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Abstract: In a complex off-road environment, due to the low bearing capacity of the soil and the
uneven features of the terrain, generating a safe and effective global route for unmanned ground
vehicles (UGVs) is critical for the success of their motion and mission. Most traditional global path
planning methods simply take the shortest path length as the optimization objective, which makes it
difficult to plan a feasible and safe route in complex off-road environments. To address this problem,
this research proposes a global path planning method, which considers the influence of terrain
factors and soil mechanics on UGV mobility. First, we established a high-resolution 3D terrain model
with remote sensing elevation terrain data, land use and soil type distribution data, based on a
geostatistical method. Second, we analyzed the vehicle mobility by the terramechanical method
(i.e., vehicle cone index and Bakker’s theory), and then calculated the mobility cost based on a fuzzy
inference method. Finally, based on the calculated mobility cost, the probabilistic roadmap method
was used to establish the connected matrix and the multi-dimensional traffic cost evaluation matrix
among the sampling nodes, and then an improved A* algorithm was proposed to generate the
global route.

Keywords: soil terrain; vehicle mobility; terramechanics; fuzzy inference; route generation

1. Introduction

Due to their unnecessary requirement of human interference and their ability to replace
human operations in risky environments, unmanned ground vehicles (UGVs) have several
applications, such as disaster rescue, nuclear inspection, planet exploration and military
operations, etc. In order to enable a UGV to traverse complex off-road environments quickly
and safely and achieve its missions, an effective global path planning method is required,
of which the key objective is to generate a safe and feasible route from the initial position to
the specified targets based on given off-road environmental map information [1,2].

In recent decades, path planning methods developed rapidly, resulting in numerous
new such methods [3]. Path planning methods can be mainly divided into two categories,
i.e., graph search-based and sampling-based [3]. Typical graph search-based methods
include Dijkstra, A*, D*, field D* and several other variants [4–7]. The graph search-
based path planning methods can find the optimal path accurately, but such algorithms
should traverse the surrounding of the current node and select the minimum cost node,
which leads to large computational efforts. To reduce the calculation time the algorithm
takes to search each interval, an efficient A* algorithm was proposed [8]. Guruji et al. [9]
proposed an online path planning method for a mobile robot in a grid-map environment,
using a modified real time A* algorithm. In obstacle-avoidance path planning, Duan et al.
introduced a safety–cost matrix in the A* algorithm and the heuristic function was modified
to ensure the optimal safety path in different environments [10].
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Compared with graph search-based methods, sampling-based path planning methods
have fast search efficiency, and classical sample-based approaches include rapidly exploring
random trees (RRT) [11], probabilistic road maps (PRM) [12] and several other variants [13].
However, the random nature of sampling may lead to the tendency of falling into the local
minimum in complex environments [14]. To address this problem, a potentially guided
intelligent bi-directional RRT* algorithm was proposed [15], and the proposed algorithm
greatly improved the convergence rate and had more efficient memory utilization. Also,
Park et al. proposed a hierarchical roadmap (HRM) approach that enabled the indoor
mobile robot to cover navigable areas using fewer nodes than a probabilistic roadmap [16].

However, most existing developed planning methods focus on structured environ-
ments, such as indoor and urban scenarios. Due to the low bearing capacity of the soil and
the uneven features of the terrain, existing methods are very difficult to apply to complex
unstructured off-road environments. To adapt to the off-road environments, researchers
have proposed several improved planning methods based on traditional methods. For
example, to evaluate the comprehensive influence of terrain slope and surface attributes,
an improved A* algorithm with a window moving method was proposed; this method
can plan a gentle global route for the mobile robot, while the robot can effectively avoid
moving obstacles [17]. Similarly, a method was proposed to systematically deal with the
effects of kinematic vehicle models, off-road terrains and obstacles to UGV path planning
by constructing artificial potential fields [18]. Also, there is an increased risk of vehicle
obstruction due to soil deformation. Gonzalez et al. [19] proposed a path planning method
based on the classification of terrain into GO/NOGO areas by soil strength value (CI); it is
worth mentioning that the method was integrated into the next-generation NATO reference
mobility model (NG-NRMM). With the purpose of generating a high confidence global
route in the off-road, Jiang et al. [20] employed a global path planning method based on the
RRT* algorithm with the cost function of the uncertainty in terrain elevation. In terms of
global path smoothing, the geometric curve method transforms the path planning problem
into a two-point boundary value problem, such as the B-spline curve [21] and fifth degree
polynomial curve [22].

In spite of progress, most existing global path planning methods ignore the effects of
soil deformation on vehicle mobility. Although Gonzalez et al. proposed classifying off-road
terrain into GO and NOGO based on the soil strength value (CI), it is still difficult to plan
an optimal global route for UGV within the GO areas because of the lack of a well-designed
cost function to quantify the effects of vehicle–terrain interaction. To address this problem,
the contributions of this study are as follows: (1) In order to obtain 3D models of unknown
off-road environments effectively, this paper proposes a Kriging terrain interpolation
method based on open-source remote sensing DEM data with multi-source data fusion,
which is general and easy to implement. (2) To address the problem that the current global
path planning methods for unmanned vehicles do not take into account the impact of soil
deformation on mobility, this paper proposes an analysis method based on terramechanical
theory to calculate the impact of soil deformation on the speed of a UGV. Then, a method to
quantify the cost of mobility based on fuzzy inference fusion of multiple influencing factors
is proposed. (3) In terms of a global path generation algorithm, an improved A* algorithm
based on mobility cost is proposed to generate a topological map by sampling terrain
points, and to introduce mobility costs, in both extended cost and heuristic cost, to generate
an efficient, feasible and safe global route. Finally, the effectiveness of the proposed method
is validated by simulation and comparison experiments.

The remainder of this paper is organized as follows. Section 2 describes the details of
the proposed method. The simulation experiments and discussions are given in Section 3.
Section 4 concludes the paper and proposes future work.

2. Methods

The proposed global planning method include three phases, i.e., terrain reconstruction,
mobility prediction and path generation. In the terrain reconstruction phase, the original
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sparse digital elevation model (DEM) is firstly converted into a high-resolution 3D point
cloud using a geostatistics interpolation method, and then the land use and soil type
distribution data are integrated to generate a multisource terrain model. In the mobility
prediction phase, the vehicle cone index and Bakker’s theory-based terramechanical model
is proposed to calculate the maximum attainable speed of the UGV on different soil areas,
and a fuzzy inference method is utilized to generate the global mobility cost map. In the
path generation phase, an improved A* algorithm with extended cost and heuristic cost
based on the mobility cost map is proposed to generate an optimal global route. Figure 1
shows the method framework.

Figure 1. The method framework.

2.1. Terrain Reconstruction

Terrain geometry information typically comes from remote sensing sources (e.g., radar,
imagery camera, etc.). Since the resolution of the original DEM is too sparse for accurate
prediction of vehicle mobility, an interpolation process is required to obtain a refined terrain
model with a higher resolution. In our study, open-source remote sensing topographic data
with a resolution of 30 m was used as the raw data; the required resolution for mobility
prediction is usually about 10 m [23]. To further characterize other features of the selected
terrain, the obtained land use data and soil type distribution data were projected onto the
resulting refined DEM data. The reconstruction result was saved in the form of a 3D point
cloud for the following processes.

In this research, we selected a target area of about 40 km2 within the range of
97.2◦–97.3◦ E and 31.4◦–31.5◦ N. After determining the target area, the satellite map and
the DEM were downloaded on the geospatial data cloud website. In addition to elevation,
the file contains a layer with different soil regions classified according to the National
Earth System Science Data Center. Specifically, there are four soil types include sandy
loam, clayey soil, lean clay and upland sandy. Also, land use data can be obtained using
the method described above, and the data include water area, forest land, grass land and
cultivated land. All the data are shown in Figure 2.
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Figure 2. Multi source data with a resolution of 30 m in the target area. (a) Satellite imagery, (b) DEM
(elevation), (c) Soil type distribution data, (d) Land use data.

In the process of reconstructing the terrain, we needed to obtain the coordinates of
the DEM data from the geographic coordinates (Longitude–Latitude). This preprocessing
process generates the new DEM data in the Cartesian format. Each location was then
formatted in terms of planar coordinates (X-Y) and elevation (Z), all of which are in metric
units. The resulting 3D terrain model is displayed in Figure 3; the soil type distribution
data and the land use data were also projected onto the corresponding terrain points (see
Appendix A.1 the Projection of each Data Type.

Figure 3. 3D terrain model.

The process of natural terrain modeling begins with a sparse set of measurements
obtained from remote sensors on the terrain area of interest. An important step in simulating
the performance of a UGV on such terrain is to generate a continuous surface; this process
can be achieved by interpolating the elevations of unknown terrain points from the known
terrain points. The most widely used terrain interpolation method in geostatistics is the
Kriging [24], which is based on the principle of estimating the elevations of interpolated
points from the variance of the known points. The variogram represents the statistical
relationship between terrain points. This shows how the heterogeneity between z(s) and
z(s + h) evolves with the lag distance h; its calculation formula is

γ(h) =
1

2N

N

∑
i=1

(z(si)− z(si + h))2 (1)

where N is the number of terrain points, z(si) is the elevation at point si and h represents
the separation distance, which is the vector separating the locations of two variables. For
example, h = 1× d, . . . , n× d d is the separation distance between points. If points are
sampled at 10 m, then d = 10 and the semi-variogram is calculated for the separation
distance h.

When the variogram model has been built, the Kriging method can be used for the
terrain interpolation. There are three main forms of Kriging, depending on whether the
mean of the data is known (simple Kriging) or unknown (ordinary Kriging and universal
Kriging). In geostatistics, the most common method used is the ordinary Kriging [24],
because the mean is not a priori and only spatial variation is meaningful. According to the
ordinary Kriging formula, every terrain point with an unknown elevation is interpolated
based on a weighted combination of the known terrain points, the expression being
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Ẑ(s0) =
N

∑
i=1

ωiZ(si) (2)

where Ẑ(s0) is the predicted elevation of the sample located at s0(interpolated terrain
point) and ωi are the weights for the combination of the known terrain points Z(si). The
parameter i represents the samples available in the dataset. Ordinary Kriging minimizes
the mean squared error of prediction, and its expression is

σ2
e = 2

N

∑
i=1

ωiγ(s0 − si)−
N

∑
i=1

N

∑
j=1

ωiωjγ
(
si − sj

)
(3)

After differentiating Equation (3) and setting the derivative to zero, it follows that

N

∑
j=1

ωjγ
(
si − sj

)
+ λ = γ(s0 − si) (4)

where λ is the Lagrange parameter used for ensuring ∑N
i=1 ωi = 1. By using matrix

expressions, the previous set of equations can be written as

W = C−1D,

W = [ω1, ω2, . . . , ωN , λ],

C = γ
(
si − sj

)
, i = 1, . . . , N; j = 1, . . . , N,

D = [γ(s0 − s1), γ(s0 − s2), . . . , γ(s0 − sN)]
T

(5)

Once the weights are calculated, the predicted elevations at the unknown locations can
be estimated using Formula (2). The reconstructed DEM is shown in Figure 4a. The slope of
the terrain is also an important factor in limiting the mobility of the vehicle, as large slope
angles can cause the vehicle to roll over. Therefore, after obtaining the refined 3D terrain
model, the slope value of each terrain point is calculated. Specifically, a 3× 3 window
template is used to traverse all points of the terrain; the slope map is shown in Figure 4b
(see Appendix A.2 Slope Calculation Method).

Figure 4. The reconstructed terrain map and slope map. (a) Terrain reconstruction with a resolution
of 10 m using the ordinary Kriging method, (b) Slope map of 3D terrain.

2.2. Terramechanic Analysis

The off-road vehicle mobility prediction model is usually employed in the mobility-
analysis phase to map environmental variables, such as soil properties, for example, into
the vehicle mobility (vehicle maximum attainable speed). Various theoretical models were
developed; for instance, the U.S. Army Engineer Research and Development Center (ERDC)
defines vehicle mobility in two different ways. One is the single vehicle cone index (VCI1)
and the other is the fifty-pass vehicle cone index (VCI50) [25]. VCI1 and VCI50 represent
the minimum soil strength required for a vehicle to consistently make a specific number of
passes. In the NATO Reference Mobility Model (NRMM) [26], VCI is used as a metric to
evaluate the off-road mobility of military ground vehicles on different soils. The mobility
performance is judged by the following:

· If CI ≥ VCI50, pass easily
· If VCI50 > CI ≥ VCI1, pass difficultly
· If CI < VCI1, not pass
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Where CI (cone index) refers to the ratio of the force required to vertically press the
cone penetrometer into the soil at a certain depth at a speed of 0.5 cm/s to the area of the
cone. The value of VCI is related to the vehicle mobility index (MI), which is related to
the ground pressure coefficient, axle load coefficient, tire coefficient, anti-skid coefficient,
engine coefficient and transmission coefficient of the vehicle, reflecting the overall mobility
of the vehicle. The expression of MI is

MI =
(

PFGW
TG

+ L− H
)

EX (6)

where PFG is grounding pressure coefficient, E is the engine coefficient, G is the track tooth
coefficient or wheel spur coefficient, T is the tire coefficient, L is the load factor, H is the
ground clearance and X is the transmission coefficient.

According to the MI, the empirical formula can be used to calculate the VCI values of
a single pass and fifty passes [25], which are VCI1 and VCI50, respectively.

For single-pass wheeled vehicles with MI ≤ 115:

VCI1 = 11.48 + 0.2MI−
(

39.2
MI + 3.74

)
(7)

For single-pass wheeled vehicles with MI > 115:

VCI1 = 4.1MI0.446 (8)

For wheeled vehicles with 50 passes:

VCI50 = 28.23 + 0.43MI−
(

92.67
MI + 3.67

)
(9)

To express the interaction between the vehicle and the ground, Bakker measured
the mechanical properties of foundation soil experimentally [27], then Bakker’s derived
terramechanic model (BDTM) was created. This model was applied to the NATO Reference
Mobility Model (NRMM) to obtain the mobility prediction of military vehicles. In particular,
when the structural parameters of the vehicle are known, the maximum attainable speed of
the vehicle on a soft soil foundation mainly depends on soil characteristics. Considering
these, BDTM is used to calculate the maximum attainable speed.

This paper takes wheeled unmanned vehicles as the object of analysis, when the
pneumatic tire traverses off-road, it rolls in different states due to the different strengths of
the soil. When the soil is soft and the sum of the tire inflation pressure generated by the
tire stiffness is greater than the support force of the soil to the lowest point of the tire, the
pneumatic tire rolls like a rigid tire; this phenomenon is referred to as the rigid mode of the
tire, shown in Figure 5a. In contrast, on relatively solid soil, the tread-grounding parts of
tires will be pressed into a plane, also known as the elastic mode, as shown in Figure 5b.

Figure 5. Patterns of the tire on different soil strengths, p f is tire inflation pressure, pc is tire stiffness
pressure, pgcr is the support force of the lowest point of the tire, z0 is the static settlement of the tire,
L is the deformation length of the tire. (a) Rigid mode, where: p f + pc > pgcr, (b) Elastic mode, where
p f + pc ≤ pgcr.
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To calculate the maximum attainable speed of the vehicle, it is necessary to predict
rolling resistance (Frc). When the tire rolls on the soft soil, it forms a rut with a depth of z0,
and the contact surface between the tire and the soil is divided into two areas, the curved
surface and the plane. According to the pressure and sinkage relationship of BDTM, the
calculated unit pressure in the curved surface area is

p =

(
kc

b
+ kϕ

)
zn

0 (10)

The unit pressure in the plane area is

p = p f + pc (11)

where kc, kϕ and n are Bakker’s soil parameters, b is the tire width and z0 is the sinkage.
Assuming that the diameter of the rigid wheel is D, if the reaction force of the soil on

the rigid wheel is only radial, the soil resistance (Frc) of the wheel can be obtained as

Frc = b
∫ z0

0

(
kc

b
+ kϕ

)
zndz = b

(
kc

b
+ kϕ

)
zn+1

0
n + 1

(12)

In the rigid mode, the soil is compressed only in the vertical direction, so the value
of Frc calculated from Equation (12) should be equal to the work done when a flat plate
of width b is pressed vertically into the soil to a depth of z0. The vertical load W on the
wheel is

W = −b
∫ Z0

0
pdx = −b

∫ Z0

0

(
kc

b
+ kϕ

)
zndz (13)

This can be obtained from the geometric relationship of each variable:

W =
1
3

b
(

kc

b
+ kϕ

)√
z0Dzn

0 (3− n) (14)

Combine Equations (13) and (14):

Z0 =

 3W

b
(

kc
b + kϕ

)√
D(3− n)

 2
2n+1

(15)

Frc =
(3W)

2n+2
2n+1

(3− n)
2n+2
2n+1 (n + 1)

(
kc + bkϕ

) 1
2n+1 D

n+1
2n+1

(16)

Since the speed of a UGV traversing soft soil is very low, the air resistance factor is
usually ignored. According to the principle of dynamic balance, the maximum speed that a
UGV may achieve on soft soil is

v =
pe

Frc + W sin β
(17)

where pe is the rated power of the engine and β is the terrain slope.
In the elastic mode, the resistance effect caused by the elastic deformation of the tire

must be considered. If a part of the tire is flattened and its projection length is L, the contact
stress of this part is

p f + pc =
W
bL

(18)

According to Equation (11), the sinkage z0 of the tire at this time is

Z0 =

(
pi + pc
kc
b + kϕ

) 1
n

=

(
W

L
(
kc + bkϕ

)) 1
n

(19)
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Substitute Equation (19) into Equation (12) to obtain:

Frc = b

(
zn+1

0
n + 1

)(
kc

b
+ kϕ

)
=

(
W
L

) n+1
n
(n + 1)

(
kc + bkϕ

)− 1
n (20)

Similarly, after obtaining the resistance of the soil, the maximum speed that the vehicle
may reach can be calculated according to Equation (17).

2.3. Mobility Cost Quantification

As described above, mobility prediction methods usually divide the terrain into GO
and NOGO [19], where GO represents the area where the vehicle can traverse and NOGO
is the opposite. The terrain points with slopes greater than the kinematic limits of the
UGV are marked as NOGO, while soil areas with a CI less than VCI are marked as NOGO.
Nevertheless, it is difficult for decision-makers to determine an optimal route for the UGV
to travel from the GO areas. Consequently, it is necessary to quantify the mobility of the
UGV in the GO areas. In the process of quantifying mobility, the influence of terramechanics
and terrain parameters should also be considered.

However, the multi-factor fusion process cannot be simply weighted, so a fuzzy logic-
based multi-factor fusion method is used. Fuzzy logic is a technique which uses the degree
of truth instead of discrete values such as 0 or 1; it also uses “linguistic” variables such
as “low”, “medium”, and “high”, as well as numerical variables for the calculations. The
relationship between inputs and outputs is given by some simple statements rather than
complex mathematical equations [28]. Let A be a fuzzy subset. We can represent A as

A =
µ

y
(21)

where µ is the degree of membership of y in fuzzy subset A. The membership degree has
a value between 0 and 1. For a fuzzy subset A, if x /∈ A, then µ(x) = 0, if x ∈ A, then
µ(x) = 1, if x possibly in A, but not sure, then µ(x) ∈ (0, 1). The block diagram of the
proposed fuzzy mobility cost quantification process is shown in Figure 6.

Figure 6. Block diagram of the proposed mobility quantification method. In this case, the maximum
attainable speed of the UGV and multiple terrain factors (slope, height and soil) are taken as the input
sets. In the fuzzy inference process, firstly, the fuzzifier converts the numerical value obtained from
the input data into fuzzy sets. Which is, the input variables are represented in terms of their degree
of membership for different membership functions. Secondly, the rules use “If–then” structure to
relate the input sets to the output sets. Thirdly, the inference engine takes the input sets and decides
which rules should be used from the rule base and creates the output sets. Finally, the defuzzifier
takes the fuzzy output sets created by the inference engine and generates the output results (area
classification and the mobility cost).

Combining the terramechanics and the fuzzy inference method, the terrain is then
divided into NOGO, safe (high), low-risk (medium) and high-risk areas (low), and the
mobility cost of each terrain point is converted into a distribution between [0, 1]: the closer
the value is to 1, the worse the mobility. The rules need to be further analyzed in the context
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of specific vehicle and terrain characteristics, and this process is presented in Section 3.2
of this paper. For the determination of the membership function, in general, the steeper
its shape, the higher the resolution of the system, the slower the change and the better the
stability of the system [29]. Therefore, the membership functions corresponding to “low”,
“medium” and “high” are Z-type, triangular type and S-type, respectively, as shown in
Figure 7, and the corresponding expressions are listed in Equation (22).

µ(x) =


1, x < x0(

x2−x
x2−x0

)k
, x0 ≤ x ≤ x2

0, x2 < x

⇒ µ(x) =


0, x < x1

x−x1
x3−x1

, x1 ≤ x ≤ x3
x2−x
x5−x3

, x3 < x ≤ x5

0, x5 < x

⇒ µ(x) =


0, x < x4(

x6−x
x6−x4

)k
, x4 ≤ x ≤ x6

1, x6 < x

(22)

Figure 7. Schematic diagram of the membership function.

For the fuzzy inference method, no consistent theory has been established to guide
the construction of fuzzy relations, implying that the construction of fuzzy relations is
diverse, the related fuzzy operations are different and the final inference results are not
the same. A relatively simple and effective algorithm based on “Max–min” criterion is
widely adopted in the practical use of fuzzy inference [30]. The “Max–min” criterion, also
known as the pessimistic criterion, is one of the decision criteria for uncertainty-based
decision making, and the basic attitude of this approach is conservative. It is implemented
by finding the worst possible outcome of each option, i.e., the minimum value, and then
selecting the option that provides the maximum payoff, i.e., the maximum value, among its
worst outcomes. This guides one to maximize the minimum possible outcome. In order to
avoid the risk of damage to the UGV during the off-road mission as much as possible, the
“Max–min” criterion is, therefore, used in this case for defuzzification to obtain relatively
conservative mobility prediction results.

2.4. Path Generation

In the global path planning method, it is necessary to build the topological relation-
ships of the grids and plan the optimal route according to the topological relationships.
In the traditional method, the topological relationships are usually established based on
the distance between grids and the distribution of obstacles. Nevertheless, in large off-
road terrains (>5 × 5 km) considering multiple influencing factors, traditional topological
relationship-building methods cannot meet the requirement of generating a feasible, safe
and effective global route. In this section, we propose a method to construct topological
relations based on the above quantified results of mobility. Because of the large number
of terrain points, the terrain points are sampled by the Latin hypercube sampling (LHS)
method, and the sampled terrain points are used as the nodes for establishing topological
relations. The topological relations of each node are then constructed based on the above
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quantified results of the mobility cost. The specific topological relationships are built based
on the extended cost evaluation matrix and the heuristic cost evaluation matrix. With the
topological relations, an improved A* algorithm is used for global path planning.

According to the results of the fuzzy process, the terrain is divided into NOGO area
(UB), low-risk area (UL), high-risk area (UH) and safe area (US). All the areas are coupled
into the total environmental area U.

To build the topological relationship between each node, the sampling terrain points
are first generated by Latin hypercube sampling, and the topological map M = (P, E) is
formed: P is the set of sampling nodes and E is the set of road sections between sampling
points. The connectivity matrix Ap is then used for connectivity evaluation, as shown in
Figure 8a and the expression is

Ap =

 aii · · · aji
...

. . .
...

aij · · · ajj

 (23)

where Ap is the connectivity matrix between the sampling nodes. If the straight line
between two certain nodes pi and pj passes through UB, then its connectivity cost aij = 0,
otherwise aij = 1.

Figure 8. Node extension diagram. (a) Connectivity matrix Ap diagram, taking nodes p1, p2 and p3

as an example, since the connecting line between p1 and p3 passes through the NOGO area, so a13,
a31 are “0”, and a11, a22, a33 are also “0”; on the contrary, a12, a21, a23 and a32 are “1”, (b) Extended
low risk cost matrix Lp diagram, dividing the connecting line between p1 and p2 evenly into n child
nodes, accumulating the cost value of the nodes contained in UB, similarly, calculating the other
nodes in the same way, (c) Extension distance cost matrix Dp diagram, (d) Heuristic barrier cost

.
Bp

diagram, the current nodes p1, p2 and p3 are connected to the goal node pG, and each connecting line
is discretized into n child nodes, which are accumulated and calculated, respectively, to obtain the
heuristic cost of each line segment.

The extended cost evaluation matrix includes the extended low-risk cost matrix Lp,
extended high-risk cost matrix Hp, extended distance cost matrix Dp and extended safe-cost
matrix Sp. For instance, the extended low-risk cost matrix Lp consists of the low-risk cost
lij between the nodes in set P. The evaluation method is to take n uniformly distributed
sampling nodes on the straight line between two nodes pi and pj; the low-risk is evaluated
by the cost accumulation of each child node in the low-risk area and the evaluation results
are indicated as the low-risk cost matrix of the path between multiple nodes, as shown in
Figure 8b; its expression is

lij =


n

∑
k=1

UL(k), aij = 1

∞, aij = 0

⇒ Lp =

 lii · · · lji
...

. . .
...

lij · · · ljj

 (24)
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Similarly, the extended high-risk cost matrix Hp and the extended safe-cost matrix Sp
can be obtained, as shown in formulas:

hij =


n

∑
k=1

UH(k), aij = 1

∞, aij = 0

⇒ Hp =

 lii · · · lji
...

. . .
...

lij · · · ljj

 (25)

sij =


n

∑
k=1

US(k), aij = 1

∞, aij = 0

⇒ Sp =

 sii · · · sji
...

. . .
...

sij · · · sjj

 (26)

The distances between the nodes also need to be considered in node expansion, so the
extension distance cost matrix Dp is composed of Euclidean distance dij between the nodes
in set P, as shown in Figure 8c, and its expression is

dij =

{
‖pi − pj, ‖ aij = 1

∞, aij = 0
⇒ Dp =

 dii · · · dji
...

. . .
...

dij · · · djj

 (27)

To improve the efficiency of path planning and to optimize the expansion direction of
nodes, it is necessary to consider the heuristic cost evaluation between the new expansion
node pi and the goal node pG, and search along the path direction with the least heuristic
cost. Therefore, the heuristic cost evaluation matrix includes the heuristic barrier cost matrix

.
Bp, the heuristic distance cost matrix

.
Dp and the heuristic safe cost matrix

.
Sp.

.
Bp is com-

posed of the heuristic barrier cost biG between the node pi and the goal node pG. It is evalu-
ated using the cumulative sum of the cost of the NOGO areas and the cost of the risk area
where each child node is located in the path between the sampling nodes and the goal node,
as shown in Figure 8d, so the expression is biG = ∑n

k=1 UB(k) + ∑n
k=1 UL(k) + ∑n

k=1 UH(k),
and

.
Bp =

[
biG . . . bjG

]T.

The heuristic distance cost matrix
.

Dp consists of the Euclidean distance diG
between the node pi and the goal node pG; its expression is diG = ‖pi − pG‖, and

.
Dp =

[
diG . . . djG

]T.

The heuristic safe cost matrix
.

Sp consists of the heuristic safe cost siG between the
node pi and the goal node pG. It is evaluated by accumulating the cost of the safe area,
where each child node is located in the path between the sampling nodes and the goal
node, and its expression is siG = ∑n

k=1 US(k) and
.

Sp =
[

siG . . . sjG
]T.

The global path planning method based on the extended cost evaluation function and
the heuristic cost evaluation function designed in this paper is

F(pi) = G(pi) + H(pi) (28)

where F(pi) is the cost evaluation function from the start node pS to the current node pi
and G(pi) is the extended cost evaluation function from the start node pS to the current
node pi; H(pi) is the heuristic cost evaluation function from the current node pi to the goal
node pG.

The node extension method connects the current node pi to its surrounding nodes in
the topology graph M. The node extension method is shown in Figure 9. The start node
pS is extended to a feasible connected node pi according to the connectivity matrix. If the
connection path aSi between pS and pi is feasible, a candidate node set Q is generated.
The optimized node pmin with the lowest cost is searched in the Q set, expanded to the
connected nodes around it, and then the new extended node is added to set Q, until it
extends to the goal node pG.
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Figure 9. Nodes extension process.

In the process of node extension, for the new extension nodes, the extension cost
evaluation function is used to evaluate the extension cost from the parent node to the next
node using weighted calculation, as shown in the formula

G(pi) = G(pmin) + gi (29)

Gi = kb·lij + kh·hij + ks·sij + kd·dij (30)

where G(pmin) is the extension cost from the parent node to node pmin, and Gi is the
extension cost from node pmin to pi. kb, kh, ks and kd are low-risk weight coefficient, high-
risk weight coefficient, safe-weight coefficient and distance weight coefficient, respectively.
The heuristic function is shown in the formula:

H(pi) = kb·wij + kd·dij + ks·sij (31)

where H(pi) is the heuristic cost evaluation function between the new extension node pi
and the goal node pG, kb is the barrier weight coefficient, and wij, dij and sij are the heuristic
barrier cost, heuristic distance cost and heuristic safe cost of node pi in the heuristic cost
evaluation matrix, respectively.

After the optimized path nodes are connected sequentially, the vehicle motion trajec-
tory contains multi-segment polylines. Because the trajectory has hard inflection nodes, it
cannot meet the requirements of vehicle kinematic constraints. In this paper, the clamped
cubic B-spline smoothing method is used to optimize the trajectory of path planning; as
shown in Figure 10, the black dotted line is the initial path from pi−1 to pi, while the green
curve is the result of smoothing.

Figure 10. Clamped cubic B-spline interpolation.
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3. Simulation Experiments and Discussion
3.1. Experimental Setting

The UGV model used for the simulation experiment is shown in Figure 11. Its main
parameters are given in Table 1.

Figure 11. The experimental UGV.

Table 1. Parameters of the UGV model.

Parameters Gross
Mass/kg Clearance/m Number of Axles Number of Tires Tire

Load/N
Tire

Width/m
Tire

Radius/m
Engine

Power/kW

Value 1242 0.45 2 4 3200 0.40 0.51 262

3.2. Mobility Prediction Results

According to Equations (8) to (10), and the UGV parameters given in Table 1, the MI
index of the UGV is 67.9, so VCI1 is 389.4 kN/m2 and VCI50 is 534.1 kN/m2. The soil types
in this terrain are mainly divided into sandy loam, clayey soil, lean clay and upland sandy,
as illustrated in Table 2.

Table 2. Soil characteristic parameters.

Soil Type
Moisture
Content

(%)

Deformation
Index

(n)

Cohesive Force
Modulus kc
(kN/mn+1)

Internal Friction
Modulus kϕ

(kN/mn+2)

Sinkage
(m)

Rolling
Resistance

(kN)

Cone Index
(kN/m2)

Sandy loam 26 0.30 2.79 141.11 0.51 18.84 223.40
Clayey soil 38 0.50 13.19 692.15 0.13 8.86 732.50
Lean clay 22 0.20 16.43 1724.69 0.02 3.11 1070.50

Upland sandy 51 1.10 74.60 2080.00 0.16 9.32 528.50

Recall that the 3D terrain model we created is a multi-dimensional model containing
elevation data, soil type data (soil strength values, CI), slope values and land use data.
Therefore, according to the comparison between the calculated VCI and the CI of each
area, the area with a CI less than VCI1 is defined as the NOGO area. According to the
obtained slope map in Figure 5, combined with the limitations of the vehicle kinematic
model, if the slope value exceeds the maximum pitch angle or roll angle of the UGV, it is
then determined as a NOGO area. Additionally, based on land use data, the areas covered
by water and forests are also defined as NOGO areas, while the rest are GO areas. Thus, a
GO/NOGO map is finally generated, as shown in Figure 12a. In this terrain, the GO areas
account for 71% and the NOGO areas account for 29%. Combined with the slope value and
the soil parameters in Table 1, the maximum attainable speed of the UGV in each area can
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be obtained using Equation (18). As a result, the maximum attainable speed distribution
map of the UGV can be obtained, as shown in Figure 12b. The maximum speed that the
UGV can reach is 32.4 km/h, and the average speed is 9.5 km/h.

Figure 12. Distribution map of GO/NOGO and maximum attainable speed. (a) GO/NOGO map,
(b) Maximum attainable speed map.

The quantification method of mobility results adopts the fuzzy inference described
above; three states are defined for the three independent evaluation indexes, namely “low”,
“medium” and “high”, to make the final result more accurate. These are combined with the
above determination for NOGO areas, with four states being defined for the mobility cost,
namely, “NOGO area”, “high-risk area”, “low-risk area” and “safe area”. Reviewing the
previous section, the factors affecting mobility are summarized as the maximum attainable
speed of the UGV, CI, terrain slope and height. When it comes to the fuzzy rule setting, this
study references the expert rules for off-road vehicles in off-road terrain evaluation studies,
such as the slope being defined as high, if in the range of 0◦–8◦, medium 5◦–15◦, and low
10◦–30◦ [31]. Similarly, terrain height is defined as high if in the range of 0–300 m, medium
200–600 m, and low if greater than 500 m [32]. Under off-road traversing conditions, the
vehicle speed is defined as low, if in the range of 0–15 km/h, medium 10–30 km/h, and
high 20–40 km/h [28]. By comparing the calculated VCI1 and VCI50 to the CI, CI is defined
as low if in the range of 0–500 kN/m2, medium 400–700 kN/m2, and high if greater than
700 kN/m2 (See Appendix B for details of the specific rules setting). When determining
the membership function, we normalize the input data, then use the S-type membership
function, triangular membership function and Z-type membership function to express the
fuzzy rules, as shown in Figure 13.

Figure 13. Membership of fuzzy rules. (a) Degree of membership of the height and slope, (b) Degree
of membership of the speed and CI.

The defuzzification process uses the “Max–min” criterion proposed in Section 2.3. Af-
ter defuzzification, the global terrain is divided into four categories, as shown in Figure 14a.
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The mobility cost evaluation result is also expressed as the distribution of [0, 1], and the
closer to 1, the worse the mobility, as shown in Figure 14b.

Figure 14. Fuzzy inference results. (a) Fuzzy inference result for four categories: NOGO area,
high-risk area, low-risk area and safe area, (b) Fuzzy inference result for the mobility cost of [0, 1].

3.3. Path Generation Results

After obtaining the mobility cost results, the improved A* algorithm described above
is used for global path planning (min-mobility cost route). We also compare two other algo-
rithms, the traditional A* algorithm for searching the shortest route (min-distance route),
and the A* algorithm with the consideration of the terrain profile (min-slope route) [33], as
shown in Figure 15.

Figure 15. Comparison of the three routes, the global path planning algorithm that considers mobility
as a function of cost (min-mobility cost route), considers distance (min-distance route), and considers
terrain profile (min-slope route). (a) Min-distance route, (b) Min-slope route, (c) Min-mobility
cost route.

The final experimental result shows that the three path planning strategies generate
three global routes, namely, MDR (min-distance route), MSR (min-slope route) and MMCR
(min-mobility cost route), as given in Figure 16. To intuitively evaluate the routes generated
at different costs, each route node is stored and statistically analyzed. All routes are
normalized and segmented in Table 3 to show the average indicators of the UGV in
different route segments, and the detailed comparison of the data is shown in Figure 17.
After ignoring the NOGO areas, MDR adopts the planning strategy of the shortest route.
The comparison of experimental results also proves that this route is the shortest. However,
only the distance factor is considered, and the influence of slope and soil strength on vehicle
mobility are ignored. The route has the highest average slope (20.9◦), the highest height
(628.8 m), the lowest average speed (5.3 km/h) and the longest traversing time (1.47 h).
Combined with the abovementioned fuzzy rules, the MDR is classified as “high risk”.
MSR adopts the planning strategy of the slowest route. It is obvious that the route has the
smallest average slope (8.5◦); because only the influence of slope is considered in the cost
function, the slowest route leads to the longest path length (11,670 m). Simultaneously,
when searching for the slowest route, it inevitably selects areas with low soil strength,
resulting in an increase in traversing resistance and reduced average speed (11.5 km/h).
Combined with fuzzy rules, MSR is classified as “low risk”. Conversely, the minimum
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mobility cost planning strategy proposed in this paper comprehensively considers the
influence of terrain. On this basis, the terrain points with higher speed are searched as the
route nodes. Therefore, this route has the highest average speed (13.8 km/h) and the least
traversing time (0.62 h), and its fuzzy result is “low risk”.

Figure 16. Comparison of maximum attainable speed under three path planning strategies on satellite
map, A and B are the regions with large deviations in the routes, respectively.

Table 3. Summary of the three cost functions considered in this research.

Route Distance (m) Average
Height (m)

Average
Slope (◦)

Average
Speed (km/h)

Average
Mobility Cost Traversal Time (h)

MDR 6724 628.8 20.9 5.3 0.48 1.47
MSR 11,670 593.2 8.5 11.5 0.40 1.01

MMCR 8306 551.1 12.4 13.8 0.32 0.62

Figure 17. Comparison of various mobility indicators of the planned routes. (a) Height comparison
curve, (b) Slope comparison curve, (c) Maximum attainable speed comparison curve, (d) Mobility
cost comparison curve. By counting the elevation, slope and velocity of each node, the first three sets
of curves show that MMCR has a clear advantage over the other two planning strategies, while its
data have a small standard deviation (the standard deviation is represented by the envelope area
on both sides of the curve), which also corresponds to the trend in the mobility cost of each node of
curve (d). Therefore, it further proves the superiority of the path planning strategy that considers the
smallest integrated mobility cost.
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In addition, the computer execution time for the three methods in Matlab shows the
longest to be MSR, which takes 75 min, followed by MDR, which takes 44 min, whereas
MCCR combines the characteristics of the sampling algorithm and, therefore, takes the
least time, less than 4 min; these experiments were run on a general-purpose computer
(Intel Core i7 3 GHz,16 MB RAM).

In order to further prove the effectiveness of the algorithm in this paper, the generated
routes are extracted and compared with regions A and B, with a large difference in fitting
degree, as shown in Figure 18.

Figure 18. Comparison of the three routes in the two regions. In region (A), the red grid area is
upland sandy area, except for lean clay area. In region (B), the red grid areas are upland sandy areas
and the blue grid area is upland sandy area, except for lean clay area.

Region A has two types of soil, lean clay (CI = 1070.5 kN/m2, 77%) and upland sandy
(CI = 528.5 kN/m2, 23%), while the average slope value in this area is 15.6◦ with a standard
deviation of 4.2. The comparison results of the three routes are shown in Table 4.

Table 4. Comparison of the parameters of the three routes in region A.

Route Distance (m) Average Height (m) Average
Slope (◦)

Average
Speed (km/h)

Traversal
Time (h)

MDR 1465 518.7 16.1 4.8 0.31
MSR 2734 563.4 8.8 8.9 0.30

MMCR 2267 500.2 9.1 13.3 0.17

In region A, MDR only considers distance cost, resulting in traversing areas with
low soil strengths and high slopes, so it has the lowest average speed (4.8 km/h) and the
longest traversal time. In the MSR search process, only the slope cost is considered, and the
result satisfies the requirement of searching for the slowest route; however, this process
also produces the longest route and a route with low soil strength. MMCR proposed in this
paper, and which considers the comprehensive factors (mobility cost), avoids the soft soil
areas well, so that it can search along the lean clay area; this route has the best mobility,
with the highest average speed (13.3 km/h) and the lowest time (0.17 h). It also has a
smoother route by using the B-spline curve.

In the case of the large terrain relief in region B (mean slope value of 21.1◦, standard
deviation of 6.7), the soil contains lean clay (CI = 1070.5 kN/m2, 56%), upland sandy (CI
= 528.5 kN/m2, 27%) and clayey soil (CI = 732.5 kN/m2, 17%); the results of the three
planning strategies are shown in Table 5.

Table 5. Comparison of the parameters of the three routes in region B.

Route Distance (m) Average Height (m) Average
Slope (◦)

Average
Speed (km/h)

Traversal
Time (h)

MDR 2890 708.7 18.3 3.9 0.74
MSR 4518 686.4 10.8 7.2 0.63

MMCR 3321 644.2 13.3 12.1 0.28
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In region B, MDR still searches for the shortest route within the upland sandy; its
average speed is further limited (3.9 km/h) due to the increase in terrain undulation;
although its route distance is the shortest, it takes the longest time (0.74 h). Due to the large
change of slope, MSR only pursues a gentler route and also increases traversing distance.
Meanwhile, part of the route enters the area of upland sandy and clayey soil with relatively
low soil strength, which leads to a lower average speed. MMCR can avoid this situation
well on the basis of the mobility cost quantification method, while being able to find a faster
route on the high strength soils (average speed 12.1 km/h, traversing time 0.28 h).

4. Conclusions and Future Work

In this paper, a mobility prediction-based global path planning method for UGVs is
proposed. The experimental results show that the proposed method, MMCR, can effectively
generate a more feasible, efficient and safer route when considering the mobility cost. It is
worth noting that the current path-planning technologies usually rely on terrain modeling
by the UGV’s own sensory devices, which can build a more detailed terrain model, but the
data storage volume required is huge and the data parsing method is relatively complex.
Sensing the surrounding environment in the actual unknown off-road terrain is likely to
cause the risk of failure of the unmanned equipment. This paper proposed an effective
method to reconstruct 3D off-road terrain by fusing multi-source remote sensing data
based on the Kriging interpolation method. Also based on terramechanics and fuzzy
inference, the effect of soil deformation on the UGV is considered to reduce the risk of
obstruction. In summary, this paper provides an effective and safe reference method for
UGVs to perform off-road tasks. The method is not only applicable to the terrain selected
in this paper, but also applicable to other terrains, so it is generalized, and has a certain
value in engineering applications.

Future work will focus on several limitations of this study. (1) The limitation of
this study is that the attitude change of the vehicle during the driving process is not
taken into account; therefore, to obtain more accurate and more informative mobility
prediction results, discrete element or finite element techniques will be considered for
modeling the soil and coupling the soil model with the vehicle model for simulation.
Although several techniques for coupled simulation have been proposed [34,35], these
approaches are, nevertheless, time-consuming when predicting mobility over large areas.
To obtain mobility prediction results efficiently, it is necessary to combine these methods
with machine learning algorithms. (2) On the other hand, there are perceptual errors in
satellite remote sensing data and interpolation errors generated using terrain interpolation
methods, as well as spatial variability in physical soil properties (water content, season, etc.);
all of these may lead to uncertain results of mobility prediction. Therefore, how to reduce
or quantify the uncertainty of mobility prediction will be another future research direction.
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Appendix A

Appendix A.1. Projection of Each Data Type

We project the soil type distribution data and land use data onto the corresponding
3D terrain model, respectively, and the results are shown in Figure A1. In this research, we
define water areas and forest lands as NOGO areas. According to the comparison between
VCI and CI calculated above, sandy loam is defined as a NOGO area. In particular, since
the CI of lean clay is between VCI1 and VCI50, these areas are relatively difficult to traverse.

Figure A1. Data projection results. (a) The projection results of soil type distribution data. (b) The
projection results of land use data.

Appendix A.2. The Slope Map Calculation Process

According to the interpolated 3D terrain model, the slope value of each point in the
data can be calculated, as shown in Figure A2; we used the 3 × 3 moving window to
traverse the whole point and calculated the slope value βi of each point. The calculation
formula of the slope value of each point is

βi = arctan
√

S2
L + S2

T

SL = [(h8 + 2h1 + h5)− (h7 + 2h3 + h6)]/(8× d)

ST = [(h7 + 2h4 + h8)− (h6 + 2h2 + h5)]/(8× d)

where hi (i =1, . . . , 8) are the elevation values of eight points near the calculated point h
and d is the resolution size.

Figure A2. The calculation method of slope in 3 × 3 grid traversal window.

Appendix B

The input of fuzzy rules in this paper comprises four types (slope, height, CI and
speed) and the output is Mobility, each with three states as “low (high-risk area)”, “medium
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(low-risk area)” and “high (safe area)”, as shown in the Table A1, so there are 81 fuzzy
inference rules, as shown in the Table A2. To reduce the risk for the UGV in the off-road
environment, a fuzzy inference rule strategy, which is on the conservative side, is used. The
distribution of mobility state results: 26 for “L”,38 for “M”, and 17 for “H”.

Table A1. Fuzzy state of each variable.

Variable Fuzzy State

Slope L1 M1 H1
Height L2 M2 H2

CI L3 M3 H3
Speed L4 M4 H4

Mobility L M H

Table A2. Fuzzy inference rules.

If L1 and L2 and L3 and L4 then L; If M1 and M2 and M3 and H4 then H;
If L1 and L2 and L3 and M4 then L; If M1 and M2 and H3 and L4 then M;
If L1 and L2 and L3 and H4 then L; If M1 and M2 and H3 and M4 then M;
If L1 and L2 and M3 and L4 then L; If M1 and M2 and H3 and H4 then H;
If L1 and L2 and M3 and M4 then L; If M1 and H2 and L3 and L4 then L;
If L1 and L2 and M3 and H4 then L; If M1 and H2 and L3 and M4 then M;
If L1 and L2 and H3 and L4 then L; If M1 and H2 and L3 and H4 then M;
If L1 and L2 and H3 and M4 then L; If M1 and H2 and M3 and L4 then M;
If L1 and L2 and H3 and H4 then M; If M1 and H2 and M3 and M4 then H;
If L1 and M2 and L3 and L4 then L; If M1 and H2 and M3 and H4 then H;
If L1 and M2 and L3 and M4 then L; If M1 and H2 and H3 and L4 then M;
If L1 and M2 and L3 and H4 then L; If M1 and H2 and H3 and M4 then H;
If L1 and M2 and M3 and L4 then L; If M1 and H2 and H3 and H4 then H;
If L1 and M2 and M3 and M4 then M; If H1 and L2 and L3 and L4 then L;
If L1 and M2 and M3 and H4 then M; If H1 and L2 and L3 and M4 then L;
If L1 and M2 and H3 and L4 then L; If H1 and L2 and L3 and H4 then M;
If L1 and M2 and H3 and M4 then M; If H1 and L2 and M3 and L4 then L;
If L1 and M2 and H3 and H4 then H; If H1 and L2 and M3 and M4 then M;
If L1 and H2 and L3 and L4 then L; If H1 and L2 and M3 and H4 then M;
If L1 and H2 and L3 and M4 then M; If H1 and L2 and H3 and L4 then M;
If L1 and H2 and L3 and H4 then M; If H1 and L2 and H3 and M4 then M;
If L1 and H2 and M3 and L4 then L; If H1 and L2 and H3 and H4 then M;
If L1 and H2 and M3 and M4 then M; If H1 and M2 and L3 and L4 then L;
If L1 and H2 and M3 and H4 then M; If H1 and M2 and L3 and M4 then M;
If L1 and H2 and H3 and L4 then M; If H1 and M2 and L3 and H4 then M;
If L1 and H2 and H3 and M4 then M; If H1 and M2 and M3 and L4 then M;
If L1 and H2 and H3 and H4 then H; If H1 and M2 and M3 and M4 then M;
If M1 and L2 and L3 and L4 then L; If H1 and M2 and M3 and H4 then H;
If M1 and L2 and L3 and M4 then L; If H1 and M2 and H3 and L4 then M;
If M1 and L2 and L3 and H4 then L; If H1 and M2 and H3 and M4 then H;
If M1 and L2 and M3 and L4 then L; If H1 and M2 and H3 and H4 then H;
If M1 and L2 and M3 and M4 then M; If H1 and H2 and L3 and L4 then M;
If M1 and L2 and M3 and H4 then M; If H1 and H2 and L3 and M4 then M;
If M1 and L2 and H3 and L4 then L; If H1 and H2 and L3 and H4 then H;
If M1 and L2 and H3 and M4 then M; If H1 and H2 and M3 and L4 then M;
If M1 and L2 and H3 and H4 then M; If H1 and H2 and M3 and M4 then H;
If M1 and M2 and L3 and L4 then L; If H1 and H2 and M3 and H4 then H;
If M1 and M2 and L3 and M4 then M; If H1 and H2 and H3 and L4 then H;
If M1 and M2 and L3 and H4 then M; If H1 and H2 and H3 and M4 then H;
If M1 and M2 and M3 and L4 then M; If H1 and H2 and H3 and H4 then H
If M1 and M2 and M3 and M4 then M;
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