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Abstract: Sparse decomposition has been widely used in gear local fault diagnosis due to its outstand-
ing performance in feature extraction. The extraction results depend heavily on the similarity between
dictionary atoms and fault feature signal. However, the transient impact signal aroused by gear local
defect is usually submerged in meshing harmonics and noise. It is still a challenging task to construct
high-quality impact dictionary for complex actual signal. To handle this issue, a novel impact feature
extraction method based on Empirical Mode Decomposition (EMD) and sparse decomposition is
proposed in this paper. Firstly, EMD is employed to adaptively decompose the original signal into
several Intrinsic Mode Functions (IMFs). The high-frequency resonance component is separated
from meshing harmonics and part of the noise. Then, the IMF with the prominent impact features is
selected as the Main Intrinsic Mode Function (MIMF) based on the kurtosis. Accordingly, the modal
parameters required for impact dictionary are identified from the MIMF by correlation filtering.
Finally, the transient impact component is extracted from the original signal by Match Pursuit (MP).
The proposed method was adequately evaluated by a gear local fault simulation signal, and the
single-stage gearbox and five-speed transmission experiments. The effectiveness and superiority of
the proposed method is validated by comparison with other feature extraction techniques.

Keywords: correlation filtering; empirical mode decomposition; gearbox local fault diagnosis; impact
feature extraction; match pursuit; sparse decomposition

1. Introduction

The gearbox plays a vital role in the power transmission of mechanical systems,
such as automotive transmissions [1] and wind turbine planetary gearbox [2,3]. Gearbox
generally works under a tough environment and therefore is prone to suffer from localized
faults (such as spalls and broken tooth) after longtime service. Scholars tend to diagnose
faults by extracting fault features from gearbox vibration signals collected by sensors [4].
However, the transient impact signal caused by gear local fault is often accompanied by
strong interference noise. Additionally, the signal-to-noise ratio (SNR) of the gear meshing
harmonics is much higher than that of the impact component, which further increases the
difficulty in extracting fault features [5].

Although recently developed data-driven [6] and machine learning [7] techniques
avoid separating the fault signatures from complex vibration signals and have achieved
great success in gear fault diagnosis, it is non-negligible that these methods need large
amounts of data and are poorly interpretable. Therefore, the signal processing methods
based on feature extraction still play an important role in gear fault diagnosis field. There
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have been various signal processing methods applied in gear fault feature extraction, in-
cluding Time–Frequency Analysis (TFA) [8], Wavelet Transform (WT) [9], Spectral Kurtosis
(SK) [10], Empirical Mode Decomposition (EMD) [11], Variational Mode Decomposition
(VMD) [12], etc. Compared with the above methods, sparse decomposition (SD) shows
more excellent performance in feature extraction. SD can sparsely represent the fault
feature signal through selecting a few atoms from an appropriate dictionary and has been
successfully applied in gear fault diagnosis. He at al. [13] and Yang et al. [14] employed
correlation filtering to identify the modal parameters and constructed impact atom based
on the impulse response function (IRF), and separated the gear localized fault features
from gearbox vibration signal. Fan et al. [15] utilized Morlet wavelet in shape similar to
the impact signal to construct the sparse dictionary and extracted transient features in
gearbox. Cai et al. [16] constructed STFT dictionary and used the nonconvex generalized
minimax-concave (GMC) penalty to enhance sparsity in the sparse approximation to extract
the periodic transient component in faulty gearbox. Li et al. [17] designed the impact-type
sparse dictionary consisting of the unit impulse response of multiple-degree-of-freedom
vibration system, and extracted gear transient features in fixed-shaft and planetary gear-
boxes. Wang et al. [18] sparsely represented transient component over low Q-factor TQWTs,
and extracted weak gear fault features obscured by heavy background noise and multiple
harmonic interferences. Sun et al. [19] proposed a weighted sparse representation method
based on the margin factor that was the more sensitive indicator to reflect the local gear
fault to extract the impact features in planetary gearbox vibration signal. Cai et al. [20]
proposed a reweighted generalized minimax-concave sparse regularization based on the
Tunable Q-factor Wavelet Transform (TQWT) dictionary to extract transient features from
the hot-milling transmission gearbox vibration signal. Deng et al. [21] proposed a novel
water cycle algorithm (WCA) to identify the wavelet basis parameters and optimized the
fault impulse matching algorithm (FIMA) for gear fault dictionary design. Yang et al. [22]
constructed a union of redundant dictionary (URD) on the basis of the underlying prior in-
formation of the oscillate characteristics with multicomponent coupling effect and different
morphological waveforms, and obtained the time–frequency distribution of the gear fault
signal by combining the Wigner–Ville distribution (WVD) of each atom and corresponding
sparse coefficient. The above references illustrate that the high-quality sparse dictionary
whose atoms are similar to the fault feature signal could ensure the performance of sparse
decomposition. However, it is not easy to construct a high-quality dictionary since the
observed gearbox signal is complex and susceptible to environmental noise. The periodic
impact signal aroused by gear local fault is always submerged in meshing harmonics
and noise. Especially, the impact component is weak and the meshing harmonics domi-
nate in the early stage of faults that further increases the difficulty of constructing ideal
impact atoms.

To construct high-precision impact dictionaries, scholars have adopted some strategies
to minimize the influence of irrelevant components. For example, the meshing harmonic
components are firstly separated before identifying impact dictionary parameters in [13],
and squared envelope spectrum kurtosis-based weight setting strategy is used to attenuate
the effects of harmonics and noise in [20]. Obviously, these strategies do improve the
performance of the techniques for extracting gear local fault features. However, this
comes at the cost of adding more procedures and priors, which reduces the efficiency and
practicality of the method to some extent. Therefore, it is of great significance to attenuate
and even avoid the influence of irrelevant components in the gearbox vibration signal in an
efficient and simple way.

Empirical Mode Decomposition (EMD) [23] can adaptively decompose the original
signal into several Intrinsic Mode Functions (IMFs) from high to low frequency. As a
result, various components of different frequencies in the original signal are distributed in
different IMFs. Therefore, EMD has the potential to attenuate the influence of irrelevant
components and has been applied in gear fault feature extraction [24]. Xia et al. [25]
proposed a doubly iterative empirical mode decomposition method to separate gear fault



Machines 2022, 10, 242 3 of 20

features from irrelevant components, where the local extrema are fixed during the sifting
process to improve the decomposition performance. Wang et al. [26] proposed a new
noise-assisted EMD Manifold (EMDM) method that can preserve fault-related transients
and suppress fault-unrelated components by nonlinearly and adaptively fusing the fault-
related IMFs containing different noise via a manifold learning algorithm. Han et al. [27]
decomposed the non-stationary signal into several IMFs, and selected the IMF of sensitive
fault feature frequency as the input to the SVM for gear fault diagnosis. Du et al. [28]
presented a new weighted-EMD de-noising technique and assigned different weights to
IMFs according to their fault-related degrees for fault feature signal reconstruction in a
planetary gearbox. Akram et al. [29] decomposed the original vibration signal into several
IMFs by EMD and selected the IMF containing gear fault features according to operating
parameters and spectrum. Inturi et al. [30] identified the IMFs containing local gear tooth
defects features by examining the Pearson correlation coefficient. Li et al. [31] selected
the IMF that contributes more to the gear fault source signal at the aid of mixture degree.
These references validate that EMD has the potential to separate fault feature components
from irrelevant components such as meshing harmonics and noise. Furthermore, the
decomposition process is completely adaptive. However, it should not be ignored that
EMD is prone to modal aliasing and endpoint effects that may affect the fault features
extraction results.

For the aforementioned issues, a novel impact feature extraction method for gear local
fault diagnosis based on EMD and sparse decomposition is proposed in this paper. EMD
is employed to separate high-frequency resonance components from meshing harmonics
and noise. The sparse decomposition is used to extract the local fault features from original
signal. Specifically, EMD adaptively decomposes the original signal into a series of IMFs
with frequencies from high to low firstly. Then, kurtosis is employed to select the IMF in
which the impact component dominates as the Main IMF (MIMF). The natural frequencies
and damping ratios are identified from MIMF by correlation filtering and are used to
construct the impact dictionary. Since there are almost no meshing harmonics in MIMF,
these modal parameters are closer to the true fault feature components. Finally, the impact
fault feature component is extracted from the original signal rather than MIMF by Match
Pursuit (MP). In this way, even if there is modal aliasing or end effect during EMD process,
it will not affect the final extraction results. The simulation and two experimental signals
verified the effectiveness and superiority of the proposed method.

The rest of this paper is structured as follows. Section 2 mainly introduces the basic
theory of EMD and sparse decomposition. The construction of the impact dictionary is
also mentioned. Section 3 mainly introduces the specific process of the proposed impact
feature extraction method based on EMD and sparse decomposition for gear local fault
diagnosis. Section 4 constructs a gear local fault simulation signal with noise to verify the
effectiveness of the proposed method, and compares it with those identifying parameters
directly from the original signal, and extracting fault features from the MIMF. Section 5
further verifies the superiority and effectiveness of the proposed method by the single-stage
gearbox and five-speed transmission experimental data. Finally, conclusions are drawn in
the last section.

2. Theoretical Background

This section introduces the basic framework of EMD and sparse decomposition, and
the construction of the impact dictionary is also mentioned.

2.1. Empirical Mode Decomposition (EMD)

The EMD algorithm can self-adaptively decompose a signal vector into several high-
to-low frequency IMFs and a residual series [23]:

x(t) =
n

∑
i=1

im fi(t) + rn(t) (1)
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where x(t) is the original time series, im fi(t) is the i-th IMF, and rn(t) is the residual
series that represents the trend of the signal. The conditions that must be met for IMF are
as follows:

• The numbers of extreme points and zero points must be equal or at most different in
one over the length of the data;

• At any data point, the average of the envelope of the local maximum and that of the
local minimum must be zero.

The procedure to determine each IMF is known as the “sifting process”, and the
specific process can be found in [23].

The EMD self-adaptively decomposes original signal into several IMFs, and each
IMF contains the component of different frequency bands and scales. In this way, the
high-frequency resonance components are separated from large-amplitude harmonics.
Furthermore, since the noise signal is distributed in the whole frequency band, the energy
of the noise is also dispersed into multiple IMFs.

2.2. Sparse Decomposition Based on Match Pursuit (MP)

Sparse decomposition can sparsely represent the fault feature signal through selecting
a bit number of atoms from an appropriate dictionary. Specifically, a sparse signal vector
x ∈ Rn can be represented as a linear combination of dictionary matrices D ∈ Rn×q, i.e.,
x = Dα, where α ∈ Rq is sparse coefficient vector with only a few non-zero value. The
column dγ ∈ Rn, (γ = 1, 2, . . . , q) in the dictionary matrix D ∈ Rn×q is called an atom. The
dictionary D is redundant due to n� q. The sparse coefficient vector α can be obtained by
solving the optimization problem of Equation (2).

min‖α‖0
α

subject to ‖x−Dα‖2
2 < ε (2)

where ‖·‖0 denotes the l0−norm and ε > 0 is approximately sparse tolerance.
In general, Equation (2) is a NP-hard problem and cannot be solved directly. Matching

Pursuit (MP) [32] is commonly used to solve the problem, which reconstructs the charac-
teristic signal by linearly superimposing a small number of optimal atoms searched from
the redundant dictionary D. A signal can be decomposed into a linear superposition of
atoms dγ0

(∥∥dγ0
∥∥ = 1

)
in the dictionary D. After each greedy search, an atom dγi that

best matches the signal can be obtained, and the original signal x can be decomposed by
Equation (3).

x =
∣∣〈x, dγ0

〉∣∣dγ0 + R1x (3)

where R1x is the residual after the first pursuit.
Since R1x and dγ0 are orthogonal to each other,

‖x‖2 =
∥∥〈x, dγ0

〉∥∥2
+ ‖R1x‖2 (4)

where 〈·〉 denotes inner product. After the residual is iteratively matched N times, the
signal x is decomposed into a linear combination of |〈Rnx, dγn〉|dγn and the N-th order
remainder RNx, as expressed by Equation (5).

x =
N−1

∑
n=0
|〈Rnx, dγn〉|dγn + RNx (5)

The iteration stops until |RNx| < ε (ε > 0 is a small constant) or the iteration times
exceed the number of atoms. It helps to avoid falling into infinite loop.

The feature extraction precision is closely related to the similarity between the dic-
tionary atom and the actual signal. The impulses caused by localized fault are damped
oscillation signals with the amplitude attenuates by exponential form, so an impact mod-
ulation dictionary is constructed for describing the local damage vibration response of a
gear. The atom can be descripted by a single impulse response function, that is

dγ(t) = A exp(−2πξ/
√

1− ξ2 fdt) cos(2π fdt) (6)
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where fd is the damped natural frequency of the gear and sensor system, ξ is relative
damping ratio, and A is amplitude. The damped natural frequency fd and relative damping
ratio ξ can be identified by correlation filtering. Correlation filtering algorithm flow and
parameter setting can be consulted from [13]. The precision of the identified natural
frequency and damping ratio using correlation filtering is greatly affected by interfering
components such as meshing harmonics and noise.

3. The Proposed Impact Feature Extraction Method

In order to diagnose the gear local fault, an impact feature extraction method based on
EMD and sparse decomposition is proposed in this section. EMD is employed to separate
high-frequency resonance components from meshing harmonics and part of noise. This
effectively alleviates the problem that sparse decomposition is susceptible to irrelevant
components. The transient impact component is extracted from original signal rather than
a certain IMF, which effectively avoids possible modal aliasing or end effects affecting the
results. The flowchart of the proposed impact feature extraction method for gear local fault
diagnosis is shown in Figure 1.

Figure 1. The flowchart of the proposed impact feature extraction method for gear local fault diagnosis.
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The details of the proposed method are summarized as follows:

(1) The gearbox original vibration signal x(t) is collected at appropriate sampling fre-
quency fs.

(2) The vibration signal x(t) is adaptively decomposed by EMD to obtain several IMFs
whose frequency range changes from high to low.

(3) The first few IMFs containing few gear meshing components are selected as alterna-
tives through the amplitude spectrum. Generally, the meshing frequencies and other
harmonic components remain in a lower frequency range. Therefore, those IMFs
whose frequencies are above 2000 Hz are selected for further analysis.

(4) The kurtosis of the alternative IMFs is calculated according to Equation (7).

Cq =

1
N

N
∑

i=1
(|xi| − x)4

X4
rms

(7)

where |xi| is the absolute value of each point of the signal, x is the average value
of the signal and Xrms is the root mean square value. The kurtosis is particularly
sensitive to impact signals and usually the larger it is, the more impact components
the corresponding IMF includes. Therefore, the one with the highest kurtosis among
the alternative IMFs is chosen as the MIMF, which has the most prominent impact
characteristics and is less affected by the meshing component.

(5) The natural frequency fd and the damping ratio ξ are identified by correlation filtering
from MIMF, which are used to construct the impact dictionary Dp.

(6) To improve the operating efficiency, the original signal x(t) is divided into several
segments based on the smallest fault feature period [13] and each segment signal is,
respectively, reconstructed by MP. After splicing together all the reconstructed signals,
the gear local fault feature signal is obtained.

4. Simulation Analysis

To prove the effectiveness and anti-noise performance of the proposed method, the
gear local fault simulation signal containing gear meshing components and noise interfer-
ence is constructed and analyzed.

4.1. Construct Fault Simulation Signal

The simulation signal is established as

x(t) = x0(t) + x1(t) + x2(t) (8)

x0(t) = cos(2π fnt) + 0.5 cos(2π × 2 fnt) (9)

x1(t) = [2 + 2 cos(2π fnt)] cos(2π fzt) + [1.5 + 1.5 cos(2π fnt)] cos(2π × 2 fzt) + [1 + cos(2π fnt)] cos(2π × 3 fzt) (10)

x2(t) =
2

∑
i=1

9

∑
k=0

Akie
−2πξi√

1−ξ2
i

fdi(t−τ−kTn)

cos[2π fdi(t− τ − kTn)], t > τ (11)

where x(t) is the noise-free complex simulation signal, x0(t) represents the rotational
frequency and its harmonic components with the rotational frequency fn = 10Hz, x1(t)
represents the meshing component with amplitude modulation, where the mesh frequency
is fz = 600Hz. x2(t) represents the impact component containing two order modes to
simulate gear local fault and the parameters are specifically set as: natural frequency
[ fd1 = 1600Hz fd2 = 3500Hz], relative damping ratio [ξ1 = 0.02 ξ2 = 0.01], the impact
moment τ = 0.01, and the impact period Tn = 0.1. Moreover, the amplitudes of each
impact in Equation (11) are set randomly as Ak1 = [2.6, 4, 7, 1.6, 10, 4, 2.8, 6, 3.6, 6] and
Ak2 = [6, 1.5, 2.7, 3, 3.6, 6, 6, 1.8, 3, 4.2], respectively. The sampling frequency and sampling
length are set as fs = 10kHz and N = 10, 000, respectively. To get closer to the actual
situation, the Gaussian white noise is added to the simulation signal x(t) in Equation (8),
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and then the signal-to-noise ratio (SNR) of the impact component is −11.49 dB. The noisy
simulation signal and its amplitude spectrum are given in Figure 2. It can be seen that
the impact component is completely coupled with the meshing harmonic component and
interference noise in time domain. In addition, the amplitudes of the natural frequency
band are much lower than those of the harmonic components. The first-order natural
frequency band is close to the third-order meshing frequency band in the amplitude
spectrum. Therefore, it is difficult to detect the presence of the impact component from the
noisy simulation signal.

Figure 2. The gear local fault simulation signal with noise: (a) Time domain signal and (b) amplitude spectrum.

4.2. Select the Main IMF (MIMF) Based on EMD and Kurtosis

The noisy simulation signal is adaptively decomposed into 12 IMFs by EMD. The first
four IMFs and their amplitude spectrum are given in Figure 3. It can be seen that the main
components of IMF4 are all within 2000 Hz and mainly contain meshing harmonics and
noise. Thus, it is sufficient to select the MIMF from the first four IMFs.

The kurtosis of the first four IMFs is calculated and exhibited in Table 1. It can be seen
that the kurtosis of the IMF1 is much larger than others and the natural frequency band
is dominant even if there remains some harmonics in amplitude spectrum as shown in
Figure 3b. Therefore, the IMF1 is selected as the MIMF. The modal parameters required for
the impact dictionary will be identified from MIMF.
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Table 1. The kurtosis of the first four IMFs (Simulation).

Intrinsic Mode Function (IMF) Kurtosis

IMF1 5.258
IMF2 4.373
IMF3 4.591
IMF4 3.890
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4.3. Extracting the Fault Impact Signal

To obtain the modal parameters to construct the optimized impact dictionary, the
natural frequency fd and relative damping ratio ξ are identified from MIMF by correlation
filtering [13]. Specifically, the MIMF is segmented by the minimum rotation period (maxi-
mum frequency conversion), i.e., T = 1/ fn = 100ms. Moreover, the search ranges of the
frequency and damping ratio are set as fd ∈ [2000 : d f : fs/2] and ξ ∈ [0.01 : 0.001 : 0.2],
respectively. Since MIMF is dominated by the impact component and the interference
of harmonic components is largely decreased, the modal parameters of actual faults are
accurately identified. These model parameters are used to construct the optimized impact
dictionary, and the impact signal is extracted from the original simulation signal rather
than MIMF. The results are given in Figure 4. It can be seen that the impact component is
well reconstructed and the interval is highly consistent with the theoretical impact period.
In addition, the second-order natural frequency band of the impact component is clearly
visible and there is no residual meshing harmonic components in the amplitude spectrum.
The simulation signal illustrates that even if there is only part of the modal information
available, the proposed method can still achieve satisfactory results.

Figure 4. The extracted impact signal by proposed method: (a) Time domain signal; (b) Amplitude spectrum.

4.4. Comparative Analysis

Before comparative analysis, we define two terms, one of which is the “traditional
sparse decomposition” meaning that the dictionary parameter identification and feature
extraction are all implemented in the original signal and the whole process was carried
out without EMD. The other is called “EMD + MP” meaning that the dictionary parameter
identification and feature extraction are all implemented in the MIMF.

To highlight the superiority of the proposed method, the traditional sparse decom-
position is used to process the same simulation signal. Specifically, the natural frequency
fd and relative damping ratio ξ are directly identified from original signal rather than
MIMF. The extracted impact component is shown in Figure 5. There are a lot of interference
components appearing in the time domain except for transient impact signal as shown
in Figure 5a. It leads to difficulty to identify the exact impact interval. Moreover, a large
number of meshing harmonic components are visible in the amplitude spectrum. The
model parameters of the dominant harmonic components are wrongly identified and added
to the impact dictionary resulting in the poor extraction results.
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Figure 5. The extracted impact signal by traditional sparse decomposition: (a) Time domain signal;
(b) Amplitude spectrum.

The EMD + MP is also compared with the proposed method. Specifically, the modal
parameters required to impact dictionary atoms are identified from MIMF and the impact
component is also extracted from the MIMF. The results are given in Figure 6. There are impact
waves whose number is far exceeding the theoretical value appearing in the time domain.
It is almost impossible to estimate the impact interval according to Figure 6a. Although the
natural frequency band triggered by impacts is still dominant in the amplitude spectrum, the
signal structure is unreasonably disassembled by EMD leading to inaccurate results.

Figure 6. The extracted impact signal by EMD + MP: (a) Time domain signal; (b) Amplitude spectrum.

To show the superiority of the proposed method scientifically, three indicators are
selected to evaluate the relationship of the extracted signal with the original signal, which
are, respectively, the correlation coefficient (CC), root-mean-square Error (RMSE), and
relative root-mean-square error (RRMSE).

CC =

∣∣∣∣ N
∑

n=1
[x(n)− x][x∗(n)− x∗]

∣∣∣∣√
N
∑

n=1
[x(n)− x]2

N
∑

n=1
[x∗(n)− x∗]

2

(12)

RMSE =

√√√√ 1
N

N

∑
n=1

[x(n)− x∗(n)]
2 (13)
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RRMSE =

√√√√ 1
N

N

∑
n=1

[
x(n)

max
n

x(n)
− x∗(n)

max
n

x∗(n)

]2

(14)

where x(n) and x∗(n) are the original data and the corresponding estimate data at the n-th
point in the time domain; x and x∗ are their mean values, respectively. Among them, the
larger the value of CC is and the smaller the value of RMSE and RRMSE, the error between
the extracted signal and the theoretical signal will be. The statistical indicators of the
extraction results of the three methods are shown in Table 2. Obviously, the impact signal
extracted by the proposed method has the biggest CC and smallest RMSE and RRMSE,
which is much closer to the true value.

Table 2. The statistical indicators of the extraction results of the three methods.

CC RMSE RRMSE

The proposed
method 0.4121 0.6983 0.0735

The traditional sparse
decomposition 0.2241 1.0408 0.1177

The EMD + MP 0.3981 0.7091 0.0822

Since the modal parameters are identified only from MIMF meaning that not all model
parameters are identified and introduced into the impact dictionary, the extracted impact
component is partial rather than complete. This is the reason that CC is not close to 1. From
another perspective, even if not all model parameters are identified, the proposed method can
still achieve better results in which the impact interval can be accurately estimated. In summary,
the simulation signal verifies the effectiveness and superiority of the proposed method.

5. Experimental Analysis

The single-stage gearbox and five-speed transmission experiments are further con-
ducted to verify the effectiveness of the proposed method in this section.

5.1. The Single-Stage Gearbox Experiment

The single-stage gearbox and the fault gear are shown in Figure 7. The teeth number
of the input shaft gear and output shaft gear is 32 and 44, respectively. The vibration signals
are collected by the Muller BBM data acquisition system with the sampling frequency
fs = 24kHz. The input shaft speed is 1000 rpm, and the observed vibration acceleration
signal on the bearing house of output shaft is given in Figure 8.

Figure 7. The single-stage gearbox test bench: (a) The single-stage gearbox; (b) The local fault gear
with pitting.
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Figure 8. The observed acceleration signal of the single-stage gearbox experiment: (a) Time domain
signal; (b) Amplitude spectrum.

The experimental signal is decomposed by EMD and 15 IMFs are obtained. The first
four IMFs and their amplitude spectrums are shown in Figure 9. The kurtosis values of
the first four IMFs are calculated and exhibited in Table 3. As illustrated in Figure 9, the
first two IMFs with higher frequencies do not contain visible gear meshing components,
but IMF3 and IMF4 with lower frequencies contain harmonic components with prominent
amplitudes. As the frequencies of the IMFs are from high to low, the subsequent IMFs will
contain harmonic components which are harmful to the extraction of the impact signals.
Therefore, the MIMF with obvious impact features should be selected from the first few
IMFs. Table 3 shows that the kurtosis of IMF2 is the largest, and there is no obvious
harmonic interference in IMF2 as shown in Figure 9d. There is no doubt that IMF2 was
determined as the MIMF.
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Figure 9. The first four IMFs of the single-stage gearbox experiment signal: (a) IMF1; (b) Amplitude
spectrum of IMF1; (c) IMF2; (d) Amplitude spectrum of IMF2; (e) IMF3; (f) Amplitude spectrum of
IMF3; (g) IMF4; (h) Amplitude spectrum of IMF4.

Table 3. The kurtosis of the first four IMFs (the single-stage gearbox experiment).

Intrinsic Mode Function (IMF) Kurtosis

IMF1 2.606
IMF2 3.148
IMF3 3.124
IMF4 3.106

Set the search scopes of fd and ξ as fd ∈ [100 : 20 : fs/2] and ξ ∈ [0.01 : 0.001 : 0.2],
respectively. The MIMF is divided into several sections by the smallest rotation period of
shafts Tn = 60ms. The identified modal parameters are used to construct an optimized
impact dictionary. The impact signal is extracted by MP and the results are given in
Figure 10. It can be seen that almost all the impacts are well reconstructed. The average
time interval of the impulse responses is 0.082464 s (close to 0.0825 s, the theoretical fault
period of the output shaft, the relative error is 0.04%) after using the 3σ principle to remove
the gross error, which is consistent with the experimental conditions. Obviously, the
proposed method which identified the modal parameters on the premise of eliminating
the interference of harmonic components can reflect the characteristics of the actual impact
fault signal. Thereby, the extracted periodic pulses are more accurate.
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Figure 10. The extracted impact signal by proposed method: (a) Time domain signal; (b) Amplitude spectrum.

For comparison, the impact component is also extracted by traditional sparse decom-
position. The results are given in Figure 11. There is a component similar to the impact
waveform appearing periodically in the time domain, but these signals decay so slowly
that they cannot decay to zero in each sub-segment. Moreover, the meshing harmonic com-
ponents dominate in the amplitude spectrum as shown in Figure 11b. It can be observed
that the modal parameters identified have large errors and makes it impossible to extract
the accurate impact signal from the experimental signal.

Figure 11. The extracted impact signal by traditional sparse decomposition: (a) Time domain signal;
(b) Amplitude spectrum.

Similarly, the EMD + MP is also employed to process the experimental signal, and the
results are shown in Figure 12. It can be seen that although the natural frequency band is
accurately identified, the impact waveform in the time domain is still incomplete because
the EMD destroys the original signal structure.

Figure 12. The extracted impact signal by EMD + MP: (a) Time domain signal; (b) Amplitude spectrum.
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5.2. The Five-Speed Transmission Experimental

The five-speed transmission experiment is implemented on the mechanical trans-
mission test bench. The transmission and its structural diagram are shown in Figure 13,
and there is a broken tooth on the output shaft of the fifth gear. The vibration signals
are collected by the Muller BBM data acquisition system with the sampling frequency
fs = 24kHz. The input shaft speed is 1000 rpm, and the transmission is shifted to the fifth
gear. The operating parameters are given in Table 4.

Figure 13. The five-speed transmission test bench: (a) The five-speed transmission; (b) Drive struc-
tural diagram; (c) The local fault gear with broken tooth.

Table 4. The operating parameter of the transmission.

Parameter The Constantly Meshed Gear Pair The Fifth Gear Pair

- Drive wheel Driven wheel Drive wheel Driven wheel
Gear number 26 38 42 22

Rotational frequency (Hz) 16.67 11.40 11.40 21.77
Mesh frequency (Hz) 433.33 478.94

In order to highlight the effectiveness of the proposed method, the acceleration signal
collected on the bearing house of output shaft (sensor 2 in Figure 13b, which is far from
the faulty gear) is analyzed. The measured vibration acceleration signal and its amplitude
spectrum are shown in Figure 14. In this case, the fault impact component is submerged in
noise and the meshing frequencies are dominant in the spectrum.
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Figure 14. The measured acceleration signal of the five-speed transmission experiment: (a) Time
domain signal; (b) Amplitude spectrum.

The experimental signal is decomposed by EMD and 14 IMFs are obtained. The first
four IMFs and their amplitude spectrums are given in Figure 15, and the kurtosis values of
the first four IMFs are calculated and exhibited in Table 5. Noteworthy, the IMF2 with the
largest kurtosis and containing no meshing harmonic component is selected as the MIMF.

Figure 15. Cont.



Machines 2022, 10, 242 17 of 20

Figure 15. The first four IMFs of the five-speed transmission experiment signal: (a) IMF1;
(b) Amplitude spectrum of IMF1; (c) IMF2; (d) Amplitude spectrum of IMF2; (e) IMF3; (f) Am-
plitude spectrum of IMF3; (g) IMF4; (h) Amplitude spectrum of IMF4.

Table 5. The kurtosis of the first four IMFs (the five-speed transmission experiment).

Intrinsic Mode Function (IMF) Kurtosis

IMF1 2.728
IMF2 5.477
IMF3 2.988
IMF4 3.442

The extracted impact signal by the proposed method is given in Figure 16. The average
time interval of the impulse responses is 0.045916 s (close to 0.045935 s, the theoretical fault
period of the output shaft, the relative error is 0.04%) after using the 3σ principle to remove
the gross error, which is consistent with the experimental conditions.

For comparison, the impact components are also extracted by traditional sparse de-
composition, and the results are given in Figure 17. There are impact-like signals not
decaying to zero in the time domain and harmonic components dominate in the amplitude
spectrum. The identification of the model parameters is affected by harmonic components
and interference noise, resulting in poor quality of the extracted signal.
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Figure 16. The extracted impact signal by the proposed method: (a) Time domain signal; (b) Ampli-
tude spectrum.

Figure 17. The extracted impact signal by traditional sparse decomposition: (a) Time domain signal;
(b) Amplitude spectrum.

Furthermore, the EMD + MP is also employed to process the same experimental signal.
The results are given in Figure 18. It can be seen that the impact waveforms are well
reconstructed in the time domain. However, since the MIMF only contains part of the
impact component, the amplitudes of the extracted impact signal are smaller.

Figure 18. The extracted impact signal by EMD + MP: (a) Time domain signal; (b) Ampli-
tude spectrum.
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The single-stage gearbox and five-speed transmission experimental signals further
verify the effectiveness of the proposed method. The periodic impact signals are well
extracted in the time domain, and the relative error between the average time interval and
theoretical value is only 0.04%. Furthermore, compared with directly identifying modal
parameters from the original signal and extracting impact components from MIMF, the
proposed method shows better performance in gear local fault features extraction.

6. Conclusions

Sparse decomposition is susceptible to irrelevant components such as meshing har-
monics and noise when applied in gear fault diagnosis. To handle these issues, a novel
impact feature extraction method based on EMD and sparse decomposition is proposed
in this article. Firstly, the observed vibration signal is adaptively decomposed into sev-
eral high-to-low frequency IMFs by EMD. The high-frequency resonance component is
separated from meshing harmonics. Then, the kurtosis is employed to select the one with
the most prominent impact features as the MIMF. The natural frequency fd and relative
damping ratio ξ are identified from MIMF by the correlation filtering technique. Since
getting rid of the influence of harmonic components, these modal parameters are more
accurately used to construct the impact dictionary whose atoms are similar to true transient
impact signals. Finally, the periodic impact component is extracted from the original signal
rather than MIMF to avoid possible modal aliasing or end effects affecting the results. The
proposed impact feature extraction method was fully evaluated by a noisy gear fault simu-
lation signal. The single-stage gearbox and five-speed transmission experimental signals
further verified the effectiveness and superiority of the proposed method. The relative
error of the average time interval between the extracted impact signal and theoretical value
is only 0.04%.
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