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Abstract: The objective of this paper is to present a novel, hybrid group multi-criteria decision ap-
proach that can be used to evaluate alternatives for the optimal synthesis of loader drive mechanisms.
In most product design engineering groups, experts have expertise in different areas and robust
decision-making is necessary to integrate a number of opposing opinions, attitudes, and solutions.
This study presents the application of an integrated approach for decision-making, i.e., the generation
of a robust decision-making rule for group decision-making (RDMR-G) by combining different multi-
criteria decision-making (MCDM) methods and Taguchi’s robust quality engineering principles. The
basic idea behind this article was to create an approach that enables the comprehensive and robust
consideration of expert opinions given the existence of numerous objective and subjective methods
for determining the criteria weights, which are crucial to the final ranking of alternatives in any
decision-making problem. In order to set the optimal configuration of a loader drive mechanism,
five experts, all with a high level of experience and knowledge in this field, considered twenty-six
different kinematic chain construction solutions, i.e., alternatives, and evaluated them with respect to
six criteria. The obtained results and rankings provided by each expert and each criteria weighting
method were compared using Kendall’s τb and Spearman’s ρ tests. As an example, this paper
demonstrates the practical application of a RDMR-G approach and in doing so contributes to the
literature in the fields of product design engineering and decision-making.

Keywords: optimal synthesis; loader mechanisms; Taguchi’s S/N ratio; robust decision-making

1. Introduction

Structural engineering design optimization, evaluation, and decision-making are very
important in product development. Engineering design is the process of configuring an
artefact so that the performance attributes of the chosen solution meet functional require-
ments [1]. As structural engineering design problems are usually of a multi-objective
nature, they require a trade-off between several conflicting objectives. In such a process,
numerous design solutions can be generated, and multi-criteria decision-making (MCDM)
has been recognized as an appropriate approach for selecting the “best” design concept
from a set of alternative variants [2,3]. MCDM methods are used for the generation of a
decision rule based on which set of given alternatives are evaluated according to differ-
ent criteria with corresponding criteria weights [4]. Design engineers have to consider
different criteria, such as those related to functionality, quality, economy, ergonomy, man-
ufacturability, maintainability, reliability, etc., and to determine their relative importance
levels, i.e., via by establishing criteria weights through the use of subjective or objective
approaches. The assessment of an expert can greatly influence the alternative product
design solution. Therefore, during the conceptual engineering design phase of product
development, solving structural design problems involves the adoption of collaborative
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decision-making processes by engineering groups. In such engineering groups, experts
have expertise in different areas and robust group decision-making is necessary to integrate
opposite opinions, attitudes, and solutions. Such an approach requires the application
of mathematical aggregators for obtaining an aggregated initial decision-making matrix
or criteria weights. To the best of the authors’ knowledge, some widely used traditional
aggregators are the arithmetic mean operator [5], geometric mean operator [6], Dombi
aggregators [7], Bonferroni aggregators [8], Einstein and Hamacher operators [9], power
aggregation operators [10], and Heronian aggregation operators [11].

The determination of criteria weights is one of the key problems that arises in MCDM
models of mechanical systems evaluation. Defining the criteria weights is not an easy task,
and, in essence, depends on the subjective attitudes of design engineers. Depending on the
method of solving the MCDM problem, the influence of criteria weights on the obtained
solution also changes, and even a small change in their values can lead to a change in the
ranking of alternative product design solutions. In addition to the fact that there is no
single definition of the term criteria weights, the problem of their determination is further
complicated by insufficient knowledge of the possible methods for their determination
in a specific decision-making situation. Different approaches for determining criteria
weights have been the subject of research and scientific discussions for years. It is possible
to find more developed approaches for their determination in the literature [12–19]. Put
simply, most approaches are either subjective or objective. Subjective approaches determine
criteria weights based on information obtained from the decision-maker or from the experts
involved in the group decision-making process. This approach reflects the subjective
opinion, knowledge, and expertise of the decision-maker and thus the decision-maker
directly influences the outcome of the decision-making process. Objective approaches
determine criteria weights based on the information contained in the decision matrix,
specifically considering only attribute values, using certain mathematical methods, and,
therefore, objective approaches ignore the opinion of the decision-maker.

Several industrial case studies for assessing the efficiency of multi-criteria decision-
making-based conceptual engineering design models have been presented in the literature.
Among them, different multi-criteria decision-making approaches have been employed:
the fuzzy analytic hierarchy process (F-AHP), the fuzzy technique for order of preference by
similarity to ideal solution (F-TOPSIS), decision-matrix logic, the fuzzy weighted average
(FWA) approach, and the fuzzy grey relational analysis (F-GRA), etc.

In research undertaken by Sreeram and Katti [20], a MCDM model using the AHP
and trade off solutions such as Nash, Kalai–Somordinsky solution was proposed in the
context of machine structure design. Also, in research undertaken by Renzi and Leali,
the application of a MCDM-based design platform was demonstrated in a context of
group selection of the most suitable conceptual design of mechanical components [21]. The
proposed platform integrated F-TOPSIS and multiple objective particle swarm optimization
for solving problems related to the conceptual design. An industrial case study of the
conceptual design of heel tips for women’s shoes was used to highlight the efficiency of
this modelling platform. Oladejo et al. [22] developed a computer-based model for the
evaluation of design concept using decision-matrix logic. They presented a model as a
logical procedure for the evaluation of design concepts considering specified attributes
and their relative importance. The computer model was developed using the Visual Basic
platform that runs in the Microsoft Windows environment, and the implementation of
the package was demonstrated on the evaluation of concepts in the design of a low-cost
simple gearbox for a special purpose machine. Similarly, Hung et al. [2] presented a
computer-based information system called the performance assessing decision support
system (PSDSS), which uses an enhanced FWA approach to handle linguistic as well as
ordinary quantitative information in engineering design processes. The leading-in device
of a button-sewing machine in a costume-machine factory was used as an example to
demonstrate the efficiency of the developed MCDM approach. The FWA approach coupled
with F-AHP was used by Olabanji and Mpofu [23] to develop a novel hybridized model
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for the identification of an optimal design for a reconfigurable assembly fixture from a set
of alternative design concepts. The same authors, one year later, presented a model for
the identification of optimal conceptual designs by hybridizing the F-AHP and F-GRA
methods [24]. In both papers, the F-AHP method was used for the determination of
design features and sub-features weights, and FWA/F-GRE were used for the ranking of
design concept.

Moreover, in the literature, other decision support techniques for structural engi-
neering design evaluations can be found, such as feasibility judgment, the principle of
maximum entropy, pairwise comparisons, and prototype testing.

Considering the above literature review, it is obvious that researchers and engineers
attempted to apply different hybrid MCDM approaches in order to analyze the ranking
stability and sensitivity of criteria weight changes. In recent years, special attention has
been paid to hybrid approaches which combine the application of different methods for
solving a decision-making problem in order to take advantage of the strengths of each
single particular method and minimize their weaknesses [25]. One instance of this idea can
be found in research undertaken by Brauers and Zavadskas [26], where it was indicated that
“the use of two different MCDM methods is more robust than the use of a single method;
the use of three methods is more robust than the use of two, etc”. This idea was further
elaborated by Petrovic et al. [4] through the development of an approach to generating a
robust decision-making rule (RDMR) for solving different transport and logistics decision
making problems. In that paper, the authors concluded that no single MCDM method can
be hailed as a superior method for all decision-making problems and no method can be
considered as being the most insensitive to criteria weight changes. They suggested that a
combination of several theoretical backgrounds behind MCDM methods could provide a
more comprehensive and robust decision rule.

Based on these research findings, the application of an integrated approach to decision-
making, i.e., the generation of a robust decision-making rule for group decision-making
(RDMR-G) by combining different MCDM methods and Taguchi’s robust quality engi-
neering principles, is presented in this paper. The validation of the proposed RDMR-G
approach was realized through the evaluation of alternatives for the optimal synthesis of
loader drive mechanisms, so that the selected alternative satisfied the basic goal function,
i.e., maximum performance with minimal loss of power during the operation of the loader.

Mobile machines of all sizes are characterized by several manipulators that consist of
kinematic chains with linkage elements connected by rotating kinematic pairs, i.e., fifth-
class joints [27]. Manipulator drive mechanisms chines are comprised of manipulator
kinematic pairs linked directly or indirectly to two-way hydraulic cylinders.

A very important and complex class of mobile machines are loaders, with their basic
function being to transport bulk material by performing repetitive loading cycles. The
basic loader cycle consists of the following operations: the loading and digging of material,
transfer, unloading, and returning to a new position. Several configurations of the kinematic
chains of the loader mechanism have been developed to perform the basic functions, but
concept which employs Z kinematics in the drive mechanisms has been distinguished
among them as the most dominant model existing in the construction industry. Z kinematics
mechanisms consist of the arm mechanism and the bucket mechanism being interconnected
with hydraulic cylinders and levers. The bucket mechanism usually consists of one hydro-
cylinder, which on one side is connected via a direct link to the frame of loader and on the
other side is connected to the bucket via a two-arm lever and rod. The whole structure forms
a configuration in the shape of the letter Z, from which the kinematics of the mechanism
takes its name. A mathematical model of the Z kinematics manipulator for dynamic analysis
and kinematic parameter optimization of the drive mechanisms, with the aim of minimizing
the power consumption during the material loading operation, was presented in paper [28].
The concept of optimal synthesis in relation to loader drive manipulator mechanisms is
presented in papers [27,29]. The first paper, [27], presents an optimal synthesis procedure
using multi-objective optimization via the application of a genetic algorithm. The authors
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defined three conflict objective functions and a set of optimization constraints, based on
which a Pareto set of solutions was obtained, but how to choose the unique configuration of
the manipulator mechanism was not demonstrated. In the second paper, [29], the authors
used a single objective optimization approach to optimize loader drive mechanisms. They
developed the mathematical model that defines the cycle time criterion as one of the
possible criteria for optimization. Similarly, Shen et al. [30] suggested the weighted total
objective function as an approach to encompass six sub-objective functions.

All these approaches can be classified as a priori techniques where compromise
between conflicting requirements has to be made according to (pre-defined) preferences of
criteria. These approaches include the preferences involved in the optimization process,
usually by transforming the multi-objective problem into a single-objective problem. On
the other hand, RDMR-G can be used as a posteriori decision making tool, where each
Pareto solution represents an alternative in MCDM. Through the application of the RDMR
approach, a robust differentiation between loader drive manipulator mechanisms can be
made based on the preferences which are considered during a-posteriori analyses of the
optimization results.

The rest of paper is structured as follows: In Section 2, the three-phase process of the
multi-criteria synthesis of loader manipulator drive mechanisms is presented; Section 3
describes the applied methods and the proposed RDMR-G approach in a decision-making
context. Section 4, named “Results and discussion”, explains the main finding of this
research and the final robust ranking that was determined using the proposed RDMR-G
approach. Finally, Section 5 provides concluding remarks as well the advantages and
limitations of the study.

2. The Process of Optimal Synthesis of Loader Manipulator Drive Mechanisms

The process of the synthesis of loader manipulator drive mechanisms implies the
multi-criteria synthesis approach because of the complexity of the functions and structure
of drive mechanisms. In principle, the synthesis determines the transmission and executive
parameters and the parameters of the mechanism’s structure on the basis of the given
operating conditions parameters (the input parameters) and performance parameters (the
output parameters of the mechanisms).

The process of the multi-criteria synthesis of loader manipulator drive mechanisms
has three phases:

• Phase 1: generation of variant solutions for mechanisms;
• Phase 2: the definition of the synthesis criteria;
• Phase 3: the evaluation and selection of the variant solutions for mechanisms using

the proposed RDMR approach.

2.1. Generation of Variant Mechanism Solutions

During the first phase of mechanism synthesis, a mathematical model, an algorithm,
and software for the generation of possible variant solutions for Z kinematics manipulator
drive mechanisms were developed. The search area includes transmission parameters,
namely the coordinates of joints and the lengths of the transmission levers of mechanisms,
and executive parameters: the sizes of hydraulic cylinders of mechanisms.

The developed program first generates the transmission parameters of the mechanisms
using a genetic algorithm. It then generates the executive parameters of the mechanisms by
sequentially searching the file of available discrete standard cylinder sizes (generate and
test method). The transmission parameters are generated based on the objective function
defined according to the requirement for the maximum functional dependence of the
manipulator mechanisms.

Variants of mechanisms are generated with limitations related to the kinematics of
mechanisms in manipulator limit positions, the allowed characteristics of the hydraulic
cylinders of manipulator mechanisms, the required driving moments of mechanisms, and
the given declared bucket breaking force.
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At the beginning of the process of generating variant solutions, a set of parameters is
given (Equation (1) and Figure 1):

Pm =
∣∣V, Xi, Yi, αi, Yd, Yt, αt, tp, ti, ts, Fd, pmax

∣∣ (1)

where V is the bucket volume, Xi, Yi, Yd, Yt are the working area of the manipulator, αt, αi
are angles of the bucket position during transport and unloading, tp, ti, ts is the time of
operation for the manipulation task, Fd is the declared bucket breaking force, and pmax is
the maximum pressure of the manipulator hydrostatic drive system.
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According to the given input set of parameters, based on the developed mathematical
model of the loader, a set of possible variant solutions for manipulator drive mechanisms
is generated:

Ev = |E3v, E4v|∀ v = 1, . . . nv (2)

where E3v–is the possible variant of the arm mechanism, E4v is the possible variant of the
bucket mechanism, and nv is the number of the possible variants.

The variants of the loader manipulator mechanisms are generated, according to the
defined mathematical model of the loader, by searching the possible range of parameter
changes (optimization areas) and selecting the possible variant solutions according to
certain generation constraints.

2.1.1. Generation of Searching Area

Two types of variables occur in the synthesis of manipulator drive mechanisms:

• Continuous variables (transmission parameters): the coordinates of joints and lengths
of mechanisms levers, which are included in the following sets:

E3vp =
{

e3j
}
∀ j = 1, . . . , 4; E4vp =

{
e4j
}
∀ j = 1, . . . , 10 (3)

• Discrete variables (executive parameters): the diameters of pistons and rods of hy-
draulic cylinders of manipulator drive mechanisms:

E3vt =
{

e3j
}
∀ j = 5, 6; E4vt =

{
e4j
}
∀ j = 11, 12 (4)

The area of generation (optimization) is the possible changes in the transmission
parameters of mechanisms in the range:

e3j min ≤ e3j ≤ e3j max∀ j = 1, . . . , 4; e4j min ≤ e4j ≤ e4j max∀ j = 1, . . . , 10 (5)
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And executive parameters that belong to the file Dc of available hydraulic cylinders
with standard piston and connecting rod diameters:

e3j ∈ Dc∀ j = 5, 6 ; e4j ∈ Dc∀ j = 11, 12 (6)

where e3j min, e4j min, e3j max, e4j max are minimum and maximum values of the transmission
parameters the mechanisms that are given according to the possible installation space and
undisturbed relative movement of the members of the manipulator drive mechanisms in
relation to the members of the loader kinematic chain.

2.1.2. The Procedure of Variant Solutions Generation

In the first part of the program, the transmission part of the mechanisms is generated
(the coordinates of the joints and the kinematic length of the mechanism members) using a
genetic algorithm by searching the given optimization area. The possible variant solutions
for the mechanism’s transmission part are selected by the set of geometric constraints
considering the relative position of the mechanism’s members in certain positions of the
manipulator and by the defined objective functions related to the transmission functions of
the mechanisms.

In the second part of the program, the transmission part of the mechanisms is added
to the executive part by the choice of the actuators (hydraulic cylinders) using a discrete
search of the available sizes of hydraulic cylinders with standard diameters with regard to
the piston and connecting rod. The constraints that are set when the executive part of the
mechanisms is being chosen, and these refer to the allowed characteristics and possibilities
of the hydraulic cylinders: the given declared breaking force and the required driving
moments of the mechanisms.

As an example, using the developed program, possible variant solutions for the drive
mechanisms of a loader manipulator with Z kinematics, with a mass m = 15, 000 [kg]
and bucket volume V = 2.7

[
m3], were generated. The initial solution corresponds to the

physical model of the wheel loader WA320 (manufactured by Komatsu company), according
to which the search areas for the variable transmission parameters of the mechanisms were
determined. The file Dc of hydraulic cylinders that was used for searching the executive
parameters of the mechanisms was formed according to the available hydraulic cylinders
from Bosch Rexroth and Liebherr companies.

2.1.3. Analysis of Generated Variant Solutions

The generated set of possible variants of Z kinematics manipulator mechanisms
shows that arm and bucket mechanisms (Tables 1 and 2) have different transmission and
executive parameters.

The generated parameters of the arm mechanism are given in Table 1, and shown
in Figure 2, where b3, β3 are the coordinates of the joint O23, where the arm hydraulic
cylinder is connected to the front member, L2, of the moving mechanism, defined in the
local coordinate system of the member L2; a3x, a3y are the coordinates of the joint O33, where
arm hydraulic cylinder is connected to the arm L3, defined in the local arm coordinate
system; D3, d3 are the diameter of the piston and connecting rod of the arm hydraulic
cylinder; c3 min is the minimum (initial) length of the arm hydraulic cylinder; c3 max is the
maximum (final) length of the arm hydraulic cylinder; and nc3 = 2 (in all variants), i.e., the
number of arm hydraulic cylinders.
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Table 1. Variant solutions for the arm drive mechanism.

E3v

Transmission
Parameters 1–4

Executive
Parameters 5,6

Additional
Parameters

b3, β3 a3x a3y D3 d3 c3 min c3 max nc3

[mm] [◦] [mm] [mm] [mm] [mm] [mm] [mm] [-]

3.001 524 269.7 1655 −129 125 90 1340 2058

2

3.014 495 259.7 1498 55 125 80 1335 1945

3.020 482 262.6 1614 −15 125 80 1402 2028

3.026 575 262.6 1602 −28 110 80 1361 2097

3.028 583 263.5 1682 −81 110 80 1410 2172

3.033 380 261.9 1604 −16 140 90 1431 1930

3.036 1633 262.3 512 −109 125 90 1330 2031

3.051 343 262.1 1612 −26 150 100 1449 1904

3.053 481 262.8 1655 −23 125 90 1438 2066

3.064 367 262.5 1662 0 140 90 1491 1976

3.095 498 262.6 1628 −16 125 90 1410 2056

3.108 362 267.4 1360 −86 150 100 1179 1618

3.111 621 263.5 1691 −91 110 80 1404 2213

3.117 413 262.7 1667 0 140 90 1474 2018

3.135 524 285.2 1764 −115 125 90 1340 2073

3.147 370 262,4 1658 0 140 90 1487 1974

3.150 486 262.6 1633 −19 125 90 1418 2049

3.178 335 284.7 1434 −78 150 100 1183 1629

3.223 449 260.5 1538 27 125 80 1366 1936

3.236 595 263,1 1657 −7 110 80 1390 2161

3.245 338 262.4 1668 12 150 100 1511 1958

3.267 482 260,3 1526 36 125 80 1353 1956

3.271 614 263,4 1686 −95 110 80 1401 2202

3.278 587 263.3 1689 −78 110 80 1418 2184

3.290 475 262.5 1750 −150 125 90 1508 2145

3.295 475 262.5 1750 150 125 90 1585 2182

The generated parameters of the bucket mechanism are given in Table 2, where: b4, β4
are the coordinates of the joint O24, where the bucket hydraulic cylinder is connected to
the front member, L2, of the moving mechanism defined in the local coordinate system
of the member L2; x35, y35 are the coordinates of joint O5, where the arm is connected
to the two-arm lever defined in the local coordinate system of the arm L3; a4, α4 are the
coordinates of the joint O46, where lever L6 is connected to the bucket; a54 is the length of
the arm of the two-arm lever, L5, which is connected to the bucket hydraulic cylinder C4;
a56 is the length of the arm of the two-arm lever, L5, which is connected to the arm L6; α5
the angle between the arms of the two-arm lever L5; a6 is the length of the arm L6; D4, d4 is
the diameter of the piston and connecting rod of the bucket hydraulic cylinder C4; c4 min is
the minimum (initial) length of the bucket hydraulic cylinder; c4 max is the maximum (final)
length of the bucket hydraulic cylinder; and nc4 = 1 (in all variants), i.e., the number of
bucket hydraulic cylinders.
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Table 2. Variant solutions for the bucket drive mechanism.

E4v

Transmission
Parameters 1–10

Executive
Parameters 11,12 Additional Parameters

b4/β4 x35 y35 a4/α4 a54 a56/α5 a6 D4 d4 c4 min c4 max nc4

[mm/◦] [mm] [mm] [mm/◦] [mm] [mm/◦] [mm] [mm] [mm] [mm] [mm] [-]

4.001 293/314.6 1703 577 369/88 720 751/15.1 756 150 100 1340 1897

1

4.014 252/341.3 1742 632 270/84.2 764 784/10.7 643 160 100 1440 1815

4.020 325/342.8 1748 614 348/85.8 700 735/16.2 757 140 90 1349 1818

4.026 259/340.7 1739 631 287/84.1 763 814/10.9 631 170 115 1412 1798

4.028 235/350.1 1622 657 253/86.4 834 849/11.7 676 180 115 1329 1688

4.033 251/347.9 1627 637 267/86.3 839 853/11.8 675 160 110 1299 1675

4.036 300/342.5 1750 633 320/85 749 779/13.7 690 150 100 1385 1822

4.051 250/342.5 1725 633 270/85 763 793/10 650 170 110 1433 1803

4.053 275/342.5 1650 527 295/90 720 750/10 730 150 100 1241 1647

4.064 300/342.5 1700 607 320/90 820 850/11.8 650 150 100 1297 1736

4.095 325/342.5 1775 620 345/85 706 736/15.6 730 140 100 1379 1849

4.108 250/340.6 1703 577 300/95 647 840/6.1 637 180 125 1397 1727

4.111 250/342.5 1675 633 270/85 806 836/10 650 170 115 1372 1742

4.117 400/342.5 1675 607 445/85 763 793/11.8 850 125 90 1258 1840

4.135 293/314.6 1703 577 355/88 720 751/15.1 756 150 100 1393 1862

4.147 250/342.5 1650 567 270/90 791 821/11.8 650 160 100 1238 1615

4.150 275/342.5 1650 553 295/90 791 821/10 670 160 100 1231 1640

4.178 295/325 1695 570 360/88 740 850/15.1 663 150 100 1411 1706

4.223 300/342.5 1675 607 320/85 763 793/15.6 730 150 100 1258 1699

4.236 263/347.9 1635 626 278/86 826 858/11.9 667 170 110 1271 1656

4.245 345/342.2 1750 608 366/86.3 718 746/16.1 759 140 90 1326 1825

4.267 250/351.6 1600 660 270/85 806 836/11.8 730 170 115 1314 1687

4.271 350/351.6 1675 660 370/90 806 836/19.3 750 140 100 1212 1719

4.278 275/342.5 1775 647 295/85 734 764/17.5 670 160 100 1406 1813

4.290 250/351.6 1600 687 270/85 820 850/17.5 730 160 100 1271 1648

4.295 275/342.5 1675 567 295/90 777 807/13.7 670 150 100 1232 1642

2.2. Definition of Synthesis Criteria

In the different stages of a product lifecycle (PLC) there are numerous criteria by
which the products are evaluated. In the case of the development of an actual product, a
number of criteria related to technical issues, economy, ergonomics, controllability, and
environmental issues must be considered. Among these, some criteria might be specific
for a particular PLC stage, while others may be relevant across several stages. In this
study, the focus was on the first (design) phase of product development, considering only
technical criteria. Those criteria were defined according to the conditions of the problem
being considered. Based on the literature review [27–29], the authors’ knowledge of the
field of the design of mobile machines design and the experts’ attitudes obtained through a
survey, a kinematic criterion, a criterion of directed digging force, a tribological criterion, a
time criterion, a mass criterion, and a dynamic criterion were singled out as relevant for the
optimal synthesis of loader drive mechanisms. The defined criteria are independent of each
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other because they reflect different aspects of the engineering design process (kinematics,
dynamics, power, mass, tribological aspect, etc.).
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aries of search range of joints coordinates.

• The kinematic criterion, C1, was defined with the aim of ensuring that during the
operation of material transfer, when a full bucket with material is lifting from the
transport to the unloading position, the bucket back angle in relation to the ground
base deviates minimally from the given transport angle to prevent the spillage of
bucket loaded material.

• The criterion of directed digging force, C2, was defined with the aim of achieving
maximum digging forces in the zone of the manipulator working area harmonized
with potential loader stability. As an indicator of the criteria, the directed digging force
was defined based on the possible digging forces determined in the entire working
area of the manipulator corrected by the loading position factor and direction factor of
the digging force in relation to the cutting edge of the bucket.

• The tribological criterion, C3, is defined with the aim of minimizing energy losses
caused by friction in the kinematic chain joints and manipulator drive mechanisms. It
reflects the energy efficiency of the manipulator drive mechanisms. The indicator of
the criterion is determined according to the power losses caused by the manipulation
tasks of the loader in the entire working area of the manipulator.

• The time criterion, C4: The duration of the operation of the loading, transport, and
unloading of material with a bucket is determined as an indicator of the criteria in order
to achieve the maximum technical performance of the loader with the manipulator
drive mechanisms. It is assumed that the hydraulic cylinders of the drive mechanisms
of the manipulator are supplied by a hydraulic pump of variable specific flow with
regulation of the hydraulic flow according to the criterion of constant hydraulic power.

• The manipulator mass criterion C5 was determined with the aim of ensuring that
the mass of the members of the kinematic chain and the drive mechanisms of the
manipulator are minimal. The indicators of the criteria are the relative mass of the
actuators of the drive mechanisms and the nominal mass of the arm and the levers of
the manipulator bucket mechanism, as determined by the transmission and executive
parameters of the mechanisms.

• The dynamic criterion C6 refers to the influence of the parameters of the drive mecha-
nisms of the manipulator on the dynamic stability of the loader. As an indicator of
the criterion, the vertical movement of the support-moving member of the kinematic
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chain of the loader caused by the movement of the kinematic chain members of the
manipulator in the loader dynamic model is taken. The hydraulic cylinders of the
manipulator drive mechanisms are modeled as elastic-damping elements since they
act as “hydraulic springs” under load.

3. Applied Methods and Proposed RDMR-G Approach

A number of hybrid MCDM approaches have been developed in recent years to make
choices more objective and rational. Approaches which combine several MCDM methods
are distinguished among them. In this paper, an approach to the determination of criteria
weights via the integration of different MCDM methods using Taguchi’s robust quality
engineering principles is presented. A short description of the MCDM methods used for
generation of the proposed RDMR-G approach is provided in this section.

3.1. Applied Methods to Criteria Weights Determination
3.1.1. Fuzzy Analytic Hierarchy Process

The analytic hierarchy process (AHP) method, proposed by Saaty [31], has certainly
become one of the most widely used MCDM methods in recent years. It is characterized by
its ease of use and its ability to structure problems systematically and calculate both criteria
weights and alternative priorities [13]. The fuzzy analytic hierarchy process (F-AHP), as
an extension of the conventional AHP in the form of the integration of the fuzzy number
and AHP method, was introduced by Van Laarhoven and Pedrycz [32], Buckley [33], and
Chang [34]. Today, examples of the application of F-AHP are numerous. According to
the electronic database Elsevier’s Science Direct, there has been a significant increase in
the applications of the F-AHP method in scientific journal papers and books over the
last ten years (86 references in 2010 and 423 references in 2021). A number of interesting
reviews of the F-AHP method have been published by Liu et al. [13] and Mardani [35].
The algorithm of a particular application of the fuzzy AHP method follows the defining
of the comparison matrix, the aggregation of multiple judgements, the measuring of the
consistency, and the defuzzifying of the fuzzy weights. In this study, algorithm presented
by Zavadskas et al. [36] was adopted.

3.1.2. Fuzzy Pivot Pairwise Relative Criteria Importance Assessment

The original pivot pairwise relative criteria importance assessment (PIPRECIA) was
proposed by Stanujkic et al. [37] by upgrading the SWARA method while solving a case
study of selecting the most appropriate traditional Serbian restaurant. It is a subjective
weighting method based on decision makers’ judgments and is particularly beneficial for
group decisions involving a large number of experts. The method has been extended
to deal with fuzzy numbers and to handle uncertainties in decision makers’ judgments
by Stević et al. [15]. In that paper, the fuzzy pivot pairwise relative criteria importance
assessment (F-PIPRECIA) method was introduced for the evaluation of the conditions
for the implementation of barcode technology in a warehouse system. The F-PIPRECIA
method consists of eleven steps, fully defined in study [15], and was adopted for application
in this study.

3.1.3. Fuzzy Full Consistency Method

The full consistency method (FUCOM) is one of the most recent subjective methods
proposed for the determination of criteria weights. The FUCOM method, developed by Pa-
mučar et al., [16], is based on of the pairwise comparisons of criteria and the validation of re-
sults throughout a deviation from maximum consistency. According to Pamucar et al. [38],
the main advantages are reflected in the fact that the FUCOM method:

(1) allows for the pairwise comparison of the evaluation criteria not only through the use
of integers but also by utilizing decimal values,

(2) uses a simple algorithm to determine the criteria weights,
(3) and needs a smaller number of pairwise comparisons for deciding criteria weights.
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Potential applications for the FUCOM method in group decision-making were pre-
sented by Fazlollahtabar et al. [39] and Durmić et al. [40]. The extension of the FUCOM
method for solving decision-making problems with fuzzy numbers (F-FUCOM) was devel-
oped by Pamučar et al. [41]. In this study, the original algorithm developed by Pamucar
and Ecer [42] was adopted.

3.1.4. Entropy Weighting Method

The entropy weight method (EWM) is an objective weighting method that measures
value dispersion in decision-making based on probability theory and the attribute values
in the decision matrix. Originally proposed by Shannon [43] and further developed by
Zeleny [44], the EWM works on the principle that a higher degree of dispersion of the
measured values (the greater the difference between the values of the elements in the
column in the decision matrix) provides less entropy and a higher criterion weight.

Significant applications of the EWM method have been observed in the last five years.
In this study, the algorithm presented by Mukhametzyanov [17] was adopted.

3.1.5. Criteria Importance through Intercriteria Correlation Method

The criteria importance through intercriteria correlation (CRITIC) methods is one of
the most widely used objective criteria weighting methods. The CRITIC method, which
was originally proposed by Diakoulaki et al. [45], uses correlation analysis and standard
deviation of the normalized criterion values by columns to determine the contrasts between
criteria [46]. In the original CRITIC method algorithm, seven steps were proposed, by
which final criteria weights are obtained based on the multiplication of the standard
deviation of each column and the sum of the linear correlation coefficients of the column
vectors. In this study, the CRITIC-M method (a modification of the CRITIC method
proposed by Žižović et al. [18]) was used. In the CRITIC-M method, two modifications
are performed: (1) the modification of normalizing data in the initial decision matrix and
(2) the modification of expressions for determining the final values of criteria weights.

3.1.6. Method based on the Removal Effects of Criteria

The method based on the removal effects of criteria (MEREC) is a new method de-
veloped by Keshavarz-Ghorabaee et al. [19]. The basic goal of the MEREC method is the
determination of criteria weights by the assessment of each criterion’s removal effect on
the performance of alternatives. For that purpose, the MEREC method uses the absolute
deviation measure to reflect the difference between the overall alternative’s performance
and its performance in removing a criterion. Higher weights are allocated to the criteria
that have higher effects on the performance of alternatives.

3.2. MCDM Method Used to Rank Alternatives of Loader Mechanisms

There are dozens of methods available for solving alternatives ranking in MCDM
problems. According to the original RDMR approach [4], it is believed that a combination
of different MCDM methods creates a more robust and objective basis for decision-making.
Nevertheless, only one MCDM method was applied in this paper for the alternative
ranking of loader mechanisms (TOPSIS) in order to clearly highlight the impact of different
approaches in determining the criteria weights. Additional methods for the ranking
of alternatives could easily be integrated in a new comprehensive model, but in this
study, such an approach would have blurred and hidden differences between criteria
weighting methods.

The technique for the order preference by similarity to ideal solution (TOPSIS) method,
is the most well-known and widely used MCDM method for the ranking of alternatives
and was developed by Hwang and Yoon [47]. The TOPSIS method is based on the concept
that the chosen alternative must have the closest Euclidian distance from the positive ideal
solution and at the same time the longest distance from the negative ideal solution [48]. As
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the popularity of the method grew, some modifications to the TOPSIS method, extending it
to a group decision environment using grey numbers [49] and fuzzy numbers [50].

3.3. The Proposed Approach for Generating a Robust Decision Rule

In this paper, the idea proposed by Petrovic et al. [4] for robust decision-making rule
(RDMR) generation is adopted and extended for group decisioning (RDMR-G). Consider-
ing that different decision-making rules, obtained for different vectors of criteria weights,
may yield a different ranking of alternatives, the objective was to generate a RDMR-G
by the integration of rankings obtained by solving the same decision-making problem
but with different criteria importance levels and weights. This novel approach combines
the theoretical foundations of different methods for criteria weight calculations, based on
Taguchi’s signal to noise (S/N) ratios, with aim of the final result being a more robust and
objective complete ranking of the alternatives. Taguchi’s ideas on quality improvement
using the quality loss function (signal to noise (S/N) ratios) to measure the performance
characteristics [51] were recognized as a powerful robust design technique for the genera-
tion of a RDMR-G using the rankings of the alternatives obtained with the application of
different criteria weighting methods, both objective and subjective. In this study, a form of
expression, “smaller-the-better” is adopted for the S/N ratio because in decision-making
processes, the alternative with the smallest rank is the best alternative [4].

The practical implementation of the proposed RDMR-G approach was performed
through the evaluation of alternatives for the optimal synthesis of loader mechanisms
of a hydraulic excavator. The schematic algorithm of the proposed approach is shown
in Figure 3. Noted acronyms of MCDM methods in Figure 3 include: SWARA, stepwise
weight assessment ratio analysis; BWM, best-worst method; FANMA, named after its
authors Ma, Fan, and Huang; SD, standard deviation; WASPAS, weighted aggregates sum
product assessment; COPRAS, complex proportional assessment; MOORA, multi-objective
optimization method on the basis of ratio analysis,; VIKOR, visekriterijumska optimizacija i
kompromisno resenje (in Serbian); ROV, range of value; and PSI, preference selection index.

Any decision-making problem can be described using a decision matrix consisting of
m alternatives, n criteria, and m× n attributes, with xij representing the performance of
i-th alternative relative to the j-th criterion. In this case study, which concerned the optimal
synthesis of loader mechanisms of hydraulic excavators, the decision matrix was obtained
after the first two phases (Section 2).

The third phase, i.e., the optimal synthesis, evaluation, and selection of mechanisms
using the RDMR-G, can be defined as presented in the following steps:

Step 1: The selection of the group of experts (e = 1, 2, . . . , b), where b represents the
number of experts which will evaluate criteria.

Step 2: The evaluation of criteria based on expert preferences. Every expert has to
evaluate criteria according to the requirements of each individual subjective method. In
total, s·b vectors of criteria weights will be determined by this way, where s denotes the
number of applied criteria weighting methods.

Step 3: The calculation of criteria weights based on o objective methods and the
previously defined decision matrix. In this way, o vectors of criteria weights will be
determined.

Step 4: The determination of design alternative complete rankings for the defined
decision matrix and each of n = s·b + o vectors of criteria weights.

Step 5: The calculation of signal-to-noise (S/N) ratios according to Equation (7) as:

S/Nj = −10log

(
1
n

n

∑
k=1

y2
k

)
(7)

where values yk represent ranks of an alternative j obtained using different vectors of
criteria weights (k = 1÷ n).
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Step 6: The final step in generating an RDMR-G is the ranking of S/Nj ratios so that the
largest S/Nj value represents the best alternative and the smallest S/Nj value determines
the worst alternative.

Using proposed integrated approach, a more robust, comprehensive, and objective
rank of alternatives can be generated.
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4. Results and Discussion

In this section, the RDMR-G approach is applied for the optimal synthesis of loader
drive mechanisms according to the six criteria. In the first phase of this process, twenty-
six different construction solutions for the kinematic chain (alternatives) are defined. In
the next phase, criteria based on which the alternatives performances are evaluated are
specified: Kinematic criterion, C1; criterion of directed digging force, C2; tribological criterion,
C3; time criterion, C4; manipulator mass criterion, C5; dynamic criterion, C6. The criteria C1,
C3, C4, C5, and C6 are non-beneficial (cost) criteria, with the smaller attribute values being
superior. C2, meanwhile, is the beneficial criterion, with greater values being superior. For
all considered criteria, mathematical models and simulation software were developed, and
the ratings of each alternative against specific criterion were calculated. For some criteria,
the developed simulation software was validated by experimental measurements on a
loader. The ratings of alternatives with respect to each criterion are given in a decision
matrix (Table 3).
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Table 3. Loader mechanisms performance–decision-matrix.

Alternative-Variants of the Drive
Mechanisms Ev

C1 [◦] C2 [kN] C3 [W] C4 [s] C5 [kg] C6 [m]

Min Max Min Min Min Min

V.001 4.089 22.652 425.137 8.504 971.621 0.0142

V.014 0.183 22.653 541.580 8.113 1085.811 0.0120

V.020 0.734 22.591 446.604 7.828 900.815 0.0123

V.026 1.368 21.718 473.667 8.003 1048.561 0.0103

V.028 0.155 21.974 513.465 8.523 1099.590 0.0102

V.033 0.108 22.553 634.874 7.910 1218.694 0.0162

V.036 0.332 23.658 424.215 7.910 1084.033 0.0115

V.051 0.154 23.217 708.934 8.227 1319.761 0.0156

V.053 0.538 22.580 498.660 7.899 912.036 0.0148

V.064 0.385 22.055 598.755 7.794 1101.295 0.0153

V.095 0.416 22.909 448.396 7.648 952.286 0.0117

V.108 3.429 23.416 674.644 7.832 1391.960 0.0165

V.111 0.254 22.709 470.975 8.063 974.863 0.0095

V.117 0.495 23.036 476.138 7.578 904.988 0.0142

V.135 3.979 22.732 425.254 8.105 903.912 0.0130

V.147 0.458 22.227 641.743 8.112 1064.816 0.0162

V.150 0.408 22.861 515.947 8.155 1075.259 0.0125

V.178 2.260 21.535 602.219 7.749 1122.245 0.0154

V.223 0.227 21.484 509.715 7.853 971.883 0.0134

V.236 0.487 22.054 476.795 8.187 967.528 0.0134

V.245 0.441 22.777 615.591 7.885 1092.325 0.0144

V.267 0.288 22.455 559.207 8.196 1172.175 0.0124

V.271 0.414 22.478 372.014 7.750 812.676 0.0086

V.278 0.474 22.064 444.064 8.131 1008.867 0.0100

V.290 0.300 22.587 524.807 8.196 1071.200 0.0128

V.295 0.520 22.247 516.179 7.821 961.929 0.0135

At the beginning of phase 3, five experts, each with substantial experience in research
and development in the field of mechanical engineering and mobile machines, were selected
to evaluate different levels of criteria priority. Six different methods for determination
criteria weights were combined in the process of the evaluation of alternatives for the
optimal synthesis of loader mechanisms. For the better perception of subjective opinions,
i.e., the knowledge and expertise of the decision-makers in group decisioning, three fuzzy
subjective criteria weighting methods (s = 3) were adopted: F-AHP, F-PIPRECIA, and
F-FUCOM. This way, experts were given the opportunity to express their own assessments
in a wider range of intervals, in accordance with their conviction, to a certain degree. This
is especially relevant in the field of mechanical systems where design can be characterized
by imprecise or vague requirements. Fuzzy set theory and fuzzy logic have emerged as
powerful ways of representing uncertainty in subjective judgments and imprecision in
the selections of alternatives [5]. Also, three objective criteria weighting methods, EWM,
CRITIC, and MEREC (o = 3), were adopted with aim of obtaining a more robust decision-
making rule. As five experts (b = 5) were involved in the criteria evaluation, in total n = 18
different vectors of criteria weights were obtained (Table 4).
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Table 4. Criteria weights of considered criteria.

Criteria Weights W1 W2 W3 W4 W5 W6

F-AHP

Expert 1 0.108 0.087 0.178 0.146 0.258 0.224
Expert 2 0.295 0.363 0.117 0.117 0.107 0.000
Expert 3 0.084 0.099 0.243 0.287 0.178 0.109
Expert 4 0.208 0.256 0.215 0.215 0.106 0.000
Expert 5 0.270 0.258 0.210 0.129 0.062 0.071

F-PIPRECIA

Expert 1

l 0.081 0.081 0.127 0.106 0.162 0.196

m 0.095 0.095 0.162 0.150 0.249 0.249

u 0.121 0.114 0.247 0.192 0.356 0.377
d 0.097 0.096 0.171 0.149 0.253 0.262

Expert 2

l 0.153 0.182 0.131 0.131 0.107 0.093

m 0.212 0.227 0.145 0.145 0.135 0.135

u 0.269 0.345 0.196 0.190 0.149 0.129
d 0.211 0.239 0.151 0.151 0.133 0.127

Expert 3

l 0.083 0.083 0.139 0.163 0.137 0.137

m 0.105 0.105 0.205 0.205 0.190 0.190

u 0.128 0.128 0.294 0.335 0.261 0.248
d 0.105 0.105 0.209 0.220 0.193 0.191

Expert 4

l 0.165 0.165 0.160 0.123 0.087 0.059

m 0.216 0.216 0.198 0.167 0.122 0.081

u 0.382 0.368 0.311 0.214 0.141 0.080
d 0.235 0.233 0.210 0.167 0.119 0.077

Expert 5

l 0.202 0.202 0.151 0.123 0.090 0.110

m 0.215 0.215 0.172 0.158 0.115 0.125

u 0.289 0.275 0.204 0.160 0.106 0.136
d 0.225 0.223 0.174 0.153 0.109 0.124

F-FUCOM

Expert 1

l 0.043 0.051 0.091 0.039 0.124 0.122

m 0.136 0.106 0.209 0.135 0.246 0.268

u 0.169 0.106 0.209 0.135 0.246 0.268
d 0.126 0.097 0.189 0.119 0.226 0.244

Expert 2

l 0.141 0.194 0.151 0.053 0.049 0.048

m 0.246 0.194 0.246 0.133 0.149 0.101

u 0.246 0.194 0.251 0.133 0.164 0.101
d 0.229 0.194 0.231 0.120 0.135 0.092

Expert 3

l 0.049 0.048 0.141 0.194 0.151 0.053

m 0.149 0.101 0.246 0.194 0.246 0.133

u 0.164 0.101 0.246 0.194 0.251 0.133
d 0.135 0.092 0.229 0.194 0.231 0.120

Expert 4

l 0.194 0.141 0.151 0.053 0.049 0.048

m 0.194 0.246 0.246 0.133 0.149 0.101

u 0.194 0.246 0.251 0.133 0.164 0.101
d 0.194 0.229 0.231 0.120 0.135 0.092

Expert 5

l 0.181 0.120 0.118 0.088 0.030 0.038

m 0.181 0.238 0.241 0.202 0.088 0.130

u 0.181 0.238 0.259 0.202 0.098 0.130
d 0.181 0.218 0.223 0.183 0.080 0.115

EWM 0.125 0.191 0.154 0.153 0.111 0.268
CRITIC 0.353 0.126 0.131 0.153 0.134 0.102
MEREC 0.702 0.014 0.099 0.020 0.090 0.074

l, m, u— the lower, the medium, and the upper limit value of the triangular fuzzy number respectively. D—crisp
values obtained using defuzzification of fuzzy weights d = (l + 4m + u)/6.
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The obtained values of the criteria weights, in the case of subjective methods (experts’
evaluations), show that the weights of the first three criteria, C1–C3, are quite similar,
whereby the tribological criterion, C3, has the highest values. The lowest values are
characteristic of criterion C6, the criterion of the dynamic stability of loader movement.

It is important to note that the objective methods provided significantly different
results, whereby the MEREC method stood out with criteria weights values which are
unrealistically different from the values obtained using other approaches. For example, the
MEREC method gave weight to the first criterion (w1 = 0.702), while other criteria had
negligible impact (w2 = 0.014 or w4 = 0.002). In such cases, the application of the proposed
RDMR-G approach (Figure 3) provides the decision maker with the opportunity to exclude
from consideration a method that gives realistically unacceptable results for a particular
class of problems.

The fourth step of the third phase of the proposed RDMR-G approach requires the
application of a MCDM method for the alternative ranking of loader mechanisms. The
TOPSIS method, as a well-known and widely used for solving many real-life case studies,
was chosen for that purpose. The complete rankings of the design variant solutions
according to different criteria weights are shown in Table 5.

Table 5. Complete rankings of the alternatives according to different criteria weights.

Alternatives-Variants
of the Drive

Mechanisms Ev

F-AHP F-PIPECIA F-FUCOM

EW
M

C
R

IT
IC

M
ER

EC S/N Ratio

R
D

M
R

-G

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

V.001 25 26 25 25 26 25 26 25 25 26 25 25 25 25 25 25 26 26 −28.075 25

V.014 9 2 15 9 7 8 6 10 10 6 8 8 14 10 8 7 4 2 −18.696 8

V.020 7 21 6 16 19 7 19 7 7 19 7 16 8 16 16 10 21 21 −23.330 14

V.026 17 22 16 22 22 15 22 17 17 22 17 22 21 22 22 17 22 22 −26.025 20

V.028 6 3 11 6 4 5 4 6 6 4 6 5 10 6 6 4 2 1 −15.236 5

V.033 21 10 20 18 16 21 17 20 20 16 20 18 19 18 18 20 11 4 −24.911 18

V.036 5 5 5 2 2 6 3 5 5 3 5 3 5 3 2 5 5 9 −13.358 3

V.051 22 15 22 21 20 22 21 22 22 20 22 21 22 21 21 21 16 6 −26.111 21

V.053 15 19 10 13 15 17 15 15 15 15 16 14 11 13 15 16 19 20 −23.734 16

V.064 19 13 18 17 17 19 16 19 19 17 19 17 17 17 17 19 14 10 −24.636 17

V.095 4 8 2 4 6 4 5 4 4 5 4 4 3 4 4 6 9 13 −15.178 4

V.108 26 24 26 26 24 26 24 26 26 24 26 26 26 26 26 26 24 24 −28.080 26

V.111 2 1 3 3 1 2 1 2 2 1 2 2 2 2 3 2 1 5 −7.132 1

V.117 11 14 7 8 13 14 13 11 11 13 13 11 6 8 11 15 15 18 −21.696 12

V.135 24 25 24 24 25 24 25 24 24 25 24 24 24 24 24 24 25 25 −27.726 24

V.147 20 20 21 20 21 20 20 21 21 21 21 20 20 20 20 22 20 16 −26.131 22

V.150 13 11 13 12 10 11 10 12 12 10 11 12 15 12 12 8 10 12 −21.246 11

V.178 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 −27.235 23

V.223 8 4 9 5 5 9 8 8 8 7 9 7 7 7 7 12 3 3 −17.324 7

V.236 10 16 8 11 12 10 12 9 9 12 10 10 9 9 10 13 13 17 −21.110 10

V.245 18 17 19 19 18 18 18 18 18 18 18 19 18 19 19 18 17 14 −25.096 19

V.267 16 9 17 14 11 16 11 16 16 11 15 13 16 15 13 11 8 7 −22.541 13

V.271 1 7 1 1 3 1 2 1 1 2 1 1 1 1 1 1 6 11 −11.158 2

V.278 3 12 4 7 9 3 7 3 3 8 3 6 4 5 5 3 12 15 −17.123 6

V.290 12 6 14 10 8 12 9 13 13 9 12 9 13 11 9 9 7 8 −20.401 9

V.295 14 18 12 15 14 13 14 14 14 14 14 15 12 14 14 14 18 19 −23.331 15
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According to the last two steps of phase 3, each alternative (S/N) ratio was calculated
using Equation (7), and a robust complete ranking was determined. In that way, the highest
S/N ratio (−7.132) was calculated for a loader drive manipulator mechanism marked as
alternative V.111, and therefore it should be chosen as the best alternative. Mechanism
V.108 had the smallest S/N ratio (−28.080), so it has the lowest ranking. In the last column
of Table 5, the complete rankings of the alternatives obtained with the proposed RDMR-G
approach are provided.

It is characteristic that the decision-making process singled out variant solutions of
mechanisms (V.111, V.271, etc.) which, according to the concept described in Section 2,
belong to mechanisms with smaller executive parameters, i.e., smaller piston/connecting
rod diameters of hydraulic cylinders, and larger transmission parameters, i.e., longer
transmission lever lengths and coordinates of hydraulic cylinder connection joints for
mechanism members. Such conceptions of mechanisms were in the group of the best
solutions, compared to other variant solutions, because they performed significantly better
with respect to criteria with a higher level of priority, in particular the tribological, C3, and
manipulator mass, C5, criteria.

The best rated variant of the V.111 mechanism has the following parameters: D3 = 110 [mm],
d3 = 80 [mm], b3 = 621 [mm], β3 = 263.5 [◦], a3x = 1691 [mm], a3y = −91 [mm],
D4 = 170 [mm], d4 = 115 [mm], b4 = 250 [mm], β4 = 342.5 [◦], x35 = 1675 [mm],
y35 = 633 [mm], a4 = 270 [mm], a4 = 85 [◦], a54 = 806 [mm], a56 = 836 [mm], α5 = 10 [◦],
a6 = 650 [mm].

Statistical Comparison of Complete Rankings using Kendall’s Tau-b and Spearman’s Rho Tests

In this paper, while all the complete rankings of alternatives, i.e., loader drive ma-
nipulator mechanisms variants, were obtained using different vectors of criteria weights,
they have different levels of similarities. In order to analyze the similarities of the com-
plete rankings, the Kendall’s tau-b (τb) and Spearman’s rho (ρ) tests were selected. These
two non-parametric statistical tests were conducted to measure correlations of the ranks
obtained using eighteen vectors of criteria weights. The Kendall’s tau-b represents the
similarities in the ordering of ranked alternatives (the number of concordances and dis-
cordances in paired observations), and the Spearman’s rho test shows the strength of the
linear relationship of two complete rankings obtained based on different criteria weights
vectors. The results of the Kendall’s tau-b and Spearman’s rho tests are shown in Table 6.

Taking into account that the Kendall’s tau-b and Spearman’s rho tests results can
have values in intervals [−1,+1], where a value of 1 indicates that there is a complete
100% positive association between two complete rankings and, a value of −1 indicates
100% negative association, and a value 0 indicates that there is no association between the
compared groups of ranks, it can be concluded that greater values of Sum(τb) and Sum(ρ)
show the smallest variation in ranking orders. It is obvious that the RDMR-G, derived
using the proposed approach, has the greatest sum value of the Kendall’s tau-b (15.9)
and Spearman’s rho (17.8), so it can provide a more robust and comprehensive decision
rule and be very useful in solving real-life decision-making problems. Also, the general
characteristic of this case study, the optimal synthesis of loader drive mechanisms, is that
the wide dispersion of ranking orders obtained using eighteen vectors of criteria weights is
not noted, which is confirmed by high values of Sum(τb) and Sum(ρ) (maximum values
are 18). Only in the case of the application of the MEREC objective criteria weighting
method was there some discordance in the ordering of ranked alternatives compared to
other approaches.
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Table 6. Performance test results–Kendall’s and Spearman’s rank correlation coefficients.

F-AHP F-PIPECIA F-FUCOM

EW
M

C
R

IT
IC

M
ER

EC

R
D

M
R

-G

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

F-AHP

E1
τb 1.00 0.53 0.85 0.82 0.74 0.94 0.77 0.98 0.98 0.75 0.96 0.84 0.85 0.85 0.85 0.86 0.57 0.33 0.85

ρ 1.00 0.72 0.96 0.94 0.88 0.99 0.90 1.00 1.00 0.90 1.00 0.95 0.96 0.95 0.95 0.96 0.75 0.46 0.96

E2
τb 0.53 1.00 0.43 0.66 0.80 0.54 0.77 0.53 0.53 0.78 0.56 0.68 0.50 0.64 0.67 0.61 0.95 0.77 0.68

ρ 0.72 1.00 0.59 0.85 0.93 0.72 0.91 0.72 0.72 0.92 0.74 0.86 0.67 0.82 0.86 0.80 0.99 0.91 0.86

E3
τb 0.85 0.43 1.00 0.75 0.62 0.82 0.65 0.86 0.86 0.63 0.83 0.74 0.93 0.78 0.73 0.74 0.45 0.21 0.74

ρ 0.96 0.59 1.00 0.90 0.80 0.93 0.82 0.96 0.96 0.81 0.94 0.89 0.98 0.92 0.89 0.87 0.61 0.30 0.89

E4
τb 0.82 0.66 0.75 1.00 0.85 0.77 0.87 0.82 0.82 0.86 0.80 0.96 0.83 0.96 0.95 0.77 0.69 0.45 0.91

ρ 0.94 0.85 0.90 1.00 0.97 0.91 0.97 0.94 0.94 0.97 0.93 0.99 0.94 0.99 0.99 0.91 0.86 0.60 0.98

E5
τb 0.74 0.80 0.62 0.85 1.00 0.72 0.96 0.73 0.73 0.98 0.75 0.88 0.69 0.83 0.88 0.78 0.83 0.59 0.88

ρ 0.88 0.93 0.80 0.97 1.00 0.88 0.99 0.88 0.88 1.00 0.89 0.98 0.85 0.95 0.97 0.92 0.95 0.72 0.97

F-PIPECIA

E1
τb 0.94 0.54 0.82 0.77 0.72 1.00 0.76 0.94 0.94 0.74 0.97 0.81 0.79 0.80 0.82 0.90 0.56 0.34 0.83

ρ 0.99 0.72 0.93 0.91 0.88 1.00 0.90 0.99 0.99 0.89 1.00 0.93 0.92 0.92 0.93 0.97 0.75 0.47 0.95

E2
τb 0.77 0.77 0.65 0.87 0.96 0.76 1.00 0.76 0.76 0.98 0.79 0.91 0.72 0.86 0.91 0.82 0.79 0.56 0.90

ρ 0.90 0.91 0.82 0.97 0.99 0.90 1.00 0.90 0.90 1.00 0.91 0.98 0.86 0.96 0.98 0.94 0.93 0.69 0.98

E3
τb 0.98 0.53 0.86 0.82 0.73 0.94 0.76 1.00 1.00 0.74 0.97 0.83 0.85 0.86 0.84 0.87 0.56 0.32 0.85

ρ 1.00 0.72 0.96 0.94 0.88 0.99 0.90 1.00 1.00 0.89 1.00 0.94 0.96 0.95 0.94 0.95 0.74 0.46 0.96

E4
τb 0.98 0.53 0.86 0.82 0.73 0.94 0.76 1.00 1.00 0.74 0.97 0.83 0.85 0.86 0.84 0.87 0.56 0.32 0.85

ρ 1.00 0.72 0.96 0.94 0.88 0.99 0.90 1.00 1.00 0.89 1.00 0.94 0.96 0.95 0.94 0.95 0.74 0.46 0.96

E5
τb 0.75 0.78 0.63 0.86 0.98 0.74 0.98 0.74 0.74 1.00 0.77 0.90 0.70 0.85 0.89 0.81 0.81 0.58 0.90

ρ 0.90 0.92 0.81 0.97 1.00 0.89 1.00 0.89 0.89 1.00 0.91 0.98 0.86 0.96 0.98 0.93 0.94 0.71 0.98

F-FUCOM

E1
τb 0.96 0.56 0.83 0.80 0.75 0.97 0.79 0.97 0.97 0.77 1.00 0.84 0.82 0.83 0.85 0.90 0.58 0.35 0.86

ρ 1.00 0.74 0.94 0.93 0.89 1.00 0.91 1.00 1.00 0.91 1.00 0.95 0.94 0.94 0.95 0.97 0.77 0.49 0.96

E2
τb 0.84 0.68 0.74 0.96 0.88 0.81 0.91 0.83 0.83 0.90 0.84 1.00 0.81 0.95 0.98 0.82 0.72 0.48 0.95

ρ 0.95 0.86 0.89 0.99 0.98 0.93 0.98 0.94 0.94 0.98 0.95 1.00 0.93 0.99 1.00 0.94 0.88 0.62 0.99

E3
τb 0.85 0.50 0.93 0.83 0.69 0.79 0.72 0.85 0.85 0.70 0.82 0.81 1.00 0.86 0.80 0.72 0.53 0.29 0.80

ρ 0.96 0.67 0.98 0.94 0.85 0.92 0.86 0.96 0.96 0.86 0.94 0.93 1.00 0.95 0.93 0.87 0.69 0.39 0.92

E4
τb 0.85 0.64 0.78 0.96 0.83 0.80 0.86 0.86 0.86 0.85 0.83 0.95 0.86 1.00 0.94 0.78 0.67 0.43 0.90

ρ 0.95 0.82 0.92 0.99 0.95 0.92 0.96 0.95 0.95 0.96 0.94 0.99 0.95 1.00 0.99 0.92 0.84 0.56 0.98

E5
τb 0.85 0.67 0.73 0.95 0.88 0.82 0.91 0.84 0.84 0.89 0.85 0.98 0.80 0.94 1.00 0.82 0.71 0.47 0.94

ρ 0.95 0.86 0.89 0.99 0.97 0.93 0.98 0.94 0.94 0.98 0.95 1.00 0.93 0.99 1.00 0.94 0.87 0.61 0.99

EWM
τb 0.86 0.61 0.74 0.77 0.78 0.90 0.82 0.87 0.87 0.81 0.90 0.82 0.72 0.78 0.82 1.00 0.63 0.40 0.85

ρ 0.96 0.80 0.87 0.91 0.92 0.97 0.94 0.95 0.95 0.93 0.97 0.94 0.87 0.92 0.94 1.00 0.82 0.56 0.96

CRITIC
τb 0.57 0.95 0.45 0.69 0.83 0.56 0.79 0.56 0.56 0.81 0.58 0.72 0.53 0.67 0.71 0.63 1.00 0.76 0.72

ρ 0.75 0.99 0.61 0.86 0.95 0.75 0.93 0.74 0.74 0.94 0.77 0.88 0.69 0.84 0.87 0.82 1.00 0.89 0.88

MEREC
τb 0.33 0.77 0.21 0.45 0.59 0.34 0.56 0.32 0.32 0.58 0.35 0.48 0.29 0.43 0.47 0.40 0.76 1.00 0.48

ρ 0.46 0.91 0.30 0.60 0.72 0.47 0.69 0.46 0.46 0.71 0.49 0.62 0.39 0.56 0.61 0.56 0.89 1.00 0.62

RDMR-G
τb 0.85 0.68 0.74 0.91 0.88 0.83 0.90 0.85 0.85 0.90 0.86 0.95 0.80 0.90 0.94 0.85 0.72 0.48 1.00

ρ 0.96 0.86 0.89 0.98 0.97 0.95 0.98 0.96 0.96 0.98 0.96 0.99 0.92 0.98 0.99 0.96 0.88 0.62 1.00

Sum
τb 15.3 12.6 13.6 15.5 15.2 15.0 15.5 15.3 15.3 15.4 15.4 15.9 14.3 15.7 15.9 15.0 13.1 9.1 15.9

ρ 17.2 15.6 16.0 17.6 17.4 17.0 17.5 17.2 17.2 17.5 17.3 17.8 16.6 17.6 17.7 17.2 15.9 11.5 17.8

5. Conclusions

The optimization of the structural design of a mechanical system is an important
stage in product development. The designing process is very complex and usually features
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incomplete data or data gaps and opposing opinions, attitudes, and solutions. In view of
this, an efficient decision-making system is necessary for identifying an optimal variant
solution from a set of alternatives. The present study introduced a new hybrid multi-criteria
decision approach for RDMR-G using different criteria weights, MCDM methods, and
Taguchi’s S/N ratios. The basic motive for the proposed approach was the fact that ranks of
alternatives can be very sensitive to the different vectors of criteria weights obtained based
on the different theoretical backgrounds of weighting methods. The proposed RDMR-G
approach was verified by solving the case study of the optimal synthesis of loader drive
mechanisms. For that purpose, the algorithm with three phases is presented. Five experts
were interviewed, and their attitudes were transformed into criteria weights vectors using
three subjective fuzzy weighting methods. Also, three objective weighting methods were
applied in order to involve information contained in the decision matrix without the
direct influences of the decision-makers. Twenty-six design variant solutions for drive
mechanisms were evaluated according to the six criteria and the optimal solution was
selected. In addition, a statistical comparison of the complete rankings using Kendall’s
tau-b and Spearman’s rho tests was performed with aim of analyzing the similarities of the
complete rankings.

Based on previous considerations, the following conclusions can be summarized:

• The proposed integrated RDMR-G approach was found to be very useful in the
aggregation of different attitudes in decision-making processes by engineering groups.
The RDMR-G approach is particularly applicable to cases where there is certain
degree of inconsistency in the alternative final rankings obtained using different
weighting methods.

• The conducted statistical comparison of complete rankings using Kendall’s tau-b and
Spearman’s rho tests shows that the application of the RDMR-G approach provided
the highest overall summary values, which indicates that this approach enables the
highest level of stability of the final complete rankings.

• The process of the optimal synthesis of loader drive mechanisms using a three phase
algorithm and the RDMR-G approach showed that the dominant characteristics of the
best-rated variants of the mechanism are smaller pistons/connecting rod diameters of
hydraulic cylinders and larger transmission lever lengths and coordinates of hydraulic
cylinder connection joints.

• The proposed three phase algorithm has a general character and can be used for the
synthesis of the lever mechanisms of manipulators and other mobile machines.

• Also, proposed RDMR-G approach has a general character and can be applied to any
MCDM problem with group decisioning.

The study presented in this paper has some limitations. The major limitation of
this approach is that it requires significant computational efforts to compute a number of
decision rules from different criteria weighting and ranking methods. The main direction
in future research should be development of an expert software system based on the
RDMR-G approach presented in this study. The practical application of the proposed
approach can be enhanced through the development of expert and intelligent decision-
making systems, which could greatly simplify the decisioning process. Historical data
collected from numerous other machines can also provide a strong starting point for such
an expert system. The expert system could recognize and propose to the decision maker
those MCDM methods in the RDMR-G approach that provide the highest level of stability
in terms of the final complete rankings for a specific class of decision-making problems.

In this paper, we mainly considered technical criteria for decision-making, so another
future extension of this study may include other criteria for the evaluation of loader drive
mechanisms design variants, for example in the fields of controllability, economics, or
sustainable development. Such criteria can have a significant influence on the energy
efficiency of the machine and a reductions in fuel consumption, prices, and environmental
pollution, or on other key performance indicators. Further research will certainly continue
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to analyze the drive mechanisms of mobile machines, particularly in case of hybrid drive
systems or innovative energy recovery systems.
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