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Abstract: Mechanical equipment in the field of aerospace that is used only once is called disposable
machinery. As a piece of typical disposable machinery, disposable harmonic gear exhibit stiffness
failure with a large load. This manuscript distinguishes disposable harmonic gear from conventional
harmonic gear in terms of the application environment and structure. Then, this paper determines the
single-tooth stiffness of the disposable harmonic gear under full load by using the non-uniform beam
model and the improved energy method. In addition, the multi-tooth meshing in the disposable har-
monic drive is considered, and the improved energy method is modified. Besides, the normal contact
force and comprehensive elastic displacement at each meshing position are calculated according to
the finite element model. Additionally, curves of the single-tooth stiffness and the comprehensive
meshing stiffness are obtained. The theoretical results of the modified analytical method and FEM
are compared to verify the correctness of the proposed method in terms of calculating the meshing
stiffness of the disposable harmonic drive. Finally, FEM is used to obtain the failure form of the
disposable harmonic gear under overload.

Keywords: disposable harmonic drive; meshing stiffness; modified improved energy method; finite
element model

1. Introduction

Different from conventional long-running and reused machinery, machinery which
is not reused is named disposable machinery. Such machines are designed to have a very
short service life (measured in “minutes”) and take the use of a short-term high load as the
working normality. The harmonic reducer in the disposable electromechanical actuator is a
key component that determines the performance of the system. Harmonic gears transmit
motion and powers through deformation waves caused by flexible parts with controllable
deformation. Harmonic drives (HDs) have the advantages of a large transmission ratio,
high transmission accuracy, and small volume weight, which are of great significance for
the application of a high power–weight ratio [1]. The short-term extreme load limitation
and dynamic properties of the disposable harmonic gear transmission have gradually
developed into a focus of research in this area [2]. Due to the extremely short service life,
the flexible wheel’s high-cycle fatigue failure, which is the main concern in the research of
conventional harmonic gears, will not appear in the disposable harmonic gear. Therefore,
determining the meshing stiffness of harmonic gears is an important direction of research
on full-load harmonic drives.

Many papers have discussed the meshing stiffness associated with gear transmission.
The harmonic drive is characterized by a straight tooth profile, extremely thin rim, and
simultaneous meshing of multiple teeth. The research findings on the meshing stiffness of
cylinder gears with a thin rim and high engagement ratio can be used for reference. Most
research on the stiffness of cylindrical gear transmission to date has used the analytical
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method (AM) or the finite element method (FEM). As early as 1987, Yang et al. [3] proposed
decomposing the total energy of gear meshing into Hertz contact energy, bending energy,
and axial compression energy. The subsequent researches on the meshing stiffness of gear
transmission were carried out on the conclusions of Yang. Considering the shear energy
generated by the component of the contact force on the teeth of the gear, Tian [4] introduced
shear stiffness using Yang’s model. Based on the models proposed by Weber [5], Attia [6],
and Cornell [7], Sainsot et al. [8] calculated the offset caused by the action of the teeth
of the gear when its foundation is subjected to a force. Fakher [9] introduced the offset
energy and the offset stiffness to calculate the stiffness of the gear meshing based on Sainsot
et al.’s research. Sun et al. [10] divided the spur gear into thin slices along the width of the
tooth and modified the model of meshing stiffness by considering the influences of lead
crowning relief and tip relief. Wang et al. [11] equated contact among the teeth with the
elastic contact of a spring to study the influence of the width of the web, its hole radius,
and the length of the crack on the TVMS of a spur gear with webbing according to the
potential energy method. This method could help to analyze the meshing stiffness when
the gear foundation is shared under multi-tooth. Considering the periodically varying load
distribution in tooth surface wear, Chen et al. [12] established a new model for calculating
the TVMS of external spur gears. The model also discussed the effect of surface wear on
stiffness. Sánchez et al. [13] studied the load distribution and meshing stiffness of standard
and high-contact-ratio spur gears after profile modifications. The finite element method is
also commonly used to solve the problems of tooth deformation and meshing stiffness of
gear drives by employing finite element analysis software. Ma et al. [14] used ANSYS to
establish a FEM of a cracked spur gear transmission to analyze the influence of extended
tooth contact on the meshing stiffness owing to flexible teeth. This model could analyze
the meshing stiffness of multi-tooth meshing under high torque, which provided help
for the establishment of FEM in this paper. Based on the Quasi-static Algorithm (QSA),
Zhan et al. [15] proposed an integrated CAD–FEM–QSA system to analyze the TVMS
of gears. Compared with traditional methods, this technique had higher precision and
efficiency. Chen et al. [16] proposed a FEM of the meshing stiffness of a spur gear by
considering complex paths for gear and crack propagation based on finite element theory
and the contact analysis of loaded teeth. The model proved that the meshing stiffness is
affected by the rim thickness. The relationship between the meshing stiffness of the gear
and the thickness of its web and fracture mode was studied. Considering that the FEM
is less efficient at solving the TVMS of gears than the AM, and the results are affected by
such factors as the division of the meshing, the FEM is generally used as a supplement to
the AM.

Most of the analytical methods mentioned above focus on the meshing stiffness of spur
cylindrical gears. The above methods and models confirmed that the meshing stiffness is
affected by the thickness of the rim and the number of meshing teeth, which established the
foundation for the research on the mesh stiffness of harmonic drive in this paper. In general,
the flexible wheel in HD is prone to fatigue failure, because of which less research has
been conducted on the stiffness of large-load flexible wheels. Considering the application
environment and the extremely thin rim structure, it is necessary to study the stiffness of
the transmission of a disposable harmonic gear. Gear deformation is the research basis
for the meshing stiffness of the harmonic drive, and flexible wheel deformation occupies
an important part of the total deformation. Ma et al. [17] discussed the flexible wheel
deformation characteristics in HD under different driving speeds. Dong simplified the
flexible wheel and obtained the strain and stress on the front, middle, and rear sections of the
flexible rim [18]. Based on the finite element model, Kayabasi [19] analyzed the maximum
stress and position of the flexible wheel during transmission so that the flexible tooth
profile could be optimized. On the basis of the involute tooth profile optimization method
proposed by Dong [20], Chen et al. [21] combined the variable section beam element and
shell element. Then, ANSYS was used to analyze the deformation of the flexible teeth and
neutral layer after assembly and transmission. In addition, they also studied the influence
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of wave generators with different shapes on the flexible middle plane’s deformation [22,23].
The variable-section beam and shell models mentioned in the above studies are common
methods for the calculation of the deformation and stiffness of the flexible wheel. By
analyzing the global sensitivity of the harmonic drive, Hrcek et al. [24] discussed the effects
of geometric parameters, such as the module, tooth height, and rim thickness, on lost
motion and torsional stiffness. Hu et al. [25] considered the ring flexibility of thin-walled
gears, and divided the inner ring gear into multiple curved beams to establish the meshing
stiffness model of a thin-walled flexible ring gear. In addition, he also analyzed the influence
of the ring gear thickness and cross-sectional shape on meshing stiffness. Dong et al. [26]
analyzed the elastic motion behavior of the flexible middle plane under no load and a
small load. Subsequently, Gravagno et al. [27] proposed a new method to calculate the
tension of the flexible neutral layer in HD and studied the relationship between the bending
stress and circumferential strain of the flexible wheel and rollers of the wave generator.
Tjahjowidodo [28] established a harmonic drive torsional compliance model to accurately
capture the hysteresis in the torsional stiffness. Then, Zhang et al. [29] established a model
for the compliance behavior of the flexible wheel to analyze the torsional compliance
and stiffness of the harmonic drive system. Rheaume et al. [30,31] used finite element
software to establish a numerical model of a harmonic gear to obtain the torsional stiffness
and discussed the influence of geometric parameters on stiffness. Timofeev et al. [32]
considered the deformation, processing error, and meshing characteristics of the flexible
wheel to establish a mathematical model of harmonic gear transmission, and studied the
torsional stiffness of HD. The study of this work on high-torque harmonic drives was
beneficial to this paper. Ma et al. [33] established a FEM to study the meshing stiffness
and torsional stiffness of HD. In addition, they also analyzed the influence of torque on
the meshing teeth and meshing length. The study showed that the number of meshing
teeth would increase with increasing load. Ma et al. [34] established an integrated system
to analyze the meshing characteristics of a harmonic drive with multiple contacts among
the teeth at the same time. Using a FEM, Wei et al. [35] combined the static and dynamic
contact characteristics of the harmonic gear to obtain the meshing stiffness of HD. His
work provided a basis for the dynamic analysis of HD. At present, research on the meshing
stiffness of HD mostly adopts the finite element method, and the stiffness of the disposable
harmonic gear is rarely involved. Therefore, it is necessary to propose a theoretical method
to calculate the meshing stiffness of disposable harmonic gear.

Disposable machinery is a burgeoning development field. Different from the tradi-
tional HD, the disposable HD applied to a high load has a higher load capacity, smaller
volume weight, and lower service life. In the previous study, we discussed the contact
characteristics of the disposable HD from the point of strength and analyzed the no-load
backlash, load distribution, and contact stress of HD [36]. However, research on the stiffness
of the disposable HD has not been carried out. The combination of the research results
on strength and stiffness can help to establish the design theory of disposable harmonic
drive. Therefore, the comprehensive meshing stiffness of the disposable HD under full
load operation will be studied in this work. Taking into account the cost of a disposable
HD, the involute curve, which is more convenient to process, was selected as the flexible
tooth profile in this work. In Section 2, the structure of the disposable harmonic gear is
discussed. In Section 3, the non-uniform beam model and the improved energy method are
used to calculate the single-tooth stiffness of a disposable harmonic drive under full load.
Moreover, considering the influence of multi-tooth meshing, the improved energy method
is modified to obtain the comprehensive meshing stiffness. Additionally, the stiffness
curves obtained by the two methods are compared. Finally, a loaded harmonic gear is
represented by a three-dimensional (3D) FEM, and the normal force and comprehensive
elastic displacement while in engagement are extracted in Section 4. The failure mode of
the disposable flexible wheel under overload is also discussed by FEM. The conclusions of
this work are generalized in Section 5.
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2. Design Scheme of the Disposable Harmonic Drive
2.1. Design of the Disposable Harmonic Flexible Wheel

The disposable HD consisted of a flexible wheel, a rigid wheel, and a wave generator.
Figure 1 shows a conventional cup harmonic gear. A long cup flexible wheel was used as
the conventional harmonic reducer to reduce the bottom stress concentration and extend the
service life. However, this structure is contrary to the requirements of a high power–weight
ratio for disposable harmonic gear. Considering that the disposable harmonic reducer is
used for high loads and has a very low service life, and in order to improve the ultimate
bearing capacity of a disposable harmonic drive with limited size, a straight flexible wheel
with the complex wave transmission was selected (see Figure 2). This type of flexible wheel
can be equivalent to a thin-walled external gear. It can increase the bearing torque of the
disposable harmonic drive while compressing the axial dimension. In addition, it can also
decrease the torsional hysteresis caused by the deformation of the cylinder to improve
the transmission accuracy and meet the requirements of the disposable harmonic reducer.
Therefore, the structure of a complex wave harmonic drive is more suitable for a disposable
harmonic gear under full load operation.
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High-cycle fatigue failure is usually not considered in disposable HD, but low-cycle
failure should be emphasized. Medium-carbon alloy steels, such as 40Cr, 40CrNiMo, and
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30CrMnSiA, are the first choice for flexible wheels. Cr, Ni, Mo, Mn and Si can refine metal
grains so as to improve the stiffness and toughness of steel. In this paper, 40CrNiMoA under
a quenching–tempering process was selected as the disposable flexible wheel material. The
stress–strain curve obtained by the tension and compression test of 40CrNiMoA is shown
in Figure 3, and the yield strength σs was determined as 960 MPa.

Machines 2022, 10, 271 5 of 26 
 

 

 

Figure 2. Structure of the disposable flexible wheel. 

High-cycle fatigue failure is usually not considered in disposable HD, but low-cycle 

failure should be emphasized. Medium-carbon alloy steels, such as 40Cr, 40CrNiMo, 

and 30CrMnSiA, are the first choice for flexible wheels. Cr, Ni, Mo, Mn, and Si can refine 

metal grains so as to improve the stiffness and toughness of steel. In this paper, 

40CrNiMoA under a quenching–tempering process was selected as the disposable flexi-

ble wheel material. The stress–strain curve obtained by the tension and compression test 

of 40CrNiMoA is shown in Figure 3, and the yield strength σs was determined as 960 

MPa. 

 

Figure 3. Tensile curve of 40CrNiMoA. 

2.2. Tooth Profile Design of the Disposable Harmonic Rigid Wheel 

According to the working characteristics of disposable harmonic drives, the fol-

lowing assumptions are made in this paper: 

(1) The distortion of the flexible wheel is not considered during transmission, and the 

length of the neutral layer of the flexible wheel remains unchanged; 

(2) The tooth profile of the flexible wheel does not change during assembly and trans-

mission; 

(3) The symmetrical section of the flexible teeth is still perpendicular to the neutral layer 

of the flexible wheel after deformation; 

(4) The neutral layer of the flexible wheel remains stable during meshing. 

Based on the above assumptions, on the premise that the flexible tooth profile and 

the shape of the wave generator have been determined, the envelope method is used to 

Figure 3. Tensile curve of 40CrNiMoA.

2.2. Tooth Profile Design of the Disposable Harmonic Rigid Wheel

According to the working characteristics of disposable harmonic drives, the following
assumptions are made in this paper:

(1) The distortion of the flexible wheel is not considered during transmission, and the
length of the neutral layer of the flexible wheel remains unchanged;

(2) The tooth profile of the flexible wheel does not change during assembly and transmis-
sion;

(3) The symmetrical section of the flexible teeth is still perpendicular to the neutral layer
of the flexible wheel after deformation;

(4) The neutral layer of the flexible wheel remains stable during meshing.

Based on the above assumptions, on the premise that the flexible tooth profile and
the shape of the wave generator have been determined, the envelope method is used
to calculate the rigid tooth profile (see Figure 4). There are three coordinate systems in
Figure 4: the wave generator coordinate system C(O; x, y, z), the flexible wheel coordinate
system Cr(Or; xr, yr, zr), and the rigid wheel coordinate system Cg(Og; xg, yg, zg). O and Og
coincide with the rotation center of the harmonic drive, while Or is the intersection of the
symmetry line of the deformed flexible tooth and the neutral layer of the flexible wheel rim.
yr is the symmetry axis of the flexible tooth and yg is the symmetry axis of the rigid tooth
cogging. The original curve before harmonic gear assembly was set as C̃r and the motion
trajectory of a point on the original curve in Cg was defined as C̃′r. Then, the envelope curve
of the curve family when the flexible tooth profile r̃ moved along C̃′r in Cg was the rigid
wheel tooth profile.
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The elliptical cam wave generator is a wave generator with an ellipse as the basic
profile of the cam. Compared with other wave generators, the elliptical cam wave generator
can ensure the excellent performance of the harmonic drive and is easy to process. The
function of the original curve after assembly can be expressed as:

ρ(ϕ) =

√(
rm + ω∗0 m

)2 − 4rmω∗0 m sin2 ϕ (1)

where rm represents the neutral layer radius of the flexible wheel rim, ω∗0 denotes the radial
deformation coefficient of the flexible wheel, and m is the gear module.

The radial deformation of point H at the flexible wheel rim neutral layer after assembly
can be expressed as:

ω(ϕ) =

√(
rm + ω∗0 m

)2 − 4rmω∗0 m sin2 ϕ− rm (2)

According to Equation (1), the included angle between the vector radius and the
curvature radius traversing through point H can be expressed as:

µ(ϕ) = arctan
ρ′

ρ(ϕ)
= arctan

ρ′

rm + ω(ϕ)
=

1
rm

dω(ϕ)

dϕ
(3)

In the flexible coordinate system, the flexible tooth profile curve can be calculated with:{
xr = xr(µ)
yr = yr(µ)

(4)

The flexible tooth profile and wave generator profile curve are shown in
Figures 5 and 6, respectively.
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According to the envelope theory of harmonic drive, the rigid tooth profile conjugated
with the disposable flexible wheel can be obtained as:

xg(µ, ϕ) = xr(µ) cos ψ + yr(µ) sin ψ + ρ(ϕ) sin γ

yg(µ, ϕ) = −xr(µ) sin ψ + yr(µ) cos ψ + ρ(ϕ) cos γ
∂xg(µ,ϕ)

∂µ · ∂yg(µ,ϕ)
∂ϕ − ∂xg(µ,ϕ)

∂ϕ · ∂yg(µ,ϕ)
∂µ = 0

ψ(ϕ) = µ + φ

φ(ϕ) = ϕr − ϕg

(5)

For the disposable harmonic drive, ϕr and ϕg can be expressed as:{
ϕr = ϕ

ϕg = Zr
Zg
· ϕ (6)

where Zr and Zg indicate the tooth number of the flexible and rigid wheels, respectively.
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Then, the transformation matrix from the flexible wheel coordinate system to the rigid
wheel coordinate system can be expressed as:

Mrg =

 cos ψ sin ψ ρ sin γ
− sin ψ cos ψ ρ cos γ

0 0 1

 (7)

The discretization of the flexible tooth profile curve was substituted into Equation (8),
and a series of curve clusters of 0 ≤ ϕ ≤ π/2 were obtained. Then, the envelope curve
of the curve cluster was obtained through program calculation, which was defined as the
rigid tooth profile.  xg

yg
1

 = Mrg

 xr
yr
1

 (8)

The rigid tooth profile obtained by the envelope method is shown in Figure 7. The
thin curve family in this figure is the motion trajectory of the flexible tooth. And the solid
blue line is the tooth profile of the rigid wheel after enveloping.
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After data-fitting, the rigid tooth profile curve of the disposable harmonic drive in this
paper can be expressed as:

yg(x) = 18.732x3 − 7.995x2 − 1.2504x + 16.82 (9)

3. Analytical Model to Compute the Meshing Stiffness of the Disposable Harmonic
Drive under Full Load

The flexible wheel in the harmonic drive is a thin-walled component. The thickness
of the rim is similar to the height of each of its teeth. According to Refs. [16,24], the thin
rim has an effect on meshing stiffness. In addition, the simultaneous meshing of multiple
teeth during the disposable harmonic drive will also affect the stiffness. Thus, prevalent
methods cannot accurately calculate the stiffness of the flexible wheel. Because the rim
of the rigid wheel is much thicker than the tooth, the stiffness of the rigid wheel can be
calculated by the potential energy method for a cylindrical gear.

3.1. Stiffness of the Flexible Wheel Tooth

The single-tooth stiffness of gear transmission can be expressed by the elastic defor-
mation of a single gear tooth in the meshing process. For the disposable harmonic gear, the
elastic deformation mainly includes tooth root bending deformation, shear deformation,
and tooth surface contact deformation.
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The general expression for the stiffness of single-tooth transmission is as follows:

k =
F
δ

(10)

where F is the transmission force acting on the tooth and δ denotes the comprehensive
displacement along the direction of the force.

The equivalent model of the flexible wheel is shown in Figure 8. In this figure, AM
and BN are the curves of the involute profile. The single-tooth model of the involute profile
is shown in Figure 9. Along the action line, F can be decomposed into axial component
Fa1 and radial component Fb1. Compression energy is generated under the action of Fa1,
shear energy is generated under the action of Fb1, and bending energy is generated by
a combination of Fb1 and the additional bending moment Mx1. Fa1, Fb1, and Mx1 can be
calculated as:

Fa1 = F · sin θd (11)

Fb1 = F · cos θd (12)

Mx1 = Fb1 · (hδ + d− x)− Fa1 · SF (13)
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According to beam theory and the Cartesian theorem, the energy stored in a single
flexible tooth can be expressed as follows:

Uε =
∫ hδ

0

F2
a1

2EA1p
dx +

∫ hδ

0

F2
b1

2GA1p
dx +

∫ hδ

0

M2
x1

2EI1p
dx +

∫ hδ+d

hδ

F2
a1

2EA1x
dx +

∫ hδ+d

hδ

F2
b1

2GA1x
dx +

∫ hδ+d

hδ

M2
x1

2EI1x
dx (14)

where E and G represent Young’s modulus and the shear modulus, respectively; h1 denotes
the height of the tooth of the gear; hδ describes the thickness of the rim of a flexible wheel;
A1x and I1x are the area and the area moment of inertia of the section where the distance
to the bottom of the rim is x, respectively; and A1p and I1p describe the area and the area
moment of inertia of the rim section of a flexible wheel, respectively (see Figure 8).

To simplify the calculation, A1x, I1x, A1p and I1p can be expressed as follows:

A1x = 2SxL (15)

I1x =
1

12
(2Sx)

3L (16)

A1p = PL (17)

I1p =
1

12
P3L (18)

where Sx denotes half of the thickness of a given flexible tooth where the distance to the
bottom of the rim is x, SF is half of the tooth thickness at the action position K, P is the pitch
of a flexible tooth, and L represents its width.

Substituting Equations (12)–(14) and (16)–(19) into Equation (15), the comprehensive
displacement of a single flexible tooth can be expressed as follows:

δε =
F sin2 θd

EPL hδ +
F cos2 θd

GPL hδ +
F

1
12 EP3L

∫ hδ
0 [(hδ + d− x) cos θd − SF sin θd]

2dx+

F sin2 θd
EL

∫ hδ+d
hδ

dx
Sx

+ F cos2 θd
GL

∫ hδ+d
hδ

dx
Sx

+ F
2
3 EL

∫ hδ+d
hδ

[(hδ+d−x) cos αd−SF sin θd ]
2

S3
x

dx
(19)

According to the characteristics of the involute curve, the angular position variable θ
is introduced, and Sx and SF can then be expressed as follows:

Sx = Rb1 [(θb − θ) cos θ + sin θ],
SF = Rb1 [(θb + θd) cos θ − sin θd]

(20)

where θb describes the half tooth angle on the base circle:

θb =
π

2Z1
+ invα0 (21)

where α0 denotes the pressure angle, and Z1 is the tooth number of the flexible wheel.
By substituting Equations (19) and (20) into Equation (10), the stiffness of a single

flexible tooth of the involute profile can be expressed as follows:

kr =
F
δε

=
EL

Ci1 sin2 θd + Ci2 cos2 θd + Ci3 sin θd cos θd
(22)

where Ci1, Ci2, and Ci3 denote the relevant parameters of the tooth and can be expressed
as follows:

Ci1 = C1 + C2 · Ca1 +
5
2

Ca2 (23)

Ci2 = 2(1 + ν)C1 + C2 · Cb1 + 2(1 + ν) · Cab + Cb2 (24)

Ci3 = −(2C2 · Cs1 + 3Cs2) (25)
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C1 =
hδ

P
, C2 =

12
P3 (26)

Ca1 =
∫ θδ

θ f
R3

b1
[(θb − θ)cosθ + sin θ]2(θ − θb)cosθdθ,

Cab =
∫ θδ

θ f

(θ−θb)cosθ
(θb−θ)cosθ+sin θ

dθ
(27)

Cb1 =
∫ θδ

θ f
R3

b1
[cos θd − cos θ + (θb − θ) sin θ − (θb − θd) sin θd]

2(θ − θb)cosθdθ,

Cb2 =
∫ θ f
−θd

[cos θd−cos θ+(θb−θ) sin θ−(θb−θd) sin θd ]
2(θ−θb)cosθ

[(θb−θ)cosθ+sinθ]3
dθ

(28)

Cs1 =
∫ θδ

θ f
R3

b1
[cos θd − cos θ + (θb − θ) sin θ − (θb − θd) sin θd][(θb − θ)cosθ + sin θ](θ − θb)cosθdθ,

Cs2 =
∫ θ f
−θd

[cos θd−cos θ+(θb−θ) sin θ−(θb−θd) sin θd ](θ−θb)cosθ

[(θb−θ)cosθ+sinθ]2
dθ,

(29)

3.2. Stiffness of the Rigid Wheel Tooth

The single-tooth model of the rigid wheel is shown in Figure 10. Different from the
involute tooth profile of the flexible wheel, the tooth profile of the rigid wheel is obtained
according to the envelope method (see Equation (9)).
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The orthogonal component of the action force F and the equivalent bending moment
can be expressed as:

Fa2 = F · sin ϕl (30)

Fb2 = F · cos ϕl (31)

Mx2 = Fb2 · (l − x)− Fa2 · hF (32)

By applying the beam theory, the bending, axial compressive, and shear energies
stored in a rigid tooth can be obtained as follows:

Ub2 =
F2

2kb2

=
∫ l

0

Mx2
2

2EI2x
dx (33)

Ua2 =
F2

2ka2

=
∫ l

0

Fa2
2

2EA2x
dx (34)
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Us2 =
F2

2ks2

=
∫ l

0

1.2Fb2
2

2GA2x
dx (35)

where A2x and I2x are the area and the area moment of inertia of the section where the
distance to the top of the rigid tooth is x, respectively. They can be expressed as follows:

A2x = 2hxL (36)

I2x =
1

12
(2hx)

3L (37)

where hx denotes half of the thickness of the rigid tooth where the distance to the tooth
top is x. Therefore, the bending stiffness (kb2), axial compressive stiffness (ka2), and shear
stiffness (ks2) of the rigid tooth are given as:

1
kb2

=
∫ l

0

[cos ϕl · (l − x)− sin ϕl · hF]
2

2
3 ELh3

x
dx (38)

1
kb2

=
∫ l

0

[cos ϕl · (l − x)− sin ϕl · hF]
2

2
3 ELh3

x
dx (39)

1
ks2

=
∫ l

0

1.2 cos2 ϕl · 2(1 + ν)

2ELhx
dx (40)

where hF denotes half of the thickness of the rigid tooth where the distance to the tooth
top is l. According to the fitting curve of the rigid wheel obtained from Equation (9) in
Section 2.2, hx and hF can be expressed as follows:

hx = −0.5378(Ra2 − x)3 + 26.666(Ra2 − x)2 − 441.16(Ra2 − x) + 2435.3 (41)

hF = −0.5378(Ra2 − l)3 + 26.666(Ra2 − l)2 − 441.16(Ra2 − l) + 2435.3 (42)

The fillet foundation displacement in the direction of tooth load can be obtained by
Sainsot et al. [8] as:

δ f2 =
F cos2 ϕl

EL
·

L∗
(

U f

S f

)2

+ M∗
(

U f

S f

)
+ P∗

(
1 + Q∗ tan2 ϕl

) (43)

where Uf and Sf are as shown in Figure 11, and L*, M*, P*, and Q* are constants that differ
slightly depending on the assumptions shown in Table 1.

Table 1. Values of the coefficients of Equation (43).

L* M* P* Q*

Weber [5]–Attia [6] 5.2 1 1.4 0.294–0.32

Cornell [7] 5.306 1.4 (plane stress)
1.14 (plane strain) 1.534 0.32

The stiffness considering the gear fillet foundation deflection can be expressed as:

1
k f2

=
δ f2

F
=

cos2 ϕl
EL

·

L∗
(

U f

S f

)2

+ M∗
(

U f

S f

)
+ P∗

(
1 + Q∗ tan2 ϕl

) (44)
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The single-tooth stiffness of the rigid wheel can be obtained as:

kg =
1

1
kb2

+ 1
ka2

+ 1
ks2

+ 1
k f2

(45)

The parameters in Table 2 were used to model the harmonic gears. The equivalent
meshing stiffness of a tooth pair in transmission can be calculated by:

1
k
=

1
kr

+
1
kg

+
1
kh

(46)

Table 2. Parameters of the HD.

Parameter Flexible Wheel Rigid Wheel

Number of teeth Z 200 202
Module m (mm) 0.16 0.16

Teeth width L (mm) 10 10
Pressure angle α0 (◦) 20
Transmission ratio 100

The Hertz contact stiffness kh is given by Yang et al. [3] as:

kh =
πEL

4(1− ν2)
(47)

where ν describes the Poisson’s ratio of the material of a rigid wheel.
The above-mentioned procedure can be repeated when multiple pairs of teeth are in

contact. The comprehensive stiffness can be expressed as:

K = k1 + k2 + · · · kn (48)

where n denotes the contact teeth number in the meshing region.
The single-tooth stiffness of the disposable harmonic drive in the involute profile as

obtained by the improved energy method is shown in Figure 12. The stiffness obtained by
the improved energy method, proposed in this article, was compared with the stiffness
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calculated by the analytical method without considering the thin rim in Ref. [10], as shown
in Figure 13.
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Compared with conventional spur gears, the extremely thin rim structure of disposable
harmonic gears will have a great influence on their stiffness, which must be considered.
In addition, the proportion of the teeth number involved in the meshing of the disposable
harmonic HD can be close to 30%. Therefore, in order to obtain the comprehensive stiffness
of the disposable HD, the influence of the remaining teeth that are meshed at the same time
in a meshing cycle should also be considered.
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3.3. Stiffness of Multi-Tooth Meshing

Under the action of the elliptical cam wave generator, the rim of the flexible wheel is
stretched from a circle to an ellipse. Therefore, the flexible wheel is divided into a contact
area and a non-contact area, and γ represents the range of the contact area (see Figure 14a).
The micro-unit on the flexible rim at position ϕ in the contact area is acted on by the
radial force qr generated by the wave generator. The schematic diagram of internal force
calculation is shown in Figure 14b.
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Substituting Equation (55) into Equation (56): 

Figure 14. (a) Contact region distribution of the disposable HD; (b) internal force calculation
schematic diagram of the flexible rim in the contact area.

When the disposable harmonic gear is loaded, the transmission torque T acting on the
flexible wheel can be expressed as:

T = 4
∫ γ

0

(
d1

2

)2
Lqtmax cos

(
πϕ

2γ

)
dϕ (49)

where qt is the circumferentially distributed load per unit width of the flexible wheel rim,
which can be expressed as:

qtmax =
πT

2γd2
1L

(50)

where d1 represents the diameter of the flexible wheel index circle.
According to the equilibrium equation:

qtmax =
πT

2γd2
1L

(51)

where qr = qtmax · q∗r , and q∗r indicates a dimensionless coefficient, which can be expressed
as q∗r = 0.375[1− sin(ϕ/2)]

Therefore, the tension of the flexible rim in the contact area can be expressed as:

N(ϕ) = qtmax · q∗r · rm (0 ≤ ϕ ≤ γ) (52)
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The tensile stress can be expressed as:

σt =
N(ϕ)

hδ
=

0.375
(
1− sin ϕ

2
)
πTrm

2γd2
1Lhδ

(53)

At the i-th pair of meshing teeth, the circumferential displacement of the flexible rim
caused by tension can be expressed as follows:

νt =
∫ ϕi

ϕi−1

rm ·
σt

E
dϕ =

0.375πTr2
m

2Eγd2
1Lhδ

[(
ϕi + 2 cos

ϕi
2

)
−
(

ϕi−1 + 2 cos
ϕi−1

2

)]
(54)

According to the relationship between the bending moment and the curvature variable,
the bending moment of the rim unit at the position ϕ of the contact area can be expressed as:

M(ϕ) = EIz

(
1

ρ(ϕ)
− 1

rm

)
(0 ≤ ϕ ≤ γ) (55)

where EIz is the circumferential bending stiffness of the flexible rim. The bending equation
of the flexible rim in the contact area can be expressed as:

d2ω′

dϕ2 + ω′(ϕ) =
−M(ϕ)r2

m

EIz
(0 ≤ ϕ ≤ γ) (56)

Substituting Equation (55) into Equation (56):

ω′(ϕ) = A sin ϕ + B cos ϕ− r2
m

(
1

ρ(ϕ)
− 1

rm

)
(0 ≤ ϕ ≤ γ) (57)

According to the boundary conditions:{
ω′(0) = ω∗0 m
dω′
dϕ

∣∣∣ϕ=0 = 0
(58)

Parameters A and B can be expressed as:{
A = 0
B = ω∗0 m + r2

m

(
1

ρ(ϕ)
− 1

rm

) (59)

According to the non-elongation condition of the neutral layer,

ν′(ϕ) =
∫ ]ϕi

ϕi−1

ω′(ϕ)dϕ = − (M sin ϕi − Nϕi)− (M sin]ϕi−1 − N]ϕi−1)

M− N
(0 ≤ ϕ ≤ γ) (60)

M = − sin γ cos γ, N = π/4[cos γ− (π/2− γ) sin γ] (61)

Combining Equation (54) with Equation (60), the additional tangential displacement at
the i-th pair of meshing teeth of the flexible wheel in the contact area caused by multi-tooth
meshing under a load can be expressed as (see Figure 15):

ν(i) = −
(M sin ϕi − Nϕi)− (M sin ϕi−1 − Nϕi−1)

M− N
− 0.375πTr2

m

2Eγd2
1Lhδ

[(
ϕi + 2 cos

ϕi
2

)
−
(

ϕi−1 + 2 cos
ϕi−1

2

)]
(62)
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Combining Equation (54) with Equation (60), the additional tangential displace-
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( ) ( ) 2
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12
1

sin sin 0.375
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2 2 2

i i i i m i i
i ii
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M N E d Lh

      
  



− − −
−

− − −     
− − + − +    

−     
 (62) 
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As can be seen from Figure 6, the two curves were similar in amplitudes. However, 

the modified meshing stiffness curve was not symmetrical, and the tooth position with 

the largest stiffness in the meshing region was on the left side of the center line. This was 

due to the additional deformation of the flexible wheel teeth caused by the multi-tooth 

meshing of the disposable harmonic gear. 

 

Figure 15. Additional tangential displacement of flexible wheel teeth in the meshing region. Figure 15. Additional tangential displacement of flexible wheel teeth in the meshing region.

With the continuous meshing of subsequent gear teeth, the deformation of flexible
teeth in the meshing region decreases slowly and then increases gradually. After consider-
ing the additional displacement, the modified disposable harmonic gear meshing stiffness
is shown in Figure 16.
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Figure 16. Meshing stiffness of the disposable HD obtained by two methods.

As can be seen from Figure 6, the two curves were similar in amplitudes. However,
the modified meshing stiffness curve was not symmetrical, and the tooth position with the
largest stiffness in the meshing region was on the left side of the center line. This was due
to the additional deformation of the flexible wheel teeth caused by the multi-tooth meshing
of the disposable harmonic gear.
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4. Meshing Stiffness Using Finite Element Model

The harmonic gear pair considered here contained two types of gears: a flexible wheel
and a rigid wheel. In addition, the wave generator that caused the periodic deformation
of the flexible wheels was also included in the disposable HD. The harmonic gears were
modeled in 3D simulation software. The corresponding performance parameters of the
three parts are shown in Table 3.

Table 3. Parameters of the flexible wheel, rigid wheel and wave generator.

Flexible Wheel Rigid Wheel and Wave Generator

Material 40CrNiMoA 45 Steel
Density ρ (kg/m3) 7850 7870

Young’s modulus E (MPa) 211,000 209,000
Poisson’s ratio ν 0.3 0.27

The simplified model for the finite elements of the disposable HD is shown in Figure 17.
The finite element analysis included two stages of assembly and loading. In order to apply
boundary conditions and loads, reference points were set up at the center positions of the
three components. Then, coupling constraints on the flexible internal surface, the external
surface of the rigid wheel, and the wave generator with the corresponding reference points
were established. The wave generator was treated as completely rigid during simulation.
The FEM contained two types of contact: contact between the flexible internal surface and
the external surface of the wave generator, and contact between the tooth surfaces of the
two gears. The internal surface and the tooth surface of the flexible wheel were set as the
slave surface, and the wave generator external surface and the rigid tooth surface were set
as the master surface.
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Figure 18. (a) Finite element assembly model of the disposable HD; (b) partial enlargement of the 

meshing region between the two gears. 

Figure 17. Simplified model of the disposable harmonic drive.

In step assembly, fix the flexible wheel and then move the other two components to
the position matched with the flexible wheel at a uniform translation speed. In step loading,
fix the rigid wheel’s external surface. Then, apply a constant rotation speed to the other
two components. Additionally, apply a full load of 80 N·m to the flexible wheel.

The FEM after the assembly of the disposable HD is shown in Figure 18. Figure 18a
shows the position of the three components after assembly, and Figure 18b shows the
magnification of several meshing tooth pairs in the contact area. The surfaces of the rigid



Machines 2022, 10, 271 19 of 26

and flexible teeth are defined as the master surface and slave surfaces, respectively. The
equivalent stress and deformation of the flexible wheel are shown in Figure 19.
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Figure 18. (a) Finite element assembly model of the disposable HD; (b) partial enlargement of the
meshing region between the two gears.
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Figure 20. (a) Equivalent stress of the flexible wheel after loading; (b) equivalent deformation of the 

flexible wheel after loading. 

Figure 19. (a) Equivalent stress of the flexible wheel after assembly; (b) equivalent deformation of
the flexible wheel after assembly.

It can be seen that the maximum stress and deformation of the flexible wheel under
no-load after assembly occur at the ends of the long and short axes of the wave genera-
tor. The equivalent stress and deformation of the two gears under full load are shown
in Figures 20 and 21, respectively. According to Figure 20, the maximum stress of the dis-
posable flexible wheel did not reach the yield strength. Therefore, the disposable HD can
meet the requirements of short-term operation under a full load. The maximum stresses
of the two gears both appeared in the middle of the contact area. The deformation of
the flexible wheel in the contact area slightly decreased and then gradually increased,
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which is consistent with the trend of the theoretical results in Figure 15. The maximum
deformation of the rigid wheel occurred in the middle position, like the stress. Additionally,
the maximum stress and deformation of the flexible wheel were higher than those of the
rigid wheel. Then, the load and comprehensive displacement curves of each contact tooth
pair were extracted, as shown in Figure 22.
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Figure 20. (a) Equivalent stress of the flexible wheel after loading; (b) equivalent deformation of the
flexible wheel after loading.

Machines 2022, 10, 271 21 of 26 
 

 

  

(a) (b) 

Figure 21. (a) Equivalent stress of the rigid wheel after loading; (b) equivalent deformation of the 

rigid wheel after loading. 

As shown in Figure 22, during one engaging-in and engaging-out cycle of a tooth 

pair in the meshing region of the disposable HD, the load on the teeth of the gear gradu-

ally increased to the peak value and then reduced. Additionally, the load peak was dis-

tributed in the middle gear teeth in the meshing region. With subsequent teeth meshing, 

the previous meshing teeth did not withdraw. Thus, the superposition of the elastic dis-

placement of the teeth of the gear led to a gradual increase in the comprehensive dis-

placement. The results of the modified analytical method described in Section 3 and the 

FEM were then compared (see Figure 23). 

  
(a) (b) 

Figure 22. (a) Load on the width of the unit tooth of each node in the meshing region; (b) compre-

hensive displacement of each node in the meshing region. 

Figure 21. (a) Equivalent stress of the rigid wheel after loading; (b) equivalent deformation of the
rigid wheel after loading.
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Figure 22. (a) Load on the width of the unit tooth of each node in the meshing region; (b) comprehen-
sive displacement of each node in the meshing region.

As shown in Figure 22, during one engaging-in and engaging-out cycle of a tooth pair
in the meshing region of the disposable HD, the load on the teeth of the gear gradually
increased to the peak value and then reduced. Additionally, the load peak was distributed in
the middle gear teeth in the meshing region. With subsequent teeth meshing, the previous
meshing teeth did not withdraw. Thus, the superposition of the elastic displacement of the
teeth of the gear led to a gradual increase in the comprehensive displacement. The results
of the modified analytical method described in Section 3 and the FEM were then compared
(see Figure 23).
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Figure 23. Coefficients of stiffness obtained by the modified analytic method and the FEM.

According to Figure 23, at the beginning of meshing, the stiffness of the teeth of the
gear increased rapidly and then decreased gradually. Considering the influence of multi-
tooth meshing on the meshing stiffness of the disposable harmonic drive, the peak value
and trend of the stiffness curve obtained by the modified analytical method and FEM were
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very close, which confirms the feasibility of the modified analytical method in calculating
the meshing stiffness of the disposable harmonic gear under full load.

According to Equation (48), the comprehensive meshing stiffness of the disposable
harmonic drive was approximately a straight line (see Figure 24). The curve in the range
of ordinate 0–5 in Figure 24 is the superposition of the meshing stiffness in Figure 23. The
simultaneous contact of multiple pairs of gear teeth during transmission could ensure
the stability of the disposable harmonic drive. In addition, the comprehensive meshing
stiffness of the disposable harmonic drive was higher than that of conventional gear, which
also ensured the possibility of the disposable harmonic drive achieving a short-term full
load or overload transmission.
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To simulate the failure mode of the disposable harmonic gear in case of overload, a
torque of 100 N·m was applied, and the equivalent stress and plastic deformation of the
disposable flexible wheel were obtained according to the material properties in Figure 3.

Figure 25a shows the stress of the flexible wheel under overload. The root stresses of
several flexible teeth were higher than the allowable value of the material, and the inner
wall of the flexible wheel was overstressed. Figure 25b shows that plastic deformation
would occur at the root of flexible teeth under overload. The load and comprehensive
deformation of the meshing tooth pair under overload were extracted. It can be seen from
Figure 26a that the stress of the eleventh pair of the meshing teeth exceeded the limit value
of the material. Additionally, Figure 26b shows that the subsequent tooth pairs had obvious
distortion. According to Figure 26, the curve of the stiffness before damage to the flexible
wheel is shown in Figure 27.
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Figure 25. (a) Equivalent stress of the flexible wheel in case of overload; (b) plastic strain of the
flexible wheel in case of overload.
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Figure 26. (a) Load on the unit tooth width of each node in the meshing region; (b) comprehensive
displacement of each node in meshing region in case of overload.
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5. Conclusions

To study the meshing stiffness of a disposable harmonic gear under a full load, a
modified improved energy method and a FEM were proposed in this study. Compared
with a conventional HD, a disposable HD is significantly different in terms of the application
environment and flexible wheel structure. The stiffness of the flexible gear was calculated by
using the improved energy method and considering the influence of multi-tooth meshing
on the deformation. The stiffness of the rigid wheel was decomposed into bending stiffness,
shear stiffness, compression stiffness, and gear foundation stiffness. Then, a comprehensive
stiffness model of multi-tooth meshing of disposable HD was established. Finally, the FEM
was established to verify the accuracy of the analytical model and analyze the failure form
of the disposable HD under overload. The conclusions of this work can be summarized
as follows:

(1) Different from other gear transmissions, the calculation of disposable harmonic gears
needs to be conducted separately by distinguishing the structural characteristics of the
two gears. The model of the teeth that considers the thin rim of the flexible wheel can
accurately describe the amplitude of the meshing stiffness of the disposable harmonic
gear under full load;

(2) The modified improved energy method considers the influence of multi-tooth meshing
on the stiffness of the flexible gear and can accurately reflect the comprehensive
stiffness of the disposable harmonic gear in the meshing region under full load;

(3) The comprehensive stiffness of the disposable harmonic drive is higher than that of
conventional gear drive. The disposable harmonic gear can operate under full load
for a short time.
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