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Abstract: Fault diagnosis of industrial bearings plays an invaluable role in the health monitoring of
rotating machinery. In practice, there is far more normal data than faulty data, so the data usually
exhibit a highly skewed class distribution. Algorithms developed using unbalanced datasets will
suffer from severe model bias, reducing the accuracy and stability of the classification algorithm. To
address these issues, a novel Multi-resolution Fusion Generative Adversarial Network (MFGAN)
is proposed for the imbalanced fault diagnosis of rolling bearings via data augmentation. In the
data-generation process, the improved feature transfer-based generator receives normal data as
input to better learn the fault features, mapping the normal data into fault data space instead of
random data space. A multi-scale ensemble discriminator architecture is designed to replace original
single discriminator structure in the discriminative process, and multi-scale features are learned via
ensemble discriminators. Finally, the proposed framework is validated on the public bearing dataset
from Case Western Reserve University (CWRU), and experimental results show the superiority of
our method.

Keywords: imbalanced fault diagnosis; data augmentation; generative adversarial networks;
feature transfer

1. Introduction

Rolling bearings are the most widely used and important component of machinery
and equipment, and are also the general fault unit of industrial rotating machinery. Rolling
bearings are generally composed of four parts: inner ring, outer ring, rolling body and
cage. The inner ring in the bearing is generally paired to the shaft and follows this shaft to
perform rotational movement. The outer ring is generally assembled to the bearing seat
and is used to support the steel ball. The rolling body rolls within the bearing, and its shape,
size and number directly affect the performance and service life of the bearing. Bearings
are designed, manufactured, installed, operated and maintained in such a way that various
factors can lead to the damage or fault of the bearing. At the same time, due to continuous
operation under high intensity and harsh conditions, faults of rolling bearings are inevitable
and unforeseen faults can lead to very long production downtimes and losses, causing dam-
age to machinery may undoubtedly having catastrophic consequences. Timely and reliable
fault diagnosis of rolling bearings is therefore very important [1]. Fault-prediction methods
are generally divided into model-driven fault diagnosis and data-driven fault diagnosis [2].
Model-based fault diagnosis techniques require strong a priori knowledge to determine the
mathematical model of the system object. In many practical problems, it is difficult to build
mathematical models of complex components or systems. It is also difficult to identify
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suitable predictive models for sets of historical fault data or statistics that are triggered by
many different signals. The practical application and effectiveness of model-based fault
prediction techniques is therefore limited by the relative complexity of equipment fault
modes and fault mechanisms. Data-based fault-prediction techniques do not require a
priori knowledge, such as mathematical models of the object systems and expert experience.
It also has better feature extraction capabilities, non-linear modelling capabilities and more
powerful computational capabilities. Through the analytical processing and modelling of
historical data, the implicit information is mined for diagnostic operations. Data-based
fault prediction has become a more practical approach to fault prediction and is growing
rapidly. With technological breakthroughs in data acquisition systems, large amounts of
industrial data are readily available, which provides the basis for data-driven classification
algorithms. Data is collected using monitoring systems to analyze the operating status of
mechanical equipment and to carry out fault diagnosis. Fault diagnosis is one of the typical
applications of data-driven methods in industry and has been a hot topic of research [3]. To
date, a large number of effective classification algorithms have been applied to industrial
equipment fault diagnosis problems [4,5]. In fact, few fault data can be collected, while the
amount of available normal data is very huge. As a result, the data tends to show a highly
skewed distribution of categories [6], i.e., most instances belong to the normal category,
while the different types of fault categories contain only a small number of instances. Due
to the lack of sufficient data, the classifier is unable to describe the sparse instances and
therefore it is difficult to classify these sparse instances effectively. In the case of SVM, for
example, the final learned classification boundaries tend to favor the majority class, leading
to the problem of classification boundary bias. As can be seen from Figure 1, the boundary
bias gradually increases as the dataset becomes more unbalanced, leading to a significant
drop in the final classification performance. So, almost all methods for fault diagnosis of
unbalanced datasets tend to be biased towards the normal class and less accurate for the
fault class [7].
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Figure 1. Highly-skewed class distribution data causes the classifier to work poorly.
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In order to resist the negative impact of imbalanced data on the algorithm, researchers
have conducted a series of exploratory experiments [8,9]. The first alternative method
is re-sampling, the idea of which is to over-sample a minority class or under-sample a
majority class in order to balance their number ratio. For instance, Gu et al. [10] applied
Gaussian noise to a minority class of instances to create extrapolations, and then created
linear interpolation between these extrapolations to enrich the minority class of instances.
However, over-sampling can easily lead to overfitting and noise introduction, and under-
sampling may lose important information of the data [11]. The second alternative method is
cost-sensitive learning, which assigns higher misclassification costs to the minority classes
than to the majority. Feng et al. [12] proposed a Cost-sensitive Feature selection General
Vector Machine algorithm to handle the imbalanced classification problem, setting different
cost weights to different classes of instances. However, in most cases, cost weights cannot
be obtained from data or specified by experts, which limits the application of cost-sensitive
learning based methods [13].

Recently, a new alternative method for data augmentation would be to use Generative
Adversarial Networks (GANs) [14]. GANs have now become one of the major paradigms
for image generation [15], speech synthesis [16], and text generation [17]. This is because
GANs can generate instances that are almost indistinguishable from real ones. In general,
GANs consists of two sub-networks, a Generator and Discriminator. The Generator maps
the noise sampled from a preset distribution space to the instance in data space. At the
same time, the Discriminator is used to judge whether an instance is coming from the data
space or the Generator. The training is a game process, in which the generation ability and
discrimination ability of GANs will be improved alternately until the Nash equilibrium
is reached [14]. However, the application of GANs to vibration signals generation tasks
in industrial intelligent diagnosis has seen relatively limited success so far [18]. Moreover,
there are some problems, i.e., mode collapse, unstable training, and slow convergence, in
the training process of GANs [19].

Based on the above analysis, how to make use of the data distribution of a few fault
data to generate similar and diverse synthetic instances adaptively is the key to improve
the effect of imbalanced fault diagnosis. This article proposes a novel data augmentation
method based MFGAN architecture to eliminate data imbalance. MFGAN introduces
feature transfer into GANs to reduce the difficulty of data augmentation and make full
use of the normal data. The generator maps the normal data into the fault data space to
accomplish fault data augmentation. Moreover, it can be embedded into any generation
model of similar tasks, so it has good generality. Meanwhile, we extend a single discrimina-
tor to multi-scale ensemble discriminator architecture (MSED) to help MFGAN learn data
features on multiple time scales to ensure more stable training and the high authenticity of
the synthetic data. Finally, we apply the proposed data augmentation method to public
rolling bearing datasets, and the experimental results show that the proposed method is
superior. Our contributions are as follows:

(1) A novel Multi-resolution Fusion Generative Adversarial Network (MFGAN) is pro-
posed for fault diagnosis on unbalanced datasets. The discriminator of MFGAN
is composed of three sub-discriminators, the input of each sub-discriminator is the
vibration signal at different subsampling frequencies, and then the output results of
the sub-discriminator are fused. MFGAN can obtain more stable training and produce
high-quality synthetic data.

(2) A data-enhancement method based on feature transfer and MFGAN is proposed.
Specifically, we sample the input from the normal data space and then map it to the
fault data space via MFGAN to obtain rich fault data, which can be used to remove
data imbalances. The method reduces the difficulty of data augmentation, improves
the quality of the synthetic data and can be embedded in a generative model for any
similar task with good generality.

(3) MFGAN is evaluated quantitatively and qualitatively through a large number of
experiments, and can produce higher-quality fault data and improve the accuracy of
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fault diagnosis. The algorithms in the paper can be replicated using open-source code
available on GitHub.

2. Related Work
2.1. Re-Sampling Method

Generally, the re-sampling method is to over-sample a minority class or under-sample
a majority class in order to balance their number ratio. For instance, Le et al. [20] use
evolutionary-based approaches and treat under-sampling as a binary optimization problem
that determines which instances in majority class are removed. Liu et al. [21] propose
an under-sampling method based on information granules of majority class instances to
capture the essence of them. Synthetic Minority Over-sampling Technology (SMOTE) [22] is
one of the most widely used methods. It adds random deviation to the K-nearest neighbor
of minority class instances to generate new instances. However, SMOTE has two problems:
(1) the number of neighboring instances is a hyper-parameter, so it is difficult to obtain in
advance; (2) instances generated by the minority class instances at the edge of distribution
will blur the boundary between the majority class and the minority class, which is not
conducive to classification. Subsequently, many improved algorithms were proposed to
solve the above problems of SMOTE, i.e., MSMOTE [23], borderline-SMOTE [24], SMOTE-
Bagging [25], SMOTE-CSELM [26]. However, these methods still fail to understand the
underlying distribution of real data and may produce incorrect instances.

2.2. Cost-Sensitive Learning

Cost-sensitive learning allocates different error classification costs to the minority
and majority class to avoid the model making decisions in favor of majority class, thus
improving the classification performance of imbalanced classification. The core of cost-
sensitive learning is to find the optimal cost by minimizing the total classification error
cost of training instances [27]. In general, cost-sensitive learning assigns higher cost to the
minority class [28]. In the past decade, various cost-sensitive learning algorithms have
been proposed to cope with the problem of imbalanced data. For example, Cheng et al. [29]
proposed a Cost-Sensitive Large margin Distribution Machine (CS-LDM) to improve the
accuracy of minority class by introducing cost-sensitive margin mean and cost-sensitive
penalty. Ghazikhani et al. [30] combined cost-sensitive learning with Neural Networks
and proposed two kinds of online classifiers to solve the problem of concept drift and
imbalance data. Datta et al. [31] develop Near-Bayesian Support Vector Machine (NBSVM),
an improved version of SVM to reduce Bayes error in imbalanced data classification, which
combines decision boundary shift with cost-sensitive learning. However, cost-sensitive
learning does not increase the number of minority class instances, and the risk of overfitting
still exists in the model.

2.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) proposed by Goodfellow [14] has become a
popular deep generation model, which can approximate the distribution of various data.
The optimization objective function of vanilla GANs is shown in Formula (1).

minGmaxD Ex∼Px(x)[logD(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (1)

Because the data-generation process of vanilla GANs is completely random, it is im-
possible to generate the specified instances, which limits the practical application of vanilla
GANs. A natural improvement is to add conditional information to vanilla GANs to gener-
ate specific instances. Based on this idea, researchers have proposed Conditional GANs
(CGAN) [32] and Auxiliary Classifier GANs (ACGAN) [33]. Zheng et al. [34] proposed a
dual-discriminator conditional generative adversarial network (D2CGANs), an improved
version of CGAN, to improve the quality of rolling bearing data generation for rotating
machinery. Xu et al. [35] improved ACGAN and proposed FairGAN+, which includes
a generator, an auxiliary classifier and three discriminators. Erol et al. [36] use ACGAN



Machines 2022, 10, 295 5 of 18

to generate synthetic radar Micro-Doppler signatures adapted to different environments,
so as to reduce the human cost of acquiring radar signals. To enable GANs to extract
time-dependent characteristics and generate time series, Yu et al. [37] proposed Sequence
Generative Adversarial Nets (SeqGAN), combined with Monte Carlo search, to realize the
generation and evaluation of discrete sequences. Lee et al. [38] proposed a novel application
of SeqGAN, which are the creating of polyphonic musical sequences. Hyland et al. [39]
proposed Recurrent Conditional GANs (RCGAN) based on Long Short-Term Memory
networks (LSTM). Figure 2 illustrates the framework of vanilla GAN and its variants.
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3. Model Development
3.1. Overview

MFGAN consists of one generator G and three sub-discriminators (D1, D2 and D3).
Based on the condition information c, G maps the normal data to different types of fault
data. The condition information c is associated with the labels of the fault data. Each
sub-discriminant extracts features from different inputs at a specific sampling frequency
in order to allow the total discriminant D to focus on data at different time scales. Then,
we combine the outputs of all the sub-discriminators to get the output of D. The whole
framework of MFGAN involves three main components, including data pre-processing,
data augmentation, and fault diagnosis, which is shown in Figure 3. The following details
the network structure of generator G and MSED.
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3.2. Generator Architecture

The architecture of generator G is shown in Figure 4. The input to G is a sequence of
normal data and condition information c according to fault type, and its output is the fault
data. There are three GBlocks in G (shown in Figure 4a), each of which is a stack of two
residual blocks. Each GBlock contains two residual connections, the first of which doubles
the dimension of the input and matches the dimension of the output of the main path. The
second residual connection is to simply add the input of the block to the output. So, when a
tensor goes into a GBlock, its dimension is doubled. Condition information (original label)
c works in G in two ways after passing through the embedding layer. The first way is to
multiply the conditional information c directly with the input, and the second way is to
merge the c with the output of the third GBlock. The final MLP (Multilayer Perceptron)
layer with Sigmoid activation produces a fault bearing data associated with c.

The time series modeling by GANs is prone to mode collapse, because the features
of time series are not as rich as those of natural images. In other words, it is difficult for
MFGAN to learn the distribution of all types of fault data. In order to alleviate the above
problem, we construct the loss function of G based on the Model Seeking regular term.
Mao et al. [40] propose to maximize the ratio of the distance between generation data and
latent vectors, which encourages G to generate dissimilar data during training. In this way,
G can explore the fault data space, and enhance the chances of generating instances from
different modes. The calculation of Model Seeking regular term is shown in Formula (2).

Lms = maxG

(
dI(G(c, z1), G(c, z2))

dz(z1, z2)

)
(2)

where, dI and dz both represent distance measurements, and c represents the condition
information, z1 and z2 represent the noise. The smaller the value of Lms, the more serious the
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mode collapse is. We make the modification to Formula (2), because the input of MFGAN is
normal data rather than noise z. The modified calculation formula is shown in Formula (3).

L?
ms = maxG

(
d(G(c, xn1), G(c, xn2))

d(xn1, xn2)

)
(3)

where, xn1 and xn2 represent normal data, and c represents the condition information. We
set d as Euclidean distance in this article.
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3.3. Multi-Scale Ensemble Discriminator Architecture

Instead of a vanilla single discriminator, we use Multi-scale Ensemble Discriminator
(MSED) (shown as Figure 5c) to screen the authenticity of bearing signals at different time
scales (sampling frequency) and classify. The MSED consists of three sub-discriminators
(D1, D2 and D3), and the input of which is fault data as different sampling frequencies f.
In this article, we set f = [4, 2, 1], which means that the input is sub-sampled four times,
two times, and then one time. Each sub-discriminator outputs a score S and a category
C, where S represents whether the likelihood that the input is real and C represents the
predicted category. This output is the same as that of ACGAN. There are three DBlocks in
each sub-discriminator, as shown in Figure 4b. DBlock contains one residual connection
and halves the dimension of the input (Figure 4a). Using different sampling frequencies,
rather than just original fault data, has a data augmentation effect and rich features. This
allows MFGAN to process time series well without using LSTM, as LSTM usually has the
problem of low computational efficiency. Similar to ACGAN, MSED has two loss functions,
as shown in Formulas (4) and (5).

LS = E[logP(S = real|Xreal)] + E
[
logP

(
S = f ake

∣∣∣X f ake

)]
(4)

LC = E[logP(C = c|Xreal)] + E
[
logP

(
C = c

∣∣∣X f ake

)]
(5)
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where, LS represents the authenticity of the generated data, which is calculated by the
cross entropy between the judge result S and labels. LC represents the degree of matching
between the generated data and the condition information.
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3.4. Training Process of MFGAN

The algorithm for the MFGAN training process will be shown below, as shown in
Algorithm 1 (Algorithm 1: MFGAN training process).

Algorithm 1: The algorithm for the MFGAN training process.

1: Input: normal data Xn, fault data Xf, fault data label c, number of fault types K, bacthsize B,
learning rate of MSED ηφ, learning rate of generator ηθ , steps k, iterations N, weights of loss
functions [w1, w2, w3, w4]
2: Output: Trained generator Gθ

3: Randomly initialize parameters θ, φ

4: for n = 0→ N − 1 do
5: Xn ← Shuffle(Xn)
6: [Xf, c]← Shuffle([Xf, l])
7: for i = 0→ k − 1 do
8: [xB

f,i=1, cB
i=1], XB

n,i=1 ← GetSample([X, c], B), GetSample(Xn, B)
9: x’B f,i=1 ← G( xB

n„i=1, cB
i=1)

10: [S′, C′], [S, C]←MSED(x’B f,i=1, cB
i=1), MSED(xB

n„i=1, cB
i=)

11: Ld ← w1(
B
∑
i

Si+
B
∑
i

log
(

1− S′i
)

) + w2/B
B−1
∑

i=0

K
∑

k=0
clogC

12: φ← φ − ηφ∇φ(Ld)
13: end for
14: x’B f,i=1 ← G( xB

n„i=1, cB
i=1)

15: [S′, C′]←MSED(x’B f,i=1, cB
i=1)

16: LG ← w3
B
∑
i

log
(

1− S′i
)

) + w2/B
B−1
∑

i=0

K
∑

k=0
clogC+ w4LS *

17: θ← θ − ηθ∇θ(LG)
18: if n % 50 == 0 and n > 0 then
19: ηφ ← ηφ/2
20: ηθ ← ηθ/2
21: end if
22: end for
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4. Experimental Methodology

As a data-enhancement method, MFGAN can improve the performance of classifica-
tion problems with unbalanced data by expanding the number of minority classes. Three
experiments are conducted in this section, firstly, the quality of the synthetic data is assessed
qualitatively by means of an algorithm commonly used for non-linear downscaling and
data visualization, i.e., experiment A; next, the proposed model is embedded in different
classifiers and compared with state-of-the-art generative models, including CGAN [32],
ACGAN [33], and RCGAN [39], to quantitatively evaluate the performance and generality
of MFGAN, i.e., experiment B; and finally, multiple metrics validate the effectiveness of the
input feature transfer strategy, i.e., experiment C. A general flowchart of the three sets of
evaluation experiments for each dataset is shown in Figure 6.
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4.1. Benchmark Dataset

In order to validate the performance of the proposed framework, several experiments
will be conducted on a publicly available dataset from Case Western Reserve University’s
Bearing Data Centre. Vibration signal data is obtained primarily using accelerometers, and
this test stand for rolling bearing faults is capable of simulating different locations and
degrees of fault. In our experiments, the subject of study is a deep-groove ball bearing
mounted on the drive end of the test stand, which is sampled at a frequency of 12 KHz.
Two datasets with different numbers of categories of faults were selected for experimental
validation. The three categories of faults dataset is for bearings at 1797 rpm and 1772 rpm
and the nine categories of faults dataset is for bearings at 1730 rpm and 1750 rpm. According
to the fault location, the three types of fault data are three types of damage to the ball, inner
ring or outer ring with a defect diameter (inches) and a defect depth (inches) of 0.007 and
0.011, respectively. Therefore, in the three types of faults, only the fault location differs.
There are also three types of damage for the nine types of faults: ball, inner or outer ring,
where each type of damage has three different combinations of defect diameter and defect
depth of (0.007, 0.011), (0.014, 0.011) and (0.021, 0.011). The scale of defect depth gradually
increases and the degree of damage progressively deepens. The two datasets contain
three and nine categories of faults from Svenska Kullager-Fabriken bearing manufacturer,
respectively, and details of the two datasets are given in Tables 1 and 2. It can be seen that
there is a significant imbalance between the two datasets and that multiple faults have
different fault locations and defect sizes. The spectral signal is considered as input to the
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generative model and a segment containing 1024 data points is considered as a sequence.
The sequence numbers for the 4 and 10 categories are shown in the first column of the
table below. The dataset for each category was divided into training data and test data,
with 100 sequences from each category dataset being selected as test data. The training
sequences in each category were used to train the data for the synthesis and fault classifier,
while the test sequences were used to assess the accuracy and reliability of the classification.

Table 1. The detailed information of the three categories of faults dataset.

Category Fault Location Defect Diameter
(Inches)

Defect Depth
(Inches)

Sequence Number
(Training + Testing)

1-1 Normal – – 400 + 100
1-2 Ball 0.007 0.011 10 + 100
1-3 Inner Race 0.007 0.011 10 + 100
1-4 Outer Race 0.007 0.011 10 + 100

Table 2. The detailed information of the nine categories of faults dataset.

Category Fault
Location

Defect Diameter
(Inches)

Defect Depth
(Inches)

Sequence Number
(Training + Testing)

2-1 Normal – – 500 + 100
2-2 Ball 0.007 0.011 10 + 100
2-3 Ball 0.014 0.011 10 + 100
2-4 Ball 0.021 0.011 10 + 100
2-5 Inner Race 0.007 0.011 10 + 100
2-6 Inner Race 0.014 0.011 10 + 100
2-7 Inner Race 0.021 0.011 10 + 100
2-8 Outer Race 0.007 0.011 10 + 100
2-9 Outer Race 0.014 0.011 10 + 100

2-10 Outer Race 0.021 0.011 10 + 100

4.2. Model Evaluation

For a general classification task, there are four categories of prediction outcomes,
including the number of true negatives and true positives (correct predictions) versus false
negatives and false positives (incorrect predictions), as shown in the following formulas.

TN = true negative (6)

FP = f alse positive (7)

FN = f alse negative (8)

TP = true positive (9)

Based on the four categories of prediction outcomes, the metrics for the classification
task typically include accuracy, precision, recall, and F1 score, as shown in the following for-
mulas. Accuracy is a measure of the number of correctly predicted samples as a proportion
of the total number of predicted samples, as shown in Formula (9).

accuracy = (TP + TN)/(TP + TN + FP + FN) (10)

Accuracy is the most common and basic evaluation metric, but in classification tasks
where there is an imbalance between positive and negative examples, especially when we
are more interested in the minority class, accuracy evaluation is largely uninformative.

Precision is a measure of the ratio of the number of correctly predicted samples to the
total number of predicted samples, as shown in Equation (10). Precision is a good measure
when the cost of false positives is high.

precision = TP /(TP + FP) (11)
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Recall is a measure of the ratio of the number of correctly predicted positive samples
to the total number of true positive samples, as shown in Equation (11). When the cost of
false negatives is high, recall would be the metric we would use to select the best model.

recall = (TP)/(TP + FN) (12)

The F1-score is the most commonly used F-score. It is a combination of precision and
recall, namely their harmonic mean. The higher the F1 score, the more accurate your model
is in making predictions. It is calculated via the Formula (12).

F1 is a function of Precision and Recall, and can be seen as a weighted average of
model accuracy and recall, which takes into account both the accuracy and recall of the
classification model, as shown in Equation (12).

F1 = 2 ∗ (precision ∗ recall)/(precision + recall) (13)

The F1 score is needed to find a balance between Precision and Recall, and is a better
metric in the presence of uneven class distributions. It has a maximum value of 1 and a
minimum value of 0. A higher value means a better model.

With the above analysis, accuracy depends heavily on the number of true negatives
and does not give a valid and true evaluation for an unbalanced data set, where false
negatives and false positives are an important basis for evaluating the model. In order
to evaluate the performance of our generative fault diagnosis model on the test data, a
uniform F1 score will be used as a measure for the different comparison models.

4.3. Experiment Design

In order to avoid the testing dataset Dt being affected by the synthesized data, Dt is
isolated from the training dataset Di during the preprocessing. We selected 20% of the
instances as the Dt, and used the remaining 80% of the instances as the Di (to make sure that
Dt is balanced and Di is imbalanced). Therefore, we only expanded Di by five generation
models (GAN, CGAN, ACGAN, RCGAN and MFGAN), the inputs of which are shown in
Table 3. In Table 3, the first column represents the proposed method and some variants of
the GAN. The second column is the data input to each model generator, z is random noise,
c is condition information, and xn represents normal data. The third column is the data
input to each model discriminator, x f represents fault data, x f ′ represents the synthetic
fault data obtained through the generator.

Table 3. The inputs of four generation models.

Algorithms Input of Generator Input of Discrimination

GAN z x f and x f ′
CGAN z and c x f , x f ′ and c

ACGAN z and c x f and x f ′
RCGAN z and c x f , x f ′ and c
MFGAN xn and c x f and x f ′

Then, we continue to add synthetic fault data to the initial Di (making the fault ratio of
Di increase until Di is balanced), and carry out three sets of experiments. The design details
of the three experiments are described below:

In experiment A, we use the T-SNE (t-distributed stochastic neighbor embedding)
algorithm to qualitatively evaluate the quality of the synthetic data. Specifically, we use
T-SNE to reduce the dimension of Di to a two-dimensional plane, and visualize their
aggregation on this plane. As shown in the green box in Figure 6.

In experiment B, the five classifiers, i.e., SVM, MLP, CNN-1D, Fully Convolutional
Network (FCN) [41], and ResNet [41], were used to quantitatively evaluate the performance
of the four generation models on each dataset. In this paper, we use the method proposed
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in paper [41] to process the temporal data input to FCN and ResNet. Their model structure
is shown in Figure 2. Specifically, we used Di with different fault rates to train the five
classifiers, which were then classified on the same testing dataset Dt. Then, the quality
of synthetic fault data is evaluated based on classification performance, as shown in the
purple box in Figure 6.

In experiment C, we aimed to verify that the proposed feature-transfer strategy is
feasible. Feature transfer strategy takes normal data as input to the generator G and maps
directly to the fault data space, rather than input noise as vanilla GANs. Specifically,
we used a variety of indicators to measure the distance between normal data, uniformly
distributed noise, standard normal distribution noise and fault data. The similarity between
these data distributions is measured based on the distance indicators. As shown in the
orange box in Figure 6.

4.4. Performance Evaluation and Analysis
4.4.1. Synthetic Data Quality Visualization

The experimental results for the three categories of faults dataset are shown in Figure 7.
First, we selected 20 instances from each type of fault data randomly, and then used
T-SNE to reduce the dimensionality of these data and visualize their distribution on a
two-dimensional plane. As shown in Figure 7a, all three types of fault data were clustered
together and could not be distinguished from each other due to a lack of sufficient data. This
is why the data-driven classifier fails in the absence of sufficient data. Then, 200 synthetic
fault instances generated by MFGAN were added to each type of fault data, and their
distribution is shown in Figure 7b. It can be seen that the different types of fault data
are significantly different, but the two types of fault data still overlap. We continued
to increase the synthetic fault data until the number of synthetic data for each type of
fault reached 500, as shown in Figure 7d. At this point, the three types of fault data have
separated from each other while forming distinct clusters of clusters. The same occurred
in Figure 8, which shows the results of visualizing the nine categories of faults dataset
after T-SNE downscaling. The experiments show that through MFGAN, it is possible to
capture different classes of valid features and synthesize high-quality data, bringing more
discriminative information to the classification and making the synthesized fault data quite
valid and realistic.

4.4.2. Performance and Generality of MFGAN

In industrial applications, it is difficult to collect fault data, which would pose a
challenge for multiple types of fault diagnosis. We use multiple types of fault data and
normal data to construct a complex unbalanced training dataset Di. Then, the fault data
and normal data are used to form a balanced test dataset Dt. Specifically, for the three
categories of faults dataset, we set the initial ratio of Di to 10:10:10:400. The number of
normal data is 400 and the number of each type of fault data is 10. In the test dataset Dt,
the number of each type of data is 100. For the nine categories of faults dataset, we set
the initial ratio of Di to 10:10:10:10:10:10:10:10:10:10:10:500. The number of normal data is
500 and the number of each type of fault data is 10. In the test dataset Dt, the number of
each type of data is 100.

The numbers in the first row of Table 4 indicate the number of synthetic instances
added to Di generated by MFGAN. The rest of the values represent the F1 scores of the
different classifiers in Dt. It can be seen that the F1 scores of all classifiers increase with the
number of synthetic fault instances added. This indicates that the fault data synthesized by
MFGAN can bring more discriminative information to help the classifiers learn the correct
separation boundaries. Figures 9 and 10 represent the classification results of classifiers
trained by fault data synthesized by different generation models on Dt. It can be seen that,
for different Di and different classifiers, the classifier trained by the fault data synthesized
by MFGAN always has the best performance.
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Figure 9. Comparison of F1 score across different imbalanced percentages in three categories of
faults dataset.
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Figure 10. Comparison of F1 score across different imbalanced percentages in nine categories of
faults dataset.

Table 5 and Figure 10 show the experiment results on the nine categories of faults
dataset, which are similar with that of the three categories of faults dataset. In Table 5,
F1 scores of all classifiers are also increasing with the increase of synthetic fault instances
added, and in Figures 9 and 10, the fault data synthesized by MFGAN always have the best
performance. To sum up, we can draw the following conclusions: (1) compared with other
generative comparison models, MFGAN shows the best results on gradually balanced
datasets among different classifiers, indicating that MFGAN synthesizes the highest quality
fault instances, and proves that MFGAN has generality; (2) balanced datasets after being
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supplemented by good data can significantly improve the training effect and performance
of classifiers.

Table 4. Performance of MFGAN for different classifiers on the three categories of faults dataset.

Number of
Augmented Instances

Fault Diagnosis Performance (F1 Score)

SVM MLP CNN-1D FCN ResNet

0 0.293 0.500 0.750 0.860 0.878
50 0.710 0.750 1.000 0.918 0.918

100 1.000 1.000 0.990 0.938 0.978
150 1.000 1.000 1.000 0.905 0.980
200 1.000 1.000 1.000 0.923 0.988
250 1.000 1.000 1.000 0.948 0.980
300 1.000 1.000 1.000 0.940 0.983
350 1.000 1.000 1.000 0.913 0.985
400 1.000 1.000 1.000 0.975 0.975

Table 5. Performance of MFGAN for different classifiers on the nine categories of faults dataset.

Number of
Augmented Instances

Fault Diagnosis Performance (F1 Score)

SVM MLP CNN-1D FCN ResNet

0 0.160 0.500 0.500 0.859 0.875
50 0.500 1.00 0.998 0.920 0.898

100 0.726 1.000 1.000 0.891 0.935
150 1.000 1.000 1.000 0.936 0.948
200 1.000 1.000 1.000 0.913 0.945
250 1.000 1.000 1.000 0.954 0.912
300 1.000 1.000 1.000 0.969 0.898
350 1.000 1.000 1.000 0.955 0.958
400 1.000 1.000 1.000 0.953 0.956
450 1.000 1.000 1.000 0.954 0.951
500 1.000 1.000 1.000 0.977 0.957

4.4.3. Effectiveness of Feature Transfer Strategies

Tables 6 and 7 represent the experimental results on the three categories of faults
dataset. Table 6 uses Euclidean distance to evaluate the difference between the data,
and Table 7 uses DTW (Dynamic Time Warping) distance. In the table, the first column
represents the distance between fault data and normal data, the second column represents
the distance between noise obeying uniformly distribution and normal data, and the third
column represents the distance value between noise obeying standard normal distribution
and normal data. It can be seen that the distance between all types of fault data and normal
data is the minimum, which will reduce the difficulty of synthesizing fault data. This is
also the reason why MFGAN can generate higher quality fault data. We obtained similar
results on the nine categories of faults dataset, as shown in Tables 8 and 9. Meanwhile, the
specific relationship between different specific faults and normal data is also analyzed. In
Tables 6 and 7, fault2, representing the inner ring fault, is always a smaller distance from
the normal data, indicating that in the case of the three types of fault operation, the inner
ring fault is to a lesser extent relative to the other faults, the ball to a lesser extent and the
outer ring to the greatest extent of damage. In Tables 8 and 9, fault1 to fault6, representing
both ball faults and inner ring faults, are always at a smaller distance from the normal
data, indicating that the outer ring is damaged to the greatest extent in the nine types of
faulty operation.
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Table 6. Comparison of Euclidean distance in the three categories of faults dataset.

Category Normal Data Uniformly Distributed Noise Standard Normal
Distribution Noise

fault1 76.898 97.778 241.768
fault2 43.474 111.567 231.037
fault3 87.655 91.972 244.148

Table 7. Comparison of DTW distance in the three categories of faults dataset.

Category Normal Data Uniformly Distributed Noise Standard Normal
Distribution Noise

fault1 543.605 691.220 1709.199
fault2 307.282 788.811 1633.360
fault3 619.165 650.098 1725.932

Table 8. Comparison of Euclidean distance in the nine categories of faults dataset.

Category Normal Data Uniformly Distributed Noise Standard Normal
Distribution Noise

fault1 47.611 164.854 322.914
fault2 51.878 162.893 324.005
fault3 49.324 165.693 323.005
fault4 88.812 145.785 333.944
fault5 55.535 156.932 324.238
fault6 89.096 144.817 334.050
fault7 102.261 138.275 336.858
fault8 49.456 165.121 322.866
fault9 116.670 130.526 343.236

Table 9. Comparison of DTW in the nine categories of faults dataset.

Category Normal Data Uniformly Distributed Noise Standard Normal
Distribution Noise

fault1 475.846 1648.304 3228.351
fault2 516.868 1628.181 3239.231
fault3 492.986 1656.742 3229.276
fault4 887.850 1457.344 3338.659
fault5 554.594 1568.904 3241.597
fault6 890.105 1447.650 3339.695
fault7 1022.121 1382.086 3367.754
fault8 494.281 1651.009 3227.906
fault9 1165.438 1304.594 3431.442

To sum up, we verify that the distance between normal data and fault data is closer
through experiments, and explain that the data-synthesis method based on feature transfer
can obtain higher-quality data.

5. Conclusions

This article proposes a novel data augmentation method (MFGAN) for imbalanced
fault diagnosis. MFGAN introduces feature transfer into GANs to reduce the difficulty of
data augmentation and make full use of the normal data. The generator maps the normal
data into the fault data space to accomplish fault data augmentation. Moreover, it can be
embedded into any generation model of similar tasks, so it has good generality. Meanwhile,
we extend the single discriminator to multi-scale ensemble discriminator architecture
(MSED) to help MFGAN learn data features on multiple time scales to ensure more stable
training and the high authenticity of the synthetic data. Finally, we apply the proposed
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data augmentation method to two rolling bearing datasets, and the experimental results
show that the proposed method is superior. In practical applications, the amount of fault
data may be too limited to support the training of MFGAN. Therefore, in future work,
we will investigate more effective training of MFGAN under more data-poor conditions.
Meanwhile, the data enhancement method proposed in this paper will also be extended to
more scenarios with limited data.
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