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Abstract: The employment of vehicles such as rovers equipped with automictic and robotic systems
in agriculture is an emerging field. The development of suitable simulation models can aid in the
design and testing of agricultural rovers before prototyping. Here, we propose a simulation test
rig based on a multibody model to investigate the main issues connected with agricultural rover
designs. The results of the simulations show significant differences between the two structures,
especially regarding the energy savings, which is a key aspect for the applicability of a rover in field
operations. The modular structure of the proposed simulation model can be easily adapted to other
vehicle structures.

Keywords: agricultural rover; multibody model; contact model; multiphysics model; unmanned
vehicle; energy consumption; agricultural robotics

1. Introduction

In the last ten years, increasing interest has emerged in the development of robotic
and automation systems for field operations [1–3]. In this context, research groups, both in
academia and industry, have paid attention to the application of robotics in the agricultural
field [4,5]. Robotics for agricultural purposes can aid the execution of repetitive and
heavy manual operations improving, the conditions of agricultural workers [6]. Fruit
harvesting offers significant opportunities for the field of agricultural robotics, and has,
thus, gained much attention in recent decades. Indeed, several robots have been developed
for harvesting fruits and vegetables [7–9].

Robotic systems can enhance precision agricultural tasks, for example in the harvesting
process in which robots equipped with vision perception sensors can understand when and
which fruit must be picked at a given time according to the maturation phase [10–13]. To
face these tasks, proper algorithms [14–17] must be integrated into the hardware systems to
process data acquired from the surroundings, as well as to control the end effector trajectory,
for instance through low-cost RGB-D cameras [18,19].

Furthermore, both the academic community and the industry are showing a radical
growth of interest in agricultural robotics, and in particular in unmanned service robotics
and vehicles [20–26]. Some autonomous vehicles designed for agricultural tasks have
been already been presented in recent years [27–29]. Agricultural rovers, similarly to
rovers employed to explore planets in orbits, such as Curiosity and Perseverance Mars
rovers, are autonomous or remotely controlled vehicles able to tread on terrain and perform
various operations. Agri_q [30,31] is an agricultural rover designed by Politecnico di Torino
(Turin, Italy) with the aim of performing crop monitoring and to permit landing, carrying
and recharging tasks by aerial robots.

In this context, the development of a suitable simulation environment can aid in
the design and testing of these vehicles in complex scenarios [32–35]. The main issue in
agricultural rover design is the ability of these robots to operate in unstructured agricul-
tural environments. Moreover, such vehicles must rapidly adapt to the variability of the
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environment, and for this reason must be equipped with perception sensors. The agricul-
tural rovers should be able to perform tasks, meaning they require a proper end effector
design [36]. They must ensure human safety and the preservation of the environment.
Multibody simulation models offer the possibility of carrying out multiple performance
analyses of mechanical systems, and in particular for vehicles that can be tested in both
static and dynamic conditions in multiple environments [37–42].

In this paper, we address some of the challenges of working in unstructured farming
environments through the development of a simulation test rig based on a multibody
simulation environment. The model accounts for contact analysis between the vehicle
and ground. In this way, it is possible to study the performance of an agricultural rover
from multiple angles. This agricultural rover should be able to perform several tasks while
moving in agricultural areas such as vineyards. Indeed, in a future design effort, the rover
will be equipped with an articulated robotic arm mounted with different end effectors.

Simulation results drive the rover design process step by step. Indeed, the simulation
test rig allows us to analyze the rollover effects in static conditions, the motor sizing, the
rover dynamics in rough environments, the rover suspension system, and the energy con-
sumption. Two main vehicle structures are tested, which differ only in their suspension
systems—one equipped with a linear damped system, while the other equipped with a
rocker-bogie system, similarly to the space exploration rovers [43,44]. The main contribu-
tions of this paper are as follows. Section 2 provides a description of the simulation test rig
with a multibody model, the equations adopted in the contact model, and the two rover
structures used for the two case studies in this paper. Section 3 presents a brief description
of the simulation conditions and discusses the results for the different aspects analyzed in
the rover design phases. In the remaining section of the manuscript, the suspension per-
formance and energy consumption are examined using multibody simulations on uneven
terrain. Certain aspects are also discussed in relation to the control system adopted by the
vehicle. As a final remark, an overview of the energy saving results is depicted for the
two rover structures moving at two different velocities. This aspect makes the developed
test rig particularly useful, allowing an indicative estimation of the consumption of these
vehicles before designing them.

2. Materials and Methods
2.1. Multibody Model Description

The multibody model reported in Figure 1 was developed in the MATLAB envi-
ronment (©Mathworks, Natick, MA, USA) by employing the Simscape™ Library, which
enables the rapid creation of physical component models based on physical connections
that directly integrate with block diagrams and other modeling paradigms. The model can
be divided in five main blocks, as shown in Figure 1.

The first block accounts for the rover structural part and its power electronic system.
The multibody rover structure is designed by employing a sequence of rgid bodies,

flexible bodies, and joints. Some joints are connected to motors that drive the motion of the
rover parts and actuation system. In this way, in the model there is a connection between
the rotational mechanics and electrical domain. In the second block, there is a multibody
model of the ground. The ground is composed of several rigid bodies. The combination
of the bodies allows different ground conditions and ground inclinations to be modeled
and for proper obstacles to bed added to the rover’s path. The third block models the
wheel–ground interaction through a contact model. Briefly, the contact block models the
contact between a pair of bodies using the penalty method. This method allows the bodies
to penetrate by a small amount to compute the contact forces. The block applies normal
and frictional contact forces between the connected base and follower bodies. The normal
contact force is computed using the force equation of the classical spring–damper system.
During contact, the normal contact force is proportional to its corresponding penetration
depth and velocity. The transition region width specifies the transitional region in the force
equations. While the penetration depth moves through the transition region, the block
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smoothly ramps up the force. At the end of the transition region, full stiffness and damping
are applied. On the rebound, both the stiffness and damping forces are smoothly decreased
back to zero.
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Figure 1. Main blocks composing the multibody simulation test rig for the agricultural rover design.

The normal force (fn) and friction force (ff) can be written as in the following Equations (1)
and (2):

fn = σz + kz (1)

f f = µ(Vr) fn (2)

where σ is the damping coefficient, k is the spring stiffness, z is the depth penetration, ż is
the penetration velocity, (Vr) is the relative tangential velocity, and µ(Vr) is the friction
coefficient that depends on (Vr).

The fourth block models the control system. This block sets the tension to be applied to
the motors to reach a desired destination. The control unit computes data while accounting
for motor specifications and the desired performance. Moreover, it identifies the relative
position between the desired destination and the current rover position due to two main
parameters. The first parameter is the orientation angle between the rover’s direction of
travel and the segment joining the rover’s center and the desired destination object. The
second parameter is the distance between the rover and the desired object.

The fifth block defines the global reference system used to identify the relative position
of the rover with respect to the ground and the gravity force action.

2.2. Rover Structure Description

The previously described multibody model allows multiphysics simulations of vehi-
cles with different main geometric parameters. Indeed, block 1 of the model defines the
structure and the actuation of the system, which can be easily substituted to be adapted to
other rover structures.

The general rover structure was defined using proper simulations. In particular, the
rover’s encumbrance must be the minimum value to be used in different environments
and to decrease the overall energy consumption. The rover must possess high agility to
overcome possible obstacles in the path. Moreover, the rover’s center of mass must be
designed to achieve a good compromise between stability and agility. To ensure the applica-
bility of the rover in unstructured agricultural environments, certain design specifications
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that must be met were identified. For the this rover to work in grape vineyards, certain
design specifications have been stated, as follows: a maximum ground inclination range
of 30–40 degrees, maximum overall lateral size of 1 m, vehicle velocity of around 5 km/h,
maximum size of obstacles to be avoided of 0.2 m, and electric autonomy lasting at least
40 min. The wheels use skid steering mode to let the vehicle change its orientation.

For the purposes of this paper, two main rover structures, as shown in Figure 2, were
identified and simulated. The two rovers have six wheels actuated with six electric motors.
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The linear suspension rover shown in Figure 2a uses two independent linear spring–
damper suspension systems, one on the rear part (𝑪𝑫) and one on the front part (𝑬𝑭); A 
and B points represent rotational joints with the rotational axis parallel to the wheels’ 
rotation axis. The rocker-bogie rover (Figure 2b) uses the suspension system employed by 

Figure 2. Rover vehicle structures used in this paper: the linear suspension rover (LSR) (a) equipped
with two independent spring–damper suspension systems; (b) the rocker-bogie rover (RBR), which
employs an articulated suspension system similar to the rover used for Mars exploration.

The wheels were modeled using cylindrical elements measuring 0.13 m in diameter
and 0.06 m in height. The main difference between the two structures is the suspension
system. For clarity, the first structure will be named the linear suspension rover (LSR),
while the second structure will be named the rocker-bogie rover (RBR).

The linear suspension rover shown in Figure 2a uses two independent linear spring–
damper suspension systems, one on the rear part (CD) and one on the front part (EF);
A and B points represent rotational joints with the rotational axis parallel to the wheels’
rotation axis. The rocker-bogie rover (Figure 2b) uses the suspension system employed by
the rovers used for space exploration [43,44]. In Figure 2b, points A, B, and C represent
rotational joints with the rotational axis parallel to the wheels’ rotation axis, while points
D and E are rotational joints with axes perpendicular to the central slab. The CD flexible
link is modeled using Euler–Bernoulli beam theory. Finally, joints B and E are linear
spring–damper and damper elements, respectively.

The two rovers have the same total mass of 27 kg and a global vehicle envelope of
0.83 × 0.72 × 0.28 m. The weight accounts for the presence of six DC motors (0.5 kg each),
one mounted on each wheel. Most of the structure weight is due to the presence of a robotic
arm that was modeled as a solid prismatic element of 20 kg weight and with dimensions of
0.15 × 0.15 × 0.5 m.

2.3. Control Strategy

The control strategy was based on the idea that in a future design, the rover will be
equipped with a camera able to acquire and process data from the surroundings. Using
a vision system (for instance an RGB-D camera), the rover will identify the target to be
achieved or the obstacles to be avoided. Proper algorithms will give the rover control system
two main inputs, namely the distance and the azimuth angle, as depicted in Figure 3.
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Figure 3. The main parameters of the control strategy.

These values are the inputs for a proportional control strategy that enables the vehicle
to change its initial orientation (azimuth) via the skid steering configuration and reach
the desired position. To tune the control strategy for more precise vehicle performance,
the saturation voltage was set to limit the acceleration of the right and left wheel sides
independently. The saturation limits had higher values during the orientation phase with
respect to the vehicles’ forward motion. Indeed, during the first control stage, our aim
was to let the vehicle quickly change its direction. When the vehicle moves in the forward
direction, the saturation voltage allows for velocity control of the vehicle in relation to the
distance of the object to be reached. The input voltages for the wheel control unit for the
left and right vehicle sides are in Figure 4.
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2.4. Simulation Details

Table 1 summarizes the main parameters of the simulation campaign. Multibody
simulation output results, which will be shown in the next paragraphs, aided in the rover
design from multiple perspectives.

For inverse dynamics simulations, displacement, velocity, and acceleration profiles, as
shown in Figure 5, are given as inputs to the rotational joint connected to each wheel.
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Table 1. Multibody simulation details.

Rover Design Type Soil Integrator Step Output

Rollover study Inverse
dynamics Smooth Ode23t (mod.

Stiff/Trapezoidal) Variable-step Pitch and Roll angles

Motor sizing Inverse
dynamics Smooth Ode23t (mod.

Stiff/Trapezoidal) Variable-step Drive Torques

Suspension
performance

Direct
dynamics Rough Ode23t (mod.

Stiff/Trapezoidal) Variable-step
Chassis

Vibrations,
Contact Force 1

Energy
Consumption

Direct
dynamics Rough Ode23t (mod.

Stiff/Trapezoidal) Variable-step Absorbed Power

1 Estimated between wheel and ground.
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3. Results and Discussion

The aim of this study was to show how the development of multibody models can
aid in the design of a rover for agricultural applications. Simulations were carried out to
investigate the different aspects of the design. Two rovers, differing only in their suspension
systems, were considered as input vehicle structures. In this current study, the simulation
results are presented in an attempt to detail the responses of each vehicle with changing
simulation conditions and soil terrains. However, the simulation test rig can be easily
adapted to other vehicles thanks to its modular design.

3.1. Rollover Study in Static Conditions

As a first study, the rollover stability of the rover structure was assessed. The simula-
tion consisted of placing the rover on a sloped plane and changing the roll and pitch angles,
as depicted in Figure 6. During the simulations, the rotation velocity of the six wheels was
set to zero. Both the roll and the pitch angles were increased in one degree steps. The yaw
angle was not considered as a design issue so far, given the possible future applicability of
this rover for agricultural purposes.



Machines 2022, 10, 235 7 of 15Machines 2022, 10, 235 8 of 17 
 

 

 
Figure 6. Multibody simulation of the rover in static conditions for the rollover study. Roll and pitch 
angle variations were considered for this first test. 

The rollover study results are reported in Table 2 in terms of the maximum pitch and 
roll angles that were admissible before overturning for the two rover vehicles studied in 
this paper. The pitch and roll angles are independent values. Once the LSR overcomes a 
45 degree roll angle, the vehicle overturns as long as the pitch angle is lower than the 
maximum admissible pitch of 41 degrees. At the same time, the RBR overturns when the 
ground inclination exceeds 45 degrees for the pitch and 37 degrees for the roll angle. Both 
rovers’ design specifications include the previously stated maximum ground inclination 
range of 30–40 degrees.  

Table 2. Rollover study results for maximum pitch and roll angles 1. 

 Pitch Roll 
Linear suspension rover 41 45 

Rocker-bogie rover 45 37 
1 Angles are reported in degrees. 

The pitch and roll angles for both structures will be important features when the 
specific rover workspace is established. The agricultural tasks will be related to the 
specific end effector mounted on the articulated robotic arm. When the rover has to work 
with its robotic arm fully extended to its right or left, it is clear that the maximum roll 
angle allowed is a fundamental design factor. The maximum pitch value will also be an 
important design factor when the rover works with the robotic arm fully extended to the 
rear or front. The maximum pitch and roll values take on great importance in terms of 
safety performance when humans and robotic vehicles have to share the same workspace. 

  

Figure 6. Multibody simulation of the rover in static conditions for the rollover study. Roll and pitch
angle variations were considered for this first test.

The rollover study results are reported in Table 2 in terms of the maximum pitch and
roll angles that were admissible before overturning for the two rover vehicles studied in
this paper. The pitch and roll angles are independent values. Once the LSR overcomes
a 45 degree roll angle, the vehicle overturns as long as the pitch angle is lower than the
maximum admissible pitch of 41 degrees. At the same time, the RBR overturns when the
ground inclination exceeds 45 degrees for the pitch and 37 degrees for the roll angle. Both
rovers’ design specifications include the previously stated maximum ground inclination
range of 30–40 degrees.

Table 2. Rollover study results for maximum pitch and roll angles 1.

Pitch Roll

Linear suspension rover 41 45
Rocker-bogie rover 45 37

1 Angles are reported in degrees.

The pitch and roll angles for both structures will be important features when the
specific rover workspace is established. The agricultural tasks will be related to the specific
end effector mounted on the articulated robotic arm. When the rover has to work with its
robotic arm fully extended to its right or left, it is clear that the maximum roll angle allowed
is a fundamental design factor. The maximum pitch value will also be an important design
factor when the rover works with the robotic arm fully extended to the rear or front. The
maximum pitch and roll values take on great importance in terms of safety performance
when humans and robotic vehicles have to share the same workspace.

3.2. Motor Sizing

To assess the motor sizing of the rover, simulations were carried out on smooth soil
using the inverse dynamics. These simulations incorporated the s-shaped motion law
(displacement, velocity, and acceleration, shown in previous Figure 5) set as an input for
the rover and the return torque values were computed for each wheel. In these simulations,
the rover operated in critical conditions—the vehicle was placed on a sloped plane at 35
degrees with an acceleration of 0.2 m/s2 and velocity of 1.8 km/h. Figure 7 shows the
results for the three right wheels: the maximum torque at equilibrium was 2.1 Nm, which
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was recorded on the rear wheel, and as expected these values decreased for the middle and
front wheels. These values do not account for the initial transient values. The torque values
presented in Figure 7 correspond to the period in which the velocity profile, as previously
showed in Figure 5, was constant. The results were symmetrical and equal for the left side,
and for this reason they are not reported.
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Simulations were carried out for both structures adopted in this study, returning
similar values as for the wheel torque values. The motor choice was the same for both
structures, since they had the same global envelope dimensions and the same weight. The
maximum value torque values allow one to choose a proper motor that will be used in
subsequent simulations. Given the system velocity and maximum torque, it is possible
to compute the motor power. Thus, in the rest of the study, the simulations were based
on direct dynamics and the motor parameters were explicitly set. The motor parameters,
given in Table 3, were set considering a DC commercial motor. Multiple simulation tests
were run for a rover structure equipped with six DC motors, one for each wheel.

Table 3. DC motor parameters set in direct dynamics simulations.

Nominal voltage 12 V
Transmission ratio 1/90

Idle Velocity 180 rpm
Idle current ≤1.1 A

Nominal Torque 2.647 Nm
Nominal velocity 120 rpm
Nominal current ≤6 A

3.3. Rover Dynamics on Rough Soils

Direct dynamics simulations were carried out to study the rover dynamics in the
unstructured environments in which the vehicle has to operate. The plane was modeled
using a combination of solid brick elements. The path was composed of bricks of a random
inclination and length. The ground in contact with the right wheels was different from that
with the left wheels to increase the roughness of the ground and to make the simulation
more similar to reality. This type of modeling seems appropriate to simulate the behavior
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of such vehicles in agricultural fields. Figure 8 shows two simulation frames for the LSR
and the RBR on rough soil.
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For the two type of vehicles, the simulations on rough soil allowed us to gain useful
information on the rovers’ performance. To this end, the rover suspension sizing and
energy consumption will be briefly described in the next sections.

3.3.1. Rover Suspension Performance

Preliminary simulations were carried out to set the proper stiffness and damping
parameters. A first analysis allowed us to compare the vibration levels of the two structures.
Figure 9 shows the acceleration signals computed on the chassis center for the two rovers
along the three orthogonal directions x, y, and z, which are the axes of the global reference
system. During the simulations on rough soil, the acceleration values were of the same
order of magnitude in all three directions.
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The RBR showed average acceleration values similar to those of the LSR for all three
directions. The maximum absolute values for the LSR were 7.13, 5.99, and 7.99 m/s2 vs. 7.16,
6.73, and 7.03 m/s2 for the RBR (initial transient values were skipped in the calculation).

The simulation output allowed us to obtain an overall idea of the suspension perfor-
mance for both structures. In Supplementary Materials Videos S1 and S2, these results
are reported. One can be notice the better performance of the RBR with respect to the
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LSR. In Video S1, the rear left wheel seems to lift itself up from the ground for the linear
suspension rover several times. A more detailed analysis of the contact force quantification
between the wheels and the ground is shown in Figure 10. A contact force analysis was
computed for the six wheels. Here, we report only the results for the left rear wheel for
both vehicles. The whole analysis is reported in the Supplementary Materials for the
six wheels of both rover structures (Figures S3 and S4). The high magnitude peaks for both
the simulations results may have been caused by numerical integration issues during the
motion equation integration.
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For both vehicles, we computed the time at which the recorded contact force reached
a zero value, as reported in Table 4. This value seems to be a representative parameter of
the suspension performance. Indeed, when the contact force is equal to zero, there is no
contact between the wheel and ground. The agricultural rovers should be able to overcome
obstacles while keeping the wheels in contact with the ground. Over a simulation duration
of 25 s, for the rocker-bogie rover this phenomenon occurred for a shorter time, highlighting
the better performance of this vehicle in dealing with rough terrain. As reported in Table 4,
all six wheels of the rocker-bogie rover maintained contact with the ground for almost the
whole duration of the simulation. Each wheel lost contact with ground for less than 1 s
over the 25 s simulation time.

Table 4. Duration for which the contact force was equal to zero.

Wheel Right Front Right Middle Right Rear Left Front Left Middle Left Rear

Linear
suspension rover 1.59 2.06 4.04 0.80 1.96 4.16

Rocker-bogie rover 0.49 0.18 0.88 0.09 0.20 0.71

3.3.2. Electric Motor Absorbed Power Estimation

The multibody simulation aided in the evaluation of the energy consumption levels of
the two rovers. An interesting aspect was the analysis of the energy absorption starting
from power values computed on each wheel motor, as reported in Figure 11.

It is possible to compute the definite integral of the absorbed power values over time
for each wheel. The sum of these values returns the absorbed energy in the simulated time.

Table 5 shows energy values for regenerative rates (values labeled with wr subscripts)
and non-regenerative rates (values labeled with w/or subscripts) for the two rovers. En-
ergy with regenerative rate accounts even for the negative values of the absorbed power
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signals given in the above Figure 11. Energyw/or is the integral without considering the
regenerative rate (negative part of the integral equal to zero).
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Table 5. Energy 1 consumption.

Energywr
[J]

Battery 2
wr

Capacity
[Ah]

Energyw/or
[J]

Battery 2
w/or

Capacity
[Ah]

Linear suspension rover 3.74 × 102 0.83 4.08 × 102 0.91
Rocker-bogie rover 2.45 × 102 0.54 2.91 × 102 0.65

1 Over a simulation time of 25 s; 2 assuming 12 V voltage.
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Assuming a 12 volt voltage, the battery capacity required for a rover operation time of
40 min can be estimated as:

Battery Capacity =
Energywr adsorbed over simulation time

simulation time ∗ battery voltage
∗ operation time (3)

with Energywr values from Table 5 computed over 25 s simulation time. Equation (3) returns
a battery capacity of 0.83 Ah for the linear suspension rover and 0.54 Ah for the rocker-bogie
rover. This analysis shows an energy savings of 34% for the rocker-bogie rover with respect
to the linear suspension rover.

3.3.3. Effect of Lower Velocity on Energy Consumption

An interesting aspect was the evaluation of the effect of velocity on the energy con-
sumption values for both structures. To this end, simulations were carried out at a lower
velocity of 1.5 km/h (this value was around 17% less than the velocity set in previous
simulations of 1.8 km/h). As reported in Table 6, the energy consumption values for these
simulations decreased, as expected, with decreasing velocity.

Table 6. Energy 1 consumption levels at lower velocity.

Energywr
[J]

Battery 2
wr

Capacity
[Ah]

Energyw/or
[J]

Battery 2
w/or

Capacity
[Ah]

Linear suspension rover 3.54 × 102 0.79 3.91 × 102 0.87
Rocker-bogie rover 1.59 × 102 0.35 2.03 × 102 0.45

1 Over a simulation time of 25 s; 2 assuming 12 V voltage.

Figure 12 depicts the differences in energy savings results among the difference simu-
lations when changing the rover structure and vehicle speed. Lower velocity simulations
led to energy savings of 44% for the RBR with respect to LSR. The decreased speed returned
energy savings of 5% for the LSR and 35% for the RBR. Working at lower speeds with
the rocker-bogie rover allowed us to consume half of the energy. This is a remarkable
achievement from the point of view of energy savings, especially when considering the
applicability of this rover for field operations, such as in agriculture.
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4. Conclusions

In this paper, we have shown the development of a multibody simulation test rig for
the design of an agricultural rover. The model accounts for contact analysis between the
vehicle and ground, as well as for the power electronics. As a case study, we considered
two rover structures with the same mass and global envelope, which differed only in their
suspension systems. However, the modular structure of the simulation test rig can easily
be adapted to study other vehicles.

The simulations allowed the analysis of the main features involved in the design of
agricultural rovers.

The rollover study in static conditions is a fundamental aspect, not only to define a
rover’s operating conditions in unstructured terrains, but also to evaluate a rover’s safety
performance when humans and robotic vehicles have to share the same workspace. The
pitch and roll angles guarantee the design-specific features of rovers operating in possible
agricultural scenarios, such as vineyards.

Furthermore, the simulations helped to define the motor parameters under critical
operating conditions, such as when moving on inclined ground.

The calculated rover dynamics on rough soil allowed an evaluation of suspension the
system performance in terms of chassis vibrations and road holdings for both vehicles.

Finally, for the two rover structures travelling at two distinct velocities, a complete
overview of the energy saving results has been displayed. This feature makes the created
test rig particularly useful for estimating the consumption of these vehicles before they
are designed. Indeed, the simulation results showed that the rocker-bogie rover gives an
energy saving amount of 34% with respect to the linear Suspension rover under the same
operating conditions. The difference in energy savings between the two structures becomes
even more pronounced if the rover is operating at lower speeds. The best compromise in
terms of energy savings seems to be achieved by the rocker-bogie structure operating at
lower speeds. This analysis also allowed us to estimate the battery capacity needed for an
operation time of 40 min.

The different aspects analyzed in this study allowed us to define the parameters
required for a first protype. Future experimental studies on rover protypes could help
validate the simulated results.

For a more accurate design definition, in a future study several aspects must be
improved. The model should involve the presence of a fully defined multibody model
for the articulated robotic arm. Moreover, the equipment with the vision system could be
tested in virtual environments. A further step could be the development of a more accurate
contact model between the wheel and the ground. Complex models, for instance, could
consider ground in different conditions (wet, snow, mud, and debris). Future studies could
even account for embedded sensor systems in the vehicles.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
xxx/s1: Video S1. Linear suspension rover on rough soil. Video S2. Rocker-bogie rover on rough
soil. Contact force computations for the six wheels are given in Figures S3 and S4 for the two
rover structures.
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