 790 samples with an accuracy of
98.75%. An observation can be made that the IPOA-BLS model was the most accurate
compared with other models.

In order to better assess the performance of the proposed classification model, accuracy,
precision, recall, and F1-score were used in the present study. The specific expressions are,
respectively, as follows.

(1) The accuracy represents the number of correctly predicted samples as a percentage of
the total number of samples.

accuracy =
number o f correctly classi f ied samples

total number o f samples
(12)

(2) The precision reflects the proportion of samples with a positive prediction that are
really positive.

precision =
TP

TP + FP
(13)
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(3) The recall is the proportion of the number of correctly classified positive samples to
the number of true positive samples.

recall =
TP

TP + FN
(14)

(4) The F1-score is the weighted harmonic mean of precision and recall.

F1-score =
2·precision·recall
precison + recall

(15)

In the above equations, TP represents true positives; FP is false positives; and FN is
false negatives.

In each fault, the classification performance metrics are shown in Table 9. It can be
seen from Table 9 that the proposed model had the higher evaluation indicators no matter
which evaluation standard was used.

Table 9. Performance indicators of fault classification model.

Classification
Model

Evaluation
Index

Fault Types

F1 F2 F3 F4 F5

SVM Precision 81.56% 71.82% 100% 98.29% 99.19%

Recall 91.25% 98.75% 100% 71.88% 76.88%

F1-score 86.14% 83.16% 100% 83.03% 86.62%

Accuracy 87.75%

DBN Precision 87.43% 89.33% 100% 85.81% 95.81%

Recall 95.63% 99.38% 78.12% 83.13% 100%

F1-score 91.34% 94.08% 87.72% 84.44% 97.86%

Accuracy 91.25%

BLS Precision 89.41% 84.28% 98.16% 97.89% 89.76%

Recall 95.00% 83.75% 100% 86.88% 93.13%

F1-score 92.12% 84.04% 99.07% 92.05% 91.41%

Accuracy 91.75%

PSO-BLS Precision 83.25% 95.15% 100% 99.22% 100%

Recall 99.38% 98.12% 100% 80.00% 96.88%

F1-score 90.60% 96.62% 100% 88.58% 98.41%

Accuracy 94.87%

POA-BLS Precision 97.53% 95.51% 100% 92.40% 98.68%

Recall 98.75% 93.13% 100% 98.75% 9313%

F1-score 98.14% 94.30% 100% 95.47% 95.82%

Accuracy 96.75%

IPOA-BLS Precision 94.14% 100% 100% 100% 100%

Recall 100% 99.38% 100% 94.37% 100%

F1-score 96.97% 99.69% 100% 97.11% 100%

Accuracy 98.75%

The IPOA-BLS model has many advantages. Compared with the other models, there
was a significant improvement in the classification accuracy in terms of WT fault diagnosis.
The PCA method played an important role in dimension reduction and feature extraction,
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and it was used to reduce the number of features of the experimental SCADA data from 52
to 35, which helped to decrease the calculation time of the model. The IPOA algorithm was
evaluated through some different benchmark functions and was applied to the parameter’s
estimation of BLS. As can be seen from Figures 6 and 7, compared with the standard pelican
optimization algorithm, the improved pelican optimization algorithm had a positive effect
on BLS’s parameters optimization. After optimizing the related parameters of BLS with
the improved pelican optimization algorithm, the number of rightly classified samples
increased by about 16, and the accuracy improved by 2%.

5. Conclusions

In this paper, in addition to the chaotic map strategy, the dynamic weight factor strat-
egy was also used to improve the location of the standard pelican optimization algorithm
in the initialization and moving towards prey stage; this helps to enhance the exploration
of the improved pelican optimization algorithm technique. To improve the classification
accuracy of the broad learning system model, the experimental data were normalized and
the improved pelican optimization algorithm was used to optimize hyperparameters such
as the number of feature nodes N f , number of enhancement nodes Ne, and number of
mapped feature layers N f l . Performance indexes, classification accuracy, a classification
results diagram, and confusion matrices fully demonstrate the excellent performance of the
proposed classification model and verify the classification effect. The proposed model is
very suitable for wind turbine fault classification in future practical applications.

The classification accuracy rate of the proposed model reaches a high level for typical
wind turbine faults. Consequently, this model possesses great potential in wind turbine
fault detection. In future studies, the development of the algorithms for fault feature
extraction purposes will be investigated, and classification models based on deep learning
will be analyzed.
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Nomenclature

AI Artificial intelligence GWO Grey wolf optimizer
ANN Artificial neural network KNN K-nearest neighbor
Average Average value of the algorithm MF Mapped feature
Best Best value of the algorithm ML Machine learning
BLS Broad learning system PCA Principal component analysis
CNN Convolutional neural networks POA Pelican optimization algorithm
DBN Deep belief network PSO Particle swarm optimization
DL Deep learning RF Random forest
EN Enhancement nodes RNN Recurrent neural networks
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F1 Fault 1: the gearbox overheated SAE Stacked automatic encoders

F2 Fault 2: the yaw system motor fault Std. Standard deviation of the algorithm
F3 Fault 3: generator overheated SVM Support vector machine
F4 Fault 4: invertor system fault WOA Whale optimization algorithm
F5 Fault 5: pitch system fault Worst Worst value of the algorithm

IPOA
Improved pelican optimization

WT Wind turbinealgorithm

SCADA
Supervisory control and data

WWEA World wind energy association
acquisition

RVFLNN Random vector functional-link neural network
PSO-BLS Broad learning system model optimized by particle swarm optimization
POA-BLS Broad learning system model optimized by pelican optimization algorithm
IPOA-BLS Broad learning system model optimized by improved pelican optimization algorithm
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