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Abstract: In recent years, deep-learning schemes have been widely and successfully used to diagnose
bearing faults. However, as operating conditions change, the distribution of new data may differ from
that of previously learned data. Training using only old data cannot guarantee good performance
when handling new data, and vice versa. Here, we present an incremental learning scheme based
on the Repeated Replay using Memory Indexing (R-REMIND) method for bearing fault diagnosis.
R-REMIND can learn new information under various working conditions while retaining older
information. First, we use a feature extraction network similar to the Inception-v4 neural network
to collect bearing vibration data. Second, we encode the features by product quantization and store
the features in indices. Finally, the parameters of the feature extraction and classification networks
are updated using real and reconstructed features, and the model did not forget old information.
The experiment results show that the R-REMIND model exhibits continuous learning ability with no
catastrophic forgetting during sequential tasks.

Keywords: bearing fault diagnosis; incremental learning; variable working conditions; product
quantization; convolutional neural network

1. Introduction

Rolling element bearings play vital roles in mechanical equipment. About 40% of all
large mechanical system failures, and 90% of those of small rotating machines, are caused
by bearing defects [1]. Bearings support rotating bodies to reduce friction and guarantee
rotational accuracy [2]. Bearings normally work in complex and harsh conditions. They
are prone to failure that shuts down the entire machine. Bearing monitoring and diagnosis
ensure safety and reduce economic losses. In recent years, various types of signals have
been used for bearing faults diagnosis, including vibration [3–7], the stator current [8,9],
acoustic emissions [10,11], and thermal images [12]. Traditional diagnostic methods are
effective when there are few data. They can extract and study features and make decisions
using pattern recognition algorithms. However, traditional methods are slow when the
dataset is extensive [13]. Deep-learning schemes have thus been used to diagnose bearing
faults [14–16]. Pham et al. [17] used the constant-Q transform technique to transform acous-
tic emission signals into spectrographic images that served as inputs to a convolutional
neural network (CNN) multiple-output model. He et al. [18] presented a deep transfer-
learning method based on a one-dimensional (1D) CNN, which was highly successful
under various conditions. CNNs accept diverse input data, allow easy adjustment of
network structure, and generalize very effectively [19]. Compared to a two-dimensional
(2D)-CNN, a 1D-CNN can directly identify bearing data for more efficient performance of
end-to-end tasks.

Given the complex and changeable bearing work environments, the distributions
of collected data vary greatly. As deep-learning algorithms are generally data-driven,
diagnostic accuracy may decrease when the data distribution changes. This is termed
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catastrophic forgetting; the model forgets old information after acquiring new information,
which severely compromises diagnostic performance. When the work conditions vary con-
tinuously, it is essential to retrain the model using new data to ensure diagnostic accuracy.
However, this repetitive training imposes a burden and it is impossible to store historical
data or trained models. Incremental learning can handle this problem. Regarding bearing
fault diagnosis, incremental learning methods including class incremental learning [20–23]
and imbalanced data learning [24,25] have been developed. However, few studies have
focused on catastrophic forgetting. Li et al. [26] presented an incremental learning method
based on a layer regeneration network; distillation loss was used to alleviate catastrophic
forgetting and the results were satisfactory. Continuous learning from bearing failures
was more effective than fine-turning and joint-training methods. However, if old data
are unavailable because of privacy issues or other concerns, model accuracy may be very
poor. To address this problem, we present a bearing fault diagnosis method based on
a 1D CNN and product quantization; i.e., the Repeated Replay using Memory Indexing
(R-REMIND) model. We were inspired by the REMIND incremental learning algorithm
of Hayes et al. [27]. The R-REMIND model is like a brain that learns new information
repeatedly, as opposed to only once. The model uses a feature extraction module based on
a simplified 1D Inception-ResNet network to extract features from raw bearing vibration
data. The features are encoded via product quantization and the codes are stored in buffer
indices. A classification network identifies the fault type. When encountering new data,
the model decodes the stored code and replays the reconstructed features, together with
the real features of the new task, to update the parameters of the feature extraction and
classification networks.

The contribution of this study is summarized as follows: We use a brain-inspired
bearing diagnostic method for bearing fault diagnosis to enhance learning of new tasks
and prevent performance degradation when performing old tasks. The old data are not
needed during training with new data. Meanwhile, the proposed method might greatly
reduce training time. The proposed method is more accurate and presents good ability in
not forgetting old information.

The rest of the paper is organized as follows. Section 2 provides the theoretical
background, Section 3 describes and applies the method, Section 4 details the experiments,
and Section 5 concludes the study.

2. Theoretical Background
2.1. Inception-ResNet Module

He et al. [28] designed a residual block with a shortcut based on CNN, which facilitated
optimization and eliminated the gradient vanishing, gradient explosion, and network
degradation associated with increased network depth. Subsequently, Szegedy et al. [29]
improved this model when developing the Inception-ResNet network; the basic module is
shown in Figure 1. Convolutional layers with kernels of different sizes are concatenated
into a single output vector (an inception block) that learns residual information F(x)
from input x. The shortcut adds input x to the residual result F(x) to enable mapping
H(x). The Inception-v4 framework of [29] has three types of inception blocks with diverse
convolutional layers that capture information from different dimensions. The shortcut
connection retains the advantages of residual networks.



Machines 2022, 10, 338 3 of 17

Figure 1. General schema of Inception-ResNet modules.

2.2. Product Quantization

Quantization is a destructive process extensively studied by information theorists.
The aim is to reduce the cardinality of the representation space when input data are
real-valued [30]. Formally, a quantizer is a function q mapping a D-dimensional vector
x ∈ RD to a vector q(x) ∈ { = {ci; i ∈ I}, where the index set I is assumed to be finite:
I = 0 . . . k− 1. The set of reproduction values { is a codebook of size k, and the reproduction
values ci are centroids. However, as the value of k increases, it becomes too difficult to use
the Lloyd algorithm to quantize the vectors, and it is unrealistic to store the D× k floating
point values representing the k centroids. Product quantization efficiently addresses these
issues. The space is decomposed into a Cartesian product of low-dimensional subspaces
that are separately quantized [30]. The input data are split into m distinct subvectors uj
of dimension D∗ = D/m, where 1 ≤ j ≤ m and D is a multiple of m. The subvectors are
quantized using m distinct quantizers. A given vector x is mapped as:

x1, . . . , xD∗︸ ︷︷ ︸
u1(x)

, . . . , xD−D∗+1, . . . xD︸ ︷︷ ︸
um(x)

→ q1(u1(x)), . . . , qm(um(x)) (1)

The product index set I is defined as the Cartesian product of the index sets of the
subquantizers:

I = I1 × . . .× Im (2)

Similarly, the product codebook C is defined as:

C = C1 × . . .× Cm (3)

A reproduction value is a concatenation of the m centroids of the corresponding
subquantizers, identified by an element of the product index set I. If all subquantizers have
the same finite number k∗ of reproduction values, the total number of product centroids is:

k = (k∗)m (4)

Thus, product quantization produces a large set of centroids from several small sets of
centroids associated with the subquantizers. Therefore, a vector is represented by a short
code composed of subspace quantization indices. To satisfy the optimal Lloyd conditions,
the k-means clustering algorithm can be applied to learn the subquantizers [30].

3. The Proposed Method
3.1. The R-REMIND Model

The architecture of our proposed R-REMIND model, which is based on the work
of Hayes et al. [27], is shown in Figure 2. It consists of three parts: a feature extraction
network, classification network, and buffer module. The feature extraction network is
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composed mainly of combination modules, each of which is a stack of several 1D inception
reduction (IR)-A modules and one 1D IR-B module. The features of 1D bearing vibration
signals are extracted. The classification network contains several fully connected modules,
each of which consists of a fully connected layer, a batch normalization (BN) layer, a ReLU
activation layer, and a dropout layer. The classification network learns the features of
current data and the reconstructed features and classifies the real features to aid diagnosis.
The buffer module encodes the extracted features and stores them in indices. Stored code
representing historical data is decoded and replayed during continuous data learning.

Figure 2. Architecture of the R-REMIND model.

The feature extraction network has a convolutional layer, max-pooling layer, and
N combination modules. As the inputs are segments of 1D time series signals, the data
point with damage information may have a relationship with the data that appear far
away from it. Thus, a convolutional layer and max-pooling layer (with a larger kernel)
are used to acquire more defect knowledge. The combination module is composed of
a few 1D IR-A modules followed by one 1D IR-B module (Figure 3). Both modules are
based on 1D convolutional blocks (“Conv1d Block” in the figure) that contain sequential
convolution, BN, and ReLU activation layers. The block parameters are the same as for the
convolutional layer. The three parameters represent the kernel size, stride, and number of
the convolutional layer. Equation (5) shows the receptive field relationships among a stack
of several convolutional layers, where Fi is the field of the ith layer and s and ks are the
stride and kernel size of the convolutional layer, respectively:

Fi = (Fi+1 − 1)× s + ks (5)

The definition of a receptive field indicates that a stack of two 3× 3 convolutional
layers provides an effective receptive field of 5× 5. Three such layers have a receptive
field of 7× 7 [31]. When several small 2D convolutional layers are used, the number of
model parameters is decreased. However, the opposite is true when using 1D CNN models.
Taking the 7× 1 convolutional layer as an example, the receptive field is 7× 1, which is
the same as that of a stack of three 3×1 convolutional layers. The former model has fewer
parameters than the latter. We thus use multiple convolutional layers of different kernel
sizes, and do not stack several small convolutional layers in each branch. To facilitate
model hyperparameter adjustment, we set the output channel of the 1D convolutional
block to half that of the input channel. The 1D IR-A module is mainly used to deepen the
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network structure and increase complexity; the shortcut connection retains the advantages
of the ResNet network architecture. The 1D IR-B module performs feature extraction and
compression. The two types of 1D-Inception-ResNet modules capture the information in
different dimensions, thus improving feature extraction.

The classification network of R-REMIND is a traditional neural network with an
average pooling layer, several fully connected modules, a fully connected layer for final
classification, and a Softmax layer. The fully connected module includes BN, ReLU acti-
vation, and dropout layers (Figure 3), and jointly learns both current and reconstructed
features. Real features from the extraction network are used for diagnosis. The loss function
is the negative log-likelihood function:

NLLLoss = −
m

∑
i=1

log(P(xi; θ)) (6)

where m is the number of samples and P
(
xi; θ

)
is the probability that the predicted feature

xi occurs in the classification network for parameter θ.

Figure 3. Cont.
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Figure 3. The 1D-Inception-ResNet modules. (a) The 1D IR-A module. (b) The 1D IR-B module.

The buffer module shown in Figure 3 has two working states. It handles either
first-task data or other-task data. When R-REMIND learns first-task data, there is no code
in the buffer. Thus, the buffer module splits the features extracted from the current data
into subvectors, uses the k-means clustering algorithm to quantize these data individually
to obtain the codebook C, and stores the learned centroids. Therefore, we achieved product
quantization. In other situations, the buffer module randomly selects stored code using an
index and reconstructs features by reference to that code and the stored centroids. The buffer
module thus provides both reconstructed and real features when the networks update the
parameters. Additionally, the buffer module updates the stored code during continuous
learning. It encodes real features by calculating the distances between subvectors and
the corresponding centroids. The code with labels is stored in the buffer after the model
finishes learning a task.

3.2. Diagnostic Framework

Our novel diagnostic model combines a 1D-Inception-ResNet network with product
quantization. The model continuously learns bearing vibration signals under various
working conditions and diagnoses faults. The framework of the R-REMIND model is
illustrated in Figure 4. The procedure is listed as follows:

Step 1: Signal acquisition. Under different loads, vibration signals and bearing status data
are collected and processed.
Step 2: Segmental sampling. The collected raw vibration signals are randomly sampled
using a fixed-length sliding window. The sampled segments are divided into training and
test datasets under various working conditions.
Step 3: Continuous learning. The training data for different tasks are sequentially learned
by R-REMIND. The buffer module is updated using the features of the current task after
learning is complete.
Step 4: Fault diagnosis. The data of previous tasks are diagnosed by the current R-REMIND
model to verify the effectiveness of the method.
Step 5: Decision-making. The model reviews the bearing status and developmental trend,
and then makes a decision.
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Figure 4. Framework of our proposed diagnostic method.

4. Experiments and Results
4.1. The Dataset

The performance of R-REMIND was assessed using a dataset from Paderborn Univer-
sity [32]. The dataset was derived using ball bearings of type 6203 and includes information
on artificial damage caused by electric discharge machining, drilling, and electric engraving,
as well as real damage caused by a bearing accelerated lifetime test apparatus driven by
an electric asynchronous motor. A constant radial load is applied to the box, and can
be adjusted using a spring and a nut. Four bearings can be tested simultaneously. Each
bearing operates under constant load until damage occurs. The bearings present typical
types of damage. Bearing faults include inner, outer, and mixed race faults, which are
divided into three fault levels according to the extent of the damage. The experimental data
are vibration signals obtained by running the test rig shown in Figure 5 at 64 kHz for 4 s.
The operating conditions can be varied by changing the speed of the drive motor, turning
the adjusting nut on the bearing module, or varying the current of the load motor.

Figure 5. The Paderborn University test rig providing bearing fault data.

To verify the effectiveness of our method, the vibration data under various working
conditions were continuously and sequentially learned (Table 1). Each task provides
vibration data for three states, i.e., healthy bearings and bearings with inner and outer
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race faults. The bearing codes for the simulation are listed in Table 2. As the vibration
datasets collected during one bearing rotation comprise 2560 data points, the sampling
sliding window length was set to 2560. To ensure that all samples were collected when
the bearings were stable, we discarded the first and last 10% of samples (the data length
thus became 3.2 s). The random sampling method (Figure 6) ensured that the samples were
diverse and accurate. Five hundred samples were randomly obtained from each bearing
code, and each task contained 8000 samples that were randomly divided into training,
validation, and test datasets in a 6:2:2 ratio.

Table 1. Bearing operational parameters.

Task Rotation Speed (r/min) Load Torque (N·m) Radial Force (N)

1 1500 0.1 1000
2 1500 0.7 400
3 1500 0.7 1000

Table 2. Bearing codes (different classes).

Healthy Inner Race Fault Outer Race Fault

K001, K002, K003
K004, K005, K006 KI04, KI14, KI17, KI18 KI21 KA04, KA15, KA16, KA22, KA30

Figure 6. Schematic of the sampling process.

4.2. Experimental Setup

During training, the dropout ratio (drs) of the dropout layer is set to 0.5. The num-
ber (m) and size of the codebooks (k) are set to 32 and 256, respectively (Jegou et al. [30])
and the size of the buffer module (BS) is set to 10,000. The batch size (bs) is set to 128; the
number of training epochs is 300. The Adam optimizer is applied, and the weight decay
ratio (wd) is set to 10−5. The replay ratio (rr) is set to 1, which means that the number of
reconstructed features is equal to the number of real features. The remaining parameters
are determined by random searching. The final model hyperparameters are listed in Table 3,
where in row 4, 0 is the 1D IR-A module and 1 is the 1D IR-B module.

The network framework and hyperparameter settings define the structures of the
feature and classification networks (Table 4) where “Conv” is the convolutional layer and
the four parameters are the convolutional kernel size, stride, padding size, and number
of convolutional kernels. Taking (9, 8, 4, 32) as an example, the kernel size of the large
convolutional layer is 9 × 1, the stride is 8, the number of zero pads (both sides) is 4, and
the number of convolutional kernels is 32. “Maxpool” refers to the maximum pooling layer;
the parameters have the same meanings as those of the convolutional layer. The 1D IR-A
module consists of four branches constructed using one or two convolutional modules. The
convolution module has a convolutional layer, a BN layer (BN), and an ReLU activation
layer (ReLU). The 1D IR-B module is similar to the 1D IR-A module in that it includes
four channels with a convolutional module. “Avgpool” refers to the average pooling layer;
the parameter is the feature length after pooling. The fully connected module has a fully
connected layer (FC), BN layer, ReLU activation layer, and dropout layer. The parameter
of the FC is the dimension of its output, and the parameter of the dropout layer is the
dropout ratio.
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Table 3. The hyperparameters of R-REMIND.

Parameter Symbol Value

Kernel size of the large convolutional layer ks 9 × 1

Stride of the large convolutional layer s 8

Number of channels of the large convolutional layer c 32

Structure of the combination module blocks 000001000001

Output feature dimensions of the average pooling layer na 8

Number of neurons in the fully connected layer fcs (64, 128)

Dropout ratio of the fully connected layer drs (0.5, 0.5)

Number of codebooks m 32

Size of codebooks k 256

Buffer size BS 10,000

Replay ratio rr 0.5

Batch size bs 128

Training times epoch 300

Weight decay ratio wd 10−5

Learning rate lr 0.01

Table 4. Parameters of R-REMIND.

Network Module Parameter Output Size No.

Feature
extraction
network

Large convolutional layer Conv (9, 8, 4, 32) 320 × 1 × 32 1

Pooling layer #1 Maxpool (2, 2, 0, 32) 160 × 1 × 32 1

1D IR-A #1

Conv (1, 1, 0, 16) + BN + ReLU

Conv (1, 1, 0, 32) 160 × 1 × 32 5

Conv (1, 1, 0, 16) + BN + ReLU
Conv (3, 1, 1, 16) + BN + ReLU

Conv (1, 1, 0, 16) + BN + ReLU
Conv (5, 1, 2, 16) + BN + ReLU

Conv (1, 1, 0, 16) + BN + ReLU
Conv (7, 1, 3, 16) + BN + ReLU

1D IR-B #1

Conv (1, 2, 0, 16) + BN + ReLU

80 × 1 × 64 1
Conv (3, 2, 1, 16) + BN + ReLU

Conv (5, 2, 2, 16) + BN + ReLU

Conv (7, 2, 3, 16) + BN + ReLU

1D IR-A #2

Conv (1, 1, 0, 32) + BN + ReLU

Conv (1, 1, 0, 64) 80 × 1 × 64 5

Conv (1, 1, 0, 32) + BN + ReLU
Conv (3, 1, 1, 32) + BN + ReLU

Conv (1, 1, 0, 32) + BN + ReLU
Conv (5, 1, 2, 32) + BN + ReLU

Conv (1, 1, 0, 32) + BN + ReLU
Conv (7, 1, 3, 32) + BN + ReLU

1D IR-B #2

Conv (1, 2, 0, 32) + BN + ReLU

40 × 1 × 128 1
Conv (3, 2, 1, 32) + BN + ReLU

Conv (5, 2, 2, 32) + BN + ReLU

Conv (7, 2, 3, 32) + BN + ReLU
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Table 4. Cont.

Network Module Parameter Output Size No.

Classification
network

Pooling layer #2 Avgpool (8) 8 × 1 × 128 1

Fully connected module #1 FC(64) + BN + ReLU + Dropout (0.5) 64 1

Fully connected module #2 FC(128) + BN + ReLU + Dropout (0.5) 128 1

Fully connected layer FC(3) 3 1

4.3. Evaluation Metrics

Accuracy (Acc) and backward transfer (BWT) were used to assess model performance
in terms of fault diagnosis and forgetfulness during continuous learning. We averaged the
values of 10 experiments. Acc is the average diagnostic accuracy at each stage:

Acc =
1
T

T

∑
i=1

i

∑
j=1

Ri,j/i (7)

where Ri,j is the accuracy of the model that completes training task i on the test set of task
j and T is the total number of tasks. BWT is a common indicator of incremental learning,
and it is usually negative. The smaller the value, the greater the forgetfulness:

BWT =
1

T − 1

T−1

∑
i=1

RT,i − Ri,i (8)

4.4. Results and Analysis
4.4.1. Visualization of Reconstructed Features

The index-based buffer module provides reconstructed historical features when the
networks learn later tasks, thus reducing data forgetting. The quality and reliability of
replayed reconstructed features are very important. Using the data of Task 1 as an example,
the spectra of real features extracted from healthy bearings, from bearings with inner and
outer race faults, and from their counterparts reconstructed during continuous learning are
shown in Figure 7. Each subgraph contains two feature spectra; the spectrum on the left
is that of a real feature and that on the right is for a reconstructed feature from the same
sample. During incremental learning, the reconstructed features of all classes become very
similar to the real features.

Figure 7. Cont.
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Figure 7. Feature spectra of real and reconstructed features from Task 1 data after the model has
learned Task 1 (first column), Task 2 (second column), and Task 3 (third column). (a–c) Healthy;
(d–f) inner faults; (g–i) outer faults.

We used t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduc-
tion to show the distributions of reconstructed and real features during training. Taking
Task 1 as an example, the distributions at each stage are shown in Figure 8, where the
subscript i denotes the distribution comparison after the model completely learns Task i.
In each subplot, the left panel shows the distribution of real features and the right panel
shows the distribution of reconstructed features; the distributions are very similar. The
same results were obtained for other tasks (Figure 8). The reconstructed features are reliable
and representative of the historical data.

Figure 8. Cont.
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Figure 8. Distributions of reconstructed and real features from Task 1 data: (a) comparison 1;
(b) comparison 2; (c) comparison 3.

4.4.2. Visualization of Training

The distributions of task data are shown in Figure 9; the green points are signals from
healthy bearings and the blue and red points are signals from inner and outer race faults,
respectively. The Task 3 data are more similar to the Task 1 than the Task 2 data, indicating
that our method reduces catastrophic forgetting after the Task 3 data have been learned
during the continuous process.

Figure 9. Distributions of task data: (a) healthy data of Task 1, (b) inner fault data of Task 1, (c) outer
fault data of Task 1, (d) healthy data of Task 2, (e) inner fault data of Task 2, (f) outer fault data of
Task 2, (g) healthy data of Task 3, (h) inner fault data of Task 3, and (i) outer fault data of Task 3.
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To emphasize the incremental nature of learning from vibration signal features, the
output results of the main modules were visualized. The Task 1 output data of the first five
1D IR-A modules (at different stages) are shown in Figure 10. In the first two columns, the
change is negligible. The residuals of several 1D IR-A modules are near zero; the model
degenerates into a shallow neural network because the learned data are simple. However,
in the third column, comparison of (c) and (f) shows that the residual learned by the second
1D IR-A module is no longer near zero when handling complicated data, and the shortcut
enhances generalizability.

Figure 10. Task 1 outputs of the first five 1D IR-A modules after the model has learned Task 1 (first
column), Task 2 (second column), and Task 3 (third column) data: (a–c) 1D IR-A module 1; (d–f) 1D
IR-A module 2; (g–i) 1D IR-A module 3; (j–l) 1D IR-A module 4; (m–o) 1D IR-A module 5.
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As shown in Figure 11, the 1D IR-B module outputs indicate that the model can
distinguish all healthy signals (green) from faults (blue and red). After the second 1D
IR-B module, most inner and outer race defects are distinguished. Figure 12 shows the
classification results where the outputs are visualized. Almost all of the signals from the
three classes are distinguished. As the model learns new task data, there is some overlap
between inner and outer race faults, which reflects mild forgetting.

Figure 11. Outputs of the first five 1D IR-B modules for Task 1 data after the model learned Task 1
(first column), Task 2 (second column), and Task 3 (third column) data: (a–c) 1D IR-B module 1;
(d–f) 1D IR-B module 2.

Figure 12. Outputs of the model for Task 1 data, (a) after learning Task 1, (b) Task 2, and (c) Task 3.

4.4.3. Model Results

The results of 10 runs of R-REMIND, which continuously and sequentially learned
the data of tasks, are shown in Table 5. In the Task 1 row, the first number is that obtained
for the Task 1 test set after the model had finished learning Task 1 data, and the second
and the third numbers are the results for the Task 1 test set after the model had learned
the Task 2 and 3 data, respectively. When the model learns the data of Task 1, the Task 2
data are invisible; the Task 2 row thus shows only two numbers (the test results obtained
using the data of Tasks 2 and 3, respectively). The Task 3 row is similar. The average Acc
is 98.05% and the average BWT is −3.89%. The Test set 1 accuracy is over 99.63% when
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the model has learned the Task 1 data, but drops slightly when the Task 2 data are learned.
However, accuracy tended to improve after the model had learned Task 3 because Tasks 1
and 3 are similar. For Task 2, a small amount of catastrophic forgetfulness is apparent.

Table 5. Classification results of R-REMIND (%).

Object
Experiment Number

Average
1 2 3 4 5 6 7 8 9 10

Task 1
99.88 99.63 99.75 99.88 99.94 99.81 99.81 99.81 99.63 99.88 99.8

98 97 97 97.81 96 95.19 94.44 97.69 96.56 98.06 96.78
96.75 99.25 99.75 99.75 99.31 99.63 99.75 98.88 99.06 99.5 99.16

Task 2
100 99.88 100 99.94 99.88 99.94 99.63 99.81 99.94 99.81 99.88

91.38 95.56 93.94 95.31 98.5 89.38 88.75 92.13 87.63 94.75 92.73

Task 3 99.94 99.94 99.94 99.88 99.69 100 99.94 100 100 99.94 99.93

ACC 97.66 98.54 98.4 98.76 98.89 97.33 97.05 98.05 97.14 98.66 98.05

BWT −5.88 −2.35 −3.03 −2.38 −1.01 −5.37 −5.47 −4.31 −6.44 −2.72 −3.89

4.4.4. Results

To optimize bearing diagnosis, we used several models for comparison. We also
removed R-REMIND modules in a stepwise manner to verify the effectiveness of each
component. The results are shown in Table 6. Models 1 and 2 have different feature
extraction networks. Model 1 uses a common CNN structure with three convolutional
layers and two maxpooling layers. The parameters are those of a common feature extraction
network [33]. Feature extraction of Model 2 is based on the ResNet-18 network using 1D
rather than 2D convolutional layers. Model 3 is the same as R-REMIND, except that
historical learned features are directly stored and replayed, where indices derived via
product quantization are not used. Models 4–7 lack various R-REMIND modules, i.e., the
1D IR-A, 1D IR-B, fully connected, and buffer modules. All experiments were repeated
10 times.

Table 6. Classification results (%).

Model Methods Acc BWT

R-REMIND R-REMIND (our model) 98.05 ± 0.70 −3.89 ± 1.84
Model 1 CNN-based feature extraction network 97.66 ± 0.77 −4.74 ± 2.01
Model 2 ResNet-based feature extraction network 96.38 ± 0.72 −6.82 ± 2.21
Model 3 Feature-based buffer module 97.28 ± 0.81 −6.11 ± 2.07
Model 4 Without the 1D IR-A module 97.29 ± 0.80 −5.09 ± 2.39
Model 5 Without the 1D IR-B module 97.33 ± 0.68 −5.80 ± 1.95
Model 6 Without the fully connected module 96.69 ± 0.60 −7.46 ± 1.77
Model 7 Without the buffer module 97.25 ± 0.49 −6.20 ± 0.96

Table 6 shows that R-REMIND had the highest average accuracy (98.05%) and best
BWT (–3.89%). Compared to Models 1 and 2, the combination of the 1D IR-A and 1D IR-B
modules improved feature extraction from 1D bearing vibrational data. R-REMIND and
Model 1 are both better than Model 2, indicating that a convolutional layer with a large
kernel effectively extracts raw bearing data. As the parameters of the feature network are
constantly updated, Model 3 may have cached more outdated features than R-REMIND.
Furthermore, if features are stored as floating point numbers, the memory requirement is
much larger than that of the indices. The Acc and BWT values of the remaining ablation
models (Models 4–7) are also inferior to those of R-REMIND, emphasizing the necessity of
the effectiveness of all R-REMIND components.
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5. Conclusions

This study introduced R-REMIND, a novel incremental learning model that diagnoses
bearing faults. The model includes feature extraction and classification networks, and
a buffer module. The network is trained using both new and reconstructed (from the
buffer) data, to reduce performance degradation during the recognition of old task data.
The performance of our R-REMIND model was verified using a dataset from Paderborn
University. Acc and BWT were used to measure performance. R-REMIND provided the
best Acc and BWT (98.05 and −3.89%, respectively).

In the future, we will combine our method with other incremental learning schemes to
further alleviate catastrophic forgetting. We will aim to improve the feature extraction and
classification networks to include class incremental learning, and we will add an anomaly
detection algorithm for online bearing monitoring.
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