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Abstract: Considering the trade-off relationship between brake specific fuel consumption (BSFC),
combustion noise (CN) and NOx emission, it is a difficult task to optimize them simultaneously in a
marine diesel engine. In order to overcome this problem, a novel genetic algorithm and improved
chicken swarm optimization (GA-ICSO) hybrid algorithm was proposed, where the enhanced Levy
flight and adaptive self-learning factor were introduced in this algorithm. Computational compar-
isons between GA-ICSO and other effective optimization algorithms were performed using four
standard test functions, validating the improvements in both accuracy and stability for GA-ICSO.
Furthermore, a predictive engine model based on a phenomenological approach was developed and
validated. This model coupled the proposed algorithm for the optimization of a marine diesel engine.
In the optimization process, five control parameters were selected as design variables, including
injection timing (IT), intake cam phasing (ICP), intake valve closing (IVC), intake temperature and
pressure. Results show that, a lower objective value can be obtained by GA-ICSO than other widely
used optimization algorithms for all the operating conditions. Besides, by comparing the results
between the optimal generations and baselines, it could be found that, under the condition of 50%,
75% and 100%load, CN is reduced by 10.7%, 4.9% and 3.9%, NOx is decreased by 15%, 31% and
33%, and BSFC is suppressed by 10.8%, 13.3% and 9.5%, respectively. Finally, heat release rates,
noise spectrums, cylinder pressures and temperatures were all employed to discuss the optimization
results of a marine diesel engine under different working conditions.

Keywords: marine diesel engine; BSFC; CN; NOx; multi-objective optimization

1. Introduction

With the development of economic globalization, the shipping industry plays an
essential role in transport, and almost 90% of merchant ships are driven by marine diesel
engines [1]. The advantages of high efficiency, high power density and reliability allow the
marine diesel engines to occupy a dominant position in propulsion power.

In terms of the stringent Tier III regulations and EEDI (Energy Efficiency Design Index),
the fuel economy and NOx emissions of marine diesel engines have to be further improved.
Apart from that, the radiated noise problem in marine diesel engines, especially combustion
noise (CN), is also becoming more and more serious when it moves to high-speed and
heavy-load regions. Due to the trade-off relationships among the BSFC, NOx and CN, it is
of great importance to balance the BSFC, NOx and CN simultaneously for marine diesel
engines, which is also a difficult task.

Variable Valve Timing (VVT) is an efficient approach to optimize the gas exchange
process in the engine, which can improve engine performance and pollution emission.
Sabaruddin et al. [2] investigated the optimization of the engine by VVT, and found that
VVT achieves fewer emissions, better fuel economy, yet higher torque under any working
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condition. Bar-Kohany and Sher [3] reported that the BSFC decreases by 13% and maximum
power increases by 6% with the application of VVT for an unthrottled spark ignition engine.
Additionally, the inlet and exhaust valves timings were optimized by Menzel et al. [4]
for obtaining maximum thermal and volumetric efficiency. Apart from VVT, the injection
strategy changes the combustion phase and ignition delay, which has a direct influence
on the fuel and air premixed prior to ignition. It is well-known that the position of
combustion phase is crucial for BSFC improvement [5], and the intensity of premixed
combustion is expected to affect NOx emission and CN [6]. By combining the Miller
cycle with a proper injection strategy, NOx and BSFC could be reduced simultaneously in
marine engine experiments [7]. However, the large Miller cycle application increased the
ignition delay and premixed combustion magnitude, which increased the CN and peak
pressure dramatically, and affected the health of the engine. Considering the complex
trade-off relationships among NOx, CN and BSFC due to the sensitive influences of IT
and VVT, the traditional sensitivity tests are difficult to optimize the large amount of
those control variables, especially for the marine engines with high experimental costs.
Therefore, statistical and intelligent algorithms are introduced to optimize multi-objective
characteristics of marine engines with increasing complexity technologies.

According to the efficient development of computational capacity, statistical methods
are always applied to the numerical simulation modeling of diesel engines, which is
beneficial for the optimal design of engine control parameters. Chen et al. [8] combined
non-linear programming by quadratic Lagrangian (NLPQL) with AVL FIRE to optimize
the features of injection and combustion chamber geometry. Taghavifar et al. [9] proposed
an optimization method based on Design of Experiment (DoE) with integration of the
epsilon-support vector regression (SVR) in AVL FIRE, which was used to reduce both spray
droplet diameter and NOx emission at the same time. A multiple linear regression model
was employed by Gopal et al. [10] to predict emissions and performance of a diesel engine
fueled by a blend of ethanol, biodiesel and diesel. In practice, however, considering the
application of on-line optimization, a large sample database (high computing time) has
to be avoided. Unfortunately, although the methods mentioned above have become a
powerful tool in the optimization, they cannot guarantee their accuracy of results with a
small individual size.

Aiming at this issue, in recent years, with the development of bio-inspired algorithms,
intelligent optimization methods, such as genetic algorithm (GA), particle swarm optimiza-
tion (PSO), artificial bee colony (ABC) algorithm, have received considerable attention in
the field of engine performance optimization. Shibata et al. [11] optimized the heat release
shapes of multiple fuel injections to obtain high ITE and low CN level by means of GA.
Wu et al. [12] utilized a micro-genetic algorithm, coupled with an engine computational
fluid dynamics code, to optimize a natural gas and diesel dual-fuel engine. However, the
basic evolutionary algorithms are easy to fall into the local optima, namely premature
phenomenon, which influences the accuracy of the optimization. Hence, improvements
on those classical algorithms are introduced by many scholars. Wu et al. [13] designed
an adaptive PSO algorithm to identify optimum engine operating points. Hu et al. [14]
investigated and optimized seven engine design variables by combining the NLPQL al-
gorithm with multi-objective GA. Zhang et al. [15] presented a hybrid GA-PSO algorithm
and applied it to biodiesel engine performance optimization. Cooperative PSO and ABC
algorithms are employed by Ogren [16] to find optimal engine operation parameters for
triple and quadruple injection schedules. However, even if good benchmark test results
are obtained by those newly developed algorithms, the number of iterations is too large,
which increases the computational burden, especially for engine optimization. Accordingly,
we must propose, with extreme urgency, a powerful optimization method that has the
strongest ability to approach the global optima when the iterations number and individual
size are both small.

Chicken swarm optimization (CSO) is a new swarm intelligence algorithm developed
by Meng et al. [17], which simulates the behaviors of chicken foraging. Compared to a bat
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algorithm (BA), GA, PSO, and differential evolution (DE), CSO exhibits better in a lot of
popular benchmark test functions [18]. Hence, the effective techniques that help to increase
the diversity of swarm could be applied to basic CSO, which will largely overcome the
phenomenon of premature convergence and find better solutions than existing algorithms.

In this study, a GA and improved CSO hybrid algorithm (GA-ICSO) was proposed
for optimizing BSFC, CN and NOx simultaneously in a marine diesel engine, where the
enhanced Levy flight and adaptive self-learning factor was added to make the chicken
swarm distributed evenly. Four benchmark test functions were employed to verify the
stability and convergence accuracy of the proposed algorithm. Then, the developed GA-
ICSO algorithm was combined with a one-dimensional (1D) predictive model for the
optimization of a marine diesel engine, and this model was calibrated and validated by
phenomenological approach. IT, ICP, IVC and intake pressure and temperature were
selected as design variables in the optimization process. Finally, the optimal engine control
parameters were obtained in the conditions of 50%load, 75%load and 100%load. The
optimized results were compared with baselines and other widely used optimization
algorithms, which demonstrates the ability of GA-ICSO algorithm to optimize and balance
the CN, NOx and BSFC.

2. Preparation
2.1. Engine Predictive Model and Validation

Numerical analysis of marine diesel engine was conducted using a commercial one-
dimensional engine simulation software, GT-POWER. The numerical model of a marine
diesel engine was created, as shown in Figure 1, and validated with the experimental
data of the target engine—the specifications of which are listed in Table 1. It is a four
stroke, direct injection marine medium-speed diesel engine with a single cylinder. Three
operating conditions, including 100%, 75% and 50%load at 1050, 1000 and 850 rpm, have
been considered as baseline conditions for the target engine (the experimental data was
provided by Shanghai Marine Diesel Engine Research Institute).
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Figure 1. Marine diesel engine model.

Table 1. Specifications of the engine.

Item Specification

Bore 270 mm
Stroke 330 mm

Compression ratio 16
Connecting rod length 680 mm

Number of strokes 4
Injection system Common rail

Fuel type Marine diesel oil

To predict and analyze the combustion process accurately, the selection of a combustion
prediction model in GT-POWER is the most important task. For direct-injection diesel
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engines, the direct-injection jet combustion model (DI-Jet) is widely used to predict the
combustion rate and emissions [19]. The fuel jet is tracked in DI-Jet model since it breaks
into droplets, evaporates, mixes with surrounding gas, and burns by a series of physical or
semi-physical equations, as shown in Figure 2. Hence, a DI-Jet model is able to predict the
fuel spray and combustion with limited experimental data.
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Figure 2. Schematic of the fuel zones distribution.

In order to match the combustion event obtained from cylinder pressure analysis, the
DI-Jet model has been calibrated based on a phenomenological approach. The experimental
data of baseline conditions were employed for calibration in GT-POWER. Figure 3a–c
shows the comparisons of experimental (baseline) and GT simulative in-cylinder pressures.
It reveals good agreements between experimental data and GT results, which confirms the
accurate prediction of the calibrated model.
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Figure 3. Comparison between experimental and GT simulation results of in-cylinder pressures:
(a) 50%load; (b) 75%load; (c) 100%load.

Notably, even if the NOx and BSFC can be extracted from the results of GT-Power, the
calculations of CN are closely associated with the signal processing technique, which is
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unable to be obtained directly from GT-Power. Researchers always utilize maximal pressure
rise rate (MPRR) to represent the CN level roughly. However, the recent literature has
reported that poor correlation between MPRR and microphone noise is always featured [20]
due to the use of different time steps for gradient calculation. Arsham J. [21] proposed
a novel method to calculate the combustion noise based on engine structural attenuate
curve, Aural weighting (A-weighting) attenuation curve and Fourier function. The engine
structure attenuation function can be described as

S(dB) =


6
∑

i=0
ai f i 100 ≤ f ≤ 2300

6
∑

i=0
bi f i 2300 ≤ f ≤ 10000

 (1)

where S is the attenuation filter function in dB; f is the frequency in [Hz]; ai and bi are
combustion noise attenuation coefficient, which is listed in Table 2. Notably, the values of
ai and bi are provided in Ref. [21], and they are defined as filters to simplify the transfer
functions of engine structure attenuation. Aside from the structure filtering function, the
ear decay filter should also be considered. A-weighting attenuation filter is utilized here
due to its excellent ability to model the human ear. The function of A-weighting attenuation
can be given by:

A( f ) = 2 + 20 ∗ log10(RA( f ))

RA( f ) = 122002∗ f 4

( f 2+20.62)∗
√

( f 2+107.72)∗( f 2+737.92)∗( f 2+122002)

(2)

where the unit of parameter A is dB. Hence, the total attenuation is established by combining
the structure attenuation function and A-weighting attenuation, which is formulated as

T( f ) = S( f ) + A( f ) (3)

where T is the total attenuation. Figure 4 shows the total attenuate curve. Additionally,
Arsham J. discovered that nearly all of engine structural attenuate curves have similar
shapes [21], and therefore the attenuate curve in Figure 4 will be used in GT-Power for
combustion noise analysis. Figure 5 outlines the procedures of combustion noise calculation
in GT-Power. Firstly, the Fast Fourier Transform (FFT) is employed to cylinder pressure
signals calculated by GT-Power. Then the combustion noise spectrum can be obtained by
applying a total attenuate curve to the pressure spectrum. Finally, the combustion noise
spectrum is synthesized as the overall combustion noise level and normalized by 20 µPa,
which outputs in dB.

Table 2. Combustion noise coefficient.

i ai bi

0 −1.594243 × 102 −1.065899 × 102

1 2.029175415 × 10−1 1.89691 × 10−2

2 −2.981767797 × 10−4 −7.393291 × 10−6

3 2.494291193 × 10−7 1.266005 × 10−9

4 −1.166026273 × 10−10 −1.278282 × 10−13

5 2.8203001 × 10−14 7.033316 × 10−18

6 −2.747693353 × 10−18 −1.621458 × 10−22
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As such, the numerical values of BSFC, CN and NOx were compared with that of
performance test (baseline conditions), which was revealed in Figure 6a–c and the errors
were also shown in Figure 6d. It is found that the simulative data corresponds well with
experimental baseline data (within 2% error).
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2.2. Objective Function Definition

With the aim of obtaining the lowest CN, NOx and BSFC simultaneously by the pro-
posed GA-ICSO optimization algorithm, a suitable objective function has to be established,
which should consider these three sub-objectives. Equations (1)–(4) define a weighted sum
of them, and the optimization of CN, NOx and BSFC could be achieved by lowering the
value of Obj.

Obj = FCN + Fbsfc + FNOx + 50 ∗ (max(1, (
PP

PPlimit
))− 1) (4)

FCN = a1 ∗ (
CN−CNideal

CNbase−CNideal
) (5)

FBSFC = a2 ∗ (
BSFC− BSFCideal

BSFCbase−BSFCideal
) (6)

FNOx = a3 ∗ (
NOx−NOxideal

NOxbase−NOxideal
) (7)

where FCN, FBSFC and FNOx are the sub-objectives, [·]base and [·]ideal are the baseline and
ideal value, respectively. Table 3 shows the ideal values of BSFC, NOx and CN used in this
study. The weight of each sub-objective (a1, a2, a3) is determined by researchers according
to the literature [8,14] and experience. Table 4 lists the value of them. Considering the high
CN level and BSFC for the case of 50%load in Figure 6, a1 and a2 should be given more
emphasis and provided with large values in this condition. On the contrary, NOx emission
is seriously deteriorated, although a low CN level is observed in the condition of 100%load.
So, a large a3, yet a small a1, are suitable for optimization in this case. In addition, the peak
value of cylinder pressure (PP) is considered as the constraint variables, and the obtained
optimization results, which surpassed the PP constraints (PPlimit), will be penalized. In this
study the PPlimit is set as 230 bar.

Table 3. Summary of the ideal values in objective function.

Condition 50%Load 75%Load 100%Load

CN/dBA 88 83 81
NOx/ppm 560 690 780

BSFC/g/kWh 195 188 187

Table 4. Weight of sub-objective.

Condition 50%Load 75%Load 100%Load

a1 4.5 4.4 3.8
a2 4.5 4.4 4.7
a3 1 1.2 1.5

3. Optimization
3.1. GA

According to the Darwin theory of evolution, GA is created and used to solve some
optimization problems [22]. GA consists of four primary steps: initialization; selection;
crossover; and mutation. During the optimization process, a group of individuals (parents)
is optimized by GA to generate better ones (children) in the next iteration. When the
stopping criterion of iteration is met, the best individual in the last generation is treated
as the optimal solution. The feasible solution is named as a chromosome, and each input
variable inside the chromosome is called a gene. The steps of GA can be briefly introduced
below:
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1. The initial population is created by random generation from the search domain.
Additionally, the fitness value of individual is calculated by the objective function;

2. The individuals with high fitness values should be selected and retained in the next
generation, and the others will be eliminated, which simulates the phenomenon of
“survival of the fittest”;

3. This operator generates a new individual by exchanging and recombining some genes
from two parent chromosomes, which are selected randomly from the population. In
this study, the single-point crossover technique is employed;

4. In the mutation operation, some genes in a chromosome are modified to create a new
offspring. This step can increase the diversity of individuals and avoid being trapped
into a local optimum.

3.2. CSO

The chicken swarm is divided into several subgroups. Each subgroup consists of three
types, including a dominant rooster, some hens and several chicks. The flowchart of CSO
is shown in Figure 7. A strict hierarchy exists in the chicken group: the chickens with the
best fitness values are defined as roosters; the individuals with the worst fitness values can
be determined as chicks; the rest of the chickens would be hens. Furthermore, the mother
chickens of the chicks are selected randomly. In the foraging process, the rooster has the
best food source. Therefore, the hens follow the roosters in each subgroup to search for
food, and the chicks follow their mother to forage. The different types of chickens follow
different rules of position updated for searching food. Moreover, the hierarchical order
and mother–child relationship in each subgroup will not change during several iterations.
When the termination condition is met, all the chicken types and their relationships will
be reassigned to avoid premature convergence. The optimal solution to the optimization
problem can be represented by the position of the best chicken individual, which is retained
in each iteration.
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In this study, rNum, hNum, cNum (=N-rNum-hNum), mNum represent the number of
the roosters, the hens, the chicks and the mother hens, respectively. N indicates the swarm
size; G is the update number of chicken swarm and D is the dimension of solutions space.
The maximal iterative generation is maxiter. Therefore, the update rules of roosters, hens,
and chickens are expressed as follows:

1. Position update of roosters

xj
i(t + 1) = xj

i(t) ∗ (1 + Randn(0, σ2)), j ∈ [1, D] , t ∈ [1, maxiter] (8)
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σ2 =

{
1, i f fi ≤ fk,

exp ( fk− fi)
| fi |+ε

, else,
k ∈ [1, rNum] , i ∈ [1, rNum], k 6= i (9)

where x is the position of the individual, i and k are both the rooster’s index, j is the solution
index, t is the iteration number. Randn(0, σ2) is a Gaussian distribution with standard
deviation σ and mean zero, ε is a small constant to avoid the denominator being zero. fi
and fk are the fitness of rooster i and k.

2. Position update of hens

xj
i(t + 1) = xj

i(t) + S1 ∗ rand ∗ (xj
r1(t)− xj

r1(t)) + S2 ∗ rand ∗ (xj
r2(t)− xj

i(t)) (10)

S1 = exp(
fi − fr1

| fi|+ ε
) (11)

S2 = exp( fr2 − fi) (12)

where i ∈ [rNum + 1, hNum], rand is a uniform random number between zero and one. r1,
r2 are both the rooster index (r1 6= r2), and r1 is the spouse of hen i.

3. Position update of chicks

xj
i(t + 1) = xj

i(t) + FL ∗ (xj
m(t)− xj

i(t)), i ∈ [rNum + hNum + 1, N] (13)

where m is the index of the mother hen of chick i. FL is a random parameter between [0, 2].

3.3. ICSO

In order to improve the search ability and accelerate the convergence of CSO, enhanced
Levy flight and adaptive self-learning weight are introduced in this work.

1. Enhanced Levy flight

Levy flight is a type of search method conforming to a short-range deep local search
and occasional longer distance walks [23]. The update of Levy flight can be expressed as:

Levy(λ) =
λ · Γ(λ) · sin(πλ/2)

π
· 1

s1+λ
(14)

s =
u

|v|1/λ
(15)

u ∼ N(0, σ2), v ∼ N(0, 1) (16)

σ2 = [
Γ(1 + λ)

λ · Γ((1 + λ)/2)
· sin(πλ/2)

2(λ−1)/2
]
1/λ

(17)

where λ is the Levy scaling parameter (1 < λ < 3, and normally λ = 1.5), and Γ(·) is the
gamma function. In fact, the foraging movements of many animals are similar to the Levy
flight due to its isotropic random directions [24]. Figure 8 compares the traditional random
walking following uniform distribution and Levy flight within the same 200 steps. As
visible, the search area of random walking is much smaller than that of Levy flight.
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Considering the important role of hens in CSO (largest number), applying Levy flight
to the position update of hens is beneficial for search efficiency improvement. Therefore,
Equation (3) can be modified as:

xj
i(t + 1) = xj

i(t) + S1 ∗ rand ∗ (xj
r1(t)− xj

r1(t))
+S2 ∗ rand ∗ (α ∗ Levy(λ))⊗ (xj

r2(t)− xj
i(t))

(18)

where α is an adjustable parameter of flight step,⊗ represents point multiplication. Notably,
the parameter α has a significant influence on the speed of search and convergence in
basic Levy flight, however, it is always set as a constant. As a result, enhanced α can be
formulated as:

α(t) = αmax ∗ exp(c ∗ t) (19)

c =
1

maxiter
∗ Ln(

αmin

αmax
) (20)

where t and maxiter are the current and maximal iteration, α ∈ [αmin, αmax] (αmin and αmax
should be initialized before optimization). The modification of α indicates that short-range
deep local search is used when it approaches the optimal solution, which accelerates the
convergence.

2. Adaptive self-learning coefficient

In the basic CSO, the hens have no self-learning ability, resulting in weakening the
search ability of the algorithm to a certain extent [25]. In this section, the adaptive self-
learning coefficient is recommended:

ω =

{
ωmin + (ωmax−ωmin)( ft− fmin)

fmean− fmin
, ft ≤ fmean

ωmax, ft > fmean
(21)

where ωmin and ωmax are the minimal and maximal self-learning coefficient; fmin and
fmean are the minimal and average fitness value; ft is the fitness value of each iteration.
Clearly in Equation (14), the self-learning coefficient maintains its maximal value when the
fitness value is large, illustrating that great search ability is obtained for the early iterations.
Furthermore, ω is set as a very small value when ft is close to fmin, which performs a
refined search around the optimal solution. Accordingly, Equation (11), namely the position
update of hens, can be further modified as:

xj
i(t + 1) = ω · xj

i(t) + S1 ∗ rand ∗ (xj
r1(t)− xj

r1(t))
+S2 ∗ rand ∗ (α ∗ Levy(λ))⊗ (xj

r2(t)− xj
i(t))

(22)
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On the other hand, it is seen in Equation (6) that the chicks only update the location
information from their mothers and do not refer the roosters. If their mothers fall into a
local optimum, the chicks will fall into a local optimum as well. So the position update of
chicks is modified as:

xj
i(t + 1) = xj

i(t) + FL ∗ (xj
m(t)− xj

i(t)) + C0 ∗ (xj
r(t)− xj

i(t)), i ∈ [rNum + hNum + 1, N] (23)

where C0 is the factor that the chicks learn from the roosters.

3.4. GA-ICSO

For the purpose of reducing the probability of the algorithm to fall into the local
optimum, GA and ICSO should be combined to integrate the advantages of these algorithms
and cover their disabilities. Due to the mutation operator increasing the diversity of
individuals, GA is used in the first part of optimization. Then, the individuals optimized
by the GA are given to ICSO. So, it is feasible to achieve a fast search of the global optimum
by enhanced Levy flight and adaptive self-learning factor in ICSO. Figure 9 reveals the
flowchart of GA-ICSO.
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In this study, the proposed GA-ICSO is combined with GT-Power for optimizing the
engine design parameters, including IT, ICP, IVC, intake pressure and temperature. Accord-
ing to the previous literature [7,11,15], it is demonstrated that these design parameters have
a great influence on the combustion process and heat release intensity, which will strongly
affect the variations in CN, NOx and BSFC. Their control is commonly applied in current
commercial marine engines. The variation ranges in these design parameters and baseline
values are all listed in Table 5. At first, the five variables are initialized according to the
variation ranges in Table 5, and subsequently used in GT-Power to calculate the objective
value by Equation (17). Then the input variables are optimized by the proposed GA-ICSO
algorithm and new individuals are generated. The objective values of new individuals are
also calculated by GT-Power. Therefore, the optimal individuals (with low objective values)
are selected and employed in the next iteration. The flow chart of the hybrid GA-ICSO-GT
optimization is shown in Figure 10.
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Table 5. Variation ranges in the design parameters.

Parameters Condition Lower Bound Upper Bound Baseline

IT/◦ATDC
50%load −30 10 −4.5
75%load −30 10 −4

100%load −30 10 −6

ICP/deg
50%load −25 25 0
75%load −25 25 0

100%load −25 25 0

IVC/deg
50%load 480 600 540
75%load 480 600 540

100%load 480 600 540

Intake
pressure/kPa

50%load 215 225 220
75%load 315 325 320

100%load 384 394 389

Intake
temperature/K

50%load 307.5 317.5 312.5
75%load 308.8 318.5 313.8

100%load 313.2 323.2 318.2
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4. Benchmark Test

In this section, the performance of the proposed GA-ICSO algorithm is tested on
four widely used benchmark functions. The descriptions of these benchmark functions,
including function, formulation, minimum and range, are listed in Table 6 [26]. These
functions contain a single local optimum (single peak) and many local optima (multi-peak),
which are suitable for testing the effectiveness of the optimization algorithms. Furthermore,
in Refs. [15,16], it is demonstrated that GA-PSO and an improved artificial bee colony
(IABC) show strong abilities in diesel engine performance optimization, although they
exhibit poor convergence accuracy and stability when applied to complex multi-input and
multi-output problems with a small population size (<20) and low iteration number (<30).
So the optimization results of GA-ICSO should be compared to GA-PSO and IABC, which
could validate the improvement of optimization accuracy and stability by enhanced Levy
flight and adaptive self-learning factor. Meanwhile, in order to validate the improvements
of ICSO, GA-CSO and CSO are also run independently for each benchmark function and
compared with GA-ICSO.
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Table 6. Benchmark function details.

Function Formulation Minimum Range

Schwefel 2.21 f (x) = maxn
i=1(|xi|) 0 [−500, 500]

Griewank f (x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 0 [−100, 100]

Ackley f (x) = −20 exp(−0.2

√
n
∑

i=1

x2
i

n )− exp(
n
∑

i=1

cos(2πxi)
n ) + 20 + e 0 [−35, 35]

Zakharovfcn f (x) =
n
∑

i=1
x2

i + (
n
∑

i=1
0.5 · i · xi)

2
+ (

n
∑

i=1
0.5 · i · xi)

4
0 [−2, 2]

The parameter settings of these five optimization algorithms are shown in Table 7.
These tuning parameters were selected based on the previous literature [15,18] and empiri-
cal evaluations, which were demonstrated to accelerate the convergence of iterations. For
example, crossover rate is an important parameter for GA, although an extremely large
crossover rate may cause an excessive increase in the randomness, which could disturb the
optimization direction towards the global best solution and lose the optimal individual.
On the contrary, an extremely small crossover rate may be unable to effectively update the
population. Hence, the relatively moderate values of tuning parameters were selected in
Table 7. With the aim of validating the global search performance of the proposed GA-ICSO
algorithm with a small population, the population size is set to 10 for all the benchmark
tests. In addition, the dimensions of all tests are set to be five, which is consistent with the
engine design variables defined in Section 3.4. The maximum iterations of each algorithm
are set to 50. As such, the average function evaluations and standard deviation (STD) of
the results for 100 trials are obtained, as shown in Figures 11 and 12.

Table 7. GA-PSO, IABC, CSO, GA-CSO and GA-ICSO control variables.

Algorithm Parameters

IABC Limit value = 12, Colony size = 20

GA-PSO Crossover rate = 0.7, Mutation rate = 0.2, C1 = C2 = 2,ω = 0.7298

CSO G = 30, hNum = 7, rNum = 2, mNum = 2

GA-CSO Crossover rate = 0.7, Mutation rate = 0.2, G = 30, hNum = 7, rNum = 2, mNum = 2

GA-ICSO Crossover rate = 0.7, Mutation rate = 0.2, G = 30, hNum = 7, rNum = 2, mNum = 2, C0 =
0.3, ωmin= 0.2, ωmax= 1.2, αmin= 0.5, αmax = 1.5

From Figure 11, the proposed GA-ICSO performs higher accuracy than that of other
algorithms in finding the objective fitness closest to the global optimization, especially for
Griewank and Schwefel function. Moreover, as Figure 12 can be visually seen, compared
with other algorithms, the minimal STD value of GA-ICSO demonstrates the stability of
the proposed algorithm. Therefore, according to the results of benchmark tests, GA-ICSO
is robust in the process of function optimization, which is suitable for the optimization of
engine performance and emission.



Machines 2022, 10, 227 14 of 21Machines 2022, 10, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Average function evaluations for four test functions: (a) Griewank; (b) Zakharovfcn; (c) 
Ackley; (d) Schwefel 2.21. 

  

(a) (b) 

  

(c) (d) 

Figure 12. STD for 4 test functions: (a) Griewank; (b) Zakharovfcn; (c) Ackley; (d) Schwefel 2.21. 

Figure 11. Average function evaluations for four test functions: (a) Griewank; (b) Zakharovfcn;
(c) Ackley; (d) Schwefel 2.21.

Machines 2022, 10, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Average function evaluations for four test functions: (a) Griewank; (b) Zakharovfcn; (c) 
Ackley; (d) Schwefel 2.21. 

  

(a) (b) 

  

(c) (d) 

Figure 12. STD for 4 test functions: (a) Griewank; (b) Zakharovfcn; (c) Ackley; (d) Schwefel 2.21. Figure 12. STD for 4 test functions: (a) Griewank; (b) Zakharovfcn; (c) Ackley; (d) Schwefel 2.21.



Machines 2022, 10, 227 15 of 21

5. Results and Discussion

Due to the fact that GA-PSO and IABC have been successfully applied to engine
optimizations [15,16], both of them are combined with GT-Power for marine diesel engine
optimizations in this section, and the results are compared with the proposed GA-ICSO.
To reduce the influence of contingency, for each of the three comparison algorithms, the
optimization is repeated 10 times independently. The maximum generation is set as 25 and
other parameters settings of the algorithms are given to the same values in Table 7. All of
the algorithms are applied to three different working conditions: 50%load, 75%load and
100%load.

Figures 13–15 show the optimization history of the best solution and STD of the
10 trails corresponding to three optimization algorithms for the three operating conditions.
Observing this progress, the optimizations for all the cases are almost stopped after the 20th
generation and the algorithms are considered to have converged. In terms of the baseline
values highlighted in each plot, the improvements of overall objective can be observed.
Compared with the baselines in Figures 13–15, the objective values optimized by GA-ICSO
(25th generation) decrease about 1.04, 0.75 and 0.68 for the conditions of 50%load, 75%load
and 100%load, respectively, which is larger than that of GA-PSO (0.74, 0.49 and 0.07) and
IABC (0.63, 0.55 and 0.29). It indicates that more reasonable optimization results can be
obtained by GA-ICSO. Furthermore, the lowest STD values for GA-ICSO algorithm verifies
its stability, and only a small number of independent runs is needed to find the global
optimal engine control parameters.
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In addition, considering the effects of tuning parameters on optimization results, the
values of crossover rate, mutation rate and G in GA-ICSO were adjusted for comparative
optimization analysis. However, it is found that the obtained optimal solutions are al-
most unchanged, indicating that the tuning parameters have less of an influence on the
optimization results of GA-ICSO. That can be explained by the engine control parameters
in baseline conditions having already been roughly optimized by traditional Design of
Experiment (DOE) methods, which are used as initial values during GA-ICSO optimization.
This can also help to narrow down the optimization range. Therefore, the effects of tuning
parameters on optimization process have been weakened.

Subsequently, the inspection of CN, NOx and BSFC is carried out to check the solution
success. In order to analyze the optimization results of CN, BSFC and NOx visually, the
concept of optimization percentage is defined and expressed as the following:

Optimization percentage =
Optimal − Baseline
|Ideal − Baseline| (24)

where the Optimal in Equation (24) illustrates the best CN/BSFC/NOx value optimized
by GA-ICSO. Optimization percentage is a negative value, and the lower this value is,
the lower the CN/BSFC/NOx level. The optimization percentage of the baseline case is
zero. Figures 16a, 17a and 18a compare the optimization percentage of CN, BSFC and NOx
for all the conditions, where the red line represents the final solution (25th generation) by
GA-ICSO and the black line for the baseline. As visible, CN, BSFC and NOx are improved
by GA-ICSO algorithm at the same time. Furthermore, the optimization results of IT, ICP,
IVC and intake temperature and pressure are also highlighted in Figures 16b, 17b and 18b.
In order to explain the different extent of optimization under different working conditions
by thermodynamic analysis, the HRRs, combustion noise spectrums, in-cylinder pressures
and temperatures of the optimal generation and baseline for the three working cases are
provided, as shown in Figure 16c–f, Figures 17c–f and 18c–f.

For the condition of 50%load, as shown in Figure 16b, IT optimized by GA-ICSO is
retarded at about 1.3 CAD (crank angle degree) compared to the baseline, which is the
main reason for the premixed combustion attenuation from the HRR plots in Figure 16c.
Premixed combustion contributes directly to CN generation, as violent premixed phasing
causes rapid pressure rise and induces pressure fluctuations [6]. Accordingly, as seen in
Figure 16d, the components of noise spectrum corresponding to the frequency range of
900–1800 Hz are suppressed with the decrease in premixed combustion intensity, and the
overall CN level is reduced by about 10.7%.
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However, solely retarding the IT may result in lower values of maximal in-cylinder
pressure and temperature, subsequently lower NOx emission yet higher BSFC may be
achieved. To overcome the trade-off effect of late IT, the GA-ICSO algorithm proposed
an optimized in-cylinder environment: slightly rising the compression-end pressure and
maintaining the compression-end temperature, as shown in Figure 16e–f. In this thermo-
dynamic environment, higher air fuel ratio can be achieved and consequently augment
the diffusion combustion, as shown in Figure 16c. Thus, even though late IT attenuates
the premixed combustion, the BSFC is reduced 10.8 % due to the augment of in-cylinder
pressure, as shown in Figure 16e. To achieve the optimized in-cylinder thermodynamic
environment, the algorithm suggests adjusting the intake air thermodynamic state and
intake valve profile. When compared with baseline condition, the intake pressure and
temperature of the optimized case is increased 3.1 kPa and decreased three K, leading to an
increase in intake air mass flow rate. On the other hand, advancing ICP (shifts the whole
valve profile forward 12.7 CAD, as shown in Figure 16b) enlarges the valve lifts at the start
of intake stroke and the valve overlap, which results in larger intake trapped air mass and
less in-cylinder residual gas. However, the approaches mentioned above always lead to
higher compression pressure. If the compression pressure is over augmented, the peak
pressure may exceed the limitation and the temperature may increase as well. Therefore,
late IVC is adopted to compensate the effects of other approaches. Finally, the peak value
of cylinder pressure rises 1.3 bar in Figure 16e, and the maximal temperature reduces about
25 K in in Figure 16f, which reduce the CN, NOx and BSFC simultaneously.

In engine conditions of 75%load and 100%load, similar optimizations of compression-
end pressure and temperature are achieved by the GA-ICSO algorithm. Similar approaches
(increasing intake air pressure, reducing intake air temperature, advanced ICP and late
IVC, shown in Figures 16b and 17b) are also applied to increase the in-cylinder pressure to
an optimized level while maintaining the compression temperature. After optimization,
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their increments of compression-end pressure and reductions in maximal temperature are
more obvious as the engine load increases, as shown in Figures 16e–f and 17e–f. This is due
to the rise of trapped air mass caused by the optimization approaches, leading to higher
specific heat capacity. Therefore, even though the optimized IT only delay 0.8 CAD and
0.7 CAD under 75% and 100%load, respectively, their improvements of NOx and BSFC are
more significant.

Considering their high loads, it is hard to reduce premixed combustion further due
to the relatively short ID. This causes that diffusive combustion phase that occupies the
majority of the combustion process, which is unable to generate high frequency pressure
fluctuations and exert high CN level [27]. Thus, the optimization percentages of CN in
high load regions are always lower than that of low load condition, which is demonstrated
in Figures 16a and 18a. Meanwhile, in Figures 17d and 18d, even if the CN levels in the
frequency band of 800–1800 Hz are reduced, it is augmented in other frequency segments,
e.g., 1800~3000 Hz for 75%load and 400–1000 Hz for 100%load. This gives rise to the
inconspicuous optimization of CN, which is only 4.9% and 3.9% for 75% and 100%load, re-
spectively. Finally, the optimized GA-ICSO approach achieved an attenuated or maintained
premixed combustion and augmented diffusion combustion (shown in Figures 17c and 18c)
in high loads. As such, slight reduction in CN can be achieved with the optimizations of
NOx and BSFC.

6. Conclusions

In order to optimize BSFC, CN and NOx simultaneously in a marine diesel engine, a
novel GA-ICSO algorithm based on enhanced Levy flight and adaptive self-learning factor
was proposed. The proposed algorithm was conducted based on 1D predictive model for
marine diesel engine optimization. In the optimization process, five control parameters
were selected as design variables, including ICP, IVC, IT and intake temperature and
pressure. Finally, the optimized results were compared with other widely used optimization
algorithms and baselines, which demonstrated the performance of the GA-ICSO algorithm
in optimizing engine performances and emissions. The main conclusions are list as follows:

1. From the results of benchmark tests and engine applications, it is demonstrated that
the convergence accuracy and stability of GA-ICSO are higher than other optimization
algorithms (including CSO, GA-PSO, GA-CSO and IABC), even for small population
size and iteration number;

2. Due to the trade-off of each parameter, late injection combined with proper in-cylinder
environment (slightly raising the compression-end pressure and maintaining the
compression-end temperature) is proposed by GA-ICSO algorithm to optimize CN,
NOx and BSFC simultaneously;

3. As the operating condition moves to higher engine load conditions, the mitigation of
NOx is much larger than that of CN based on GA-ICSO optimization. As relatively
short ID makes the premixed combustion hard to be further suppressed, and therefore
the optimization of CN is inconspicuous;

4. In the optimization of 50%, 75% and 100%load, CN is reduced by 10.7%, 4.9% and
3.9%, NOx is decreased by 15%, 31% and 33%, and BSFC is suppressed by 10.8%, 13.3%
and 9.5%, respectively. This is conducted by applying late injection, late IVC timing,
early ICP, high intake pressure and low intake temperature derived by GA-ICSO
algorithm.
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