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Abstract: The variable-length arbitrary Lagrange–Euler absolute nodal coordinate formulation (ALE-
ANCF) finite element, which employs nonrational interpolating polynomials, cannot exactly describe
rational cubic Bezier curves such as conic and circular curves. The rational absolute nodal coordinate
formulation (RANCF) finite element, whose reference length (undeformed length) is constant, can
exactly represent rational cubic Bezier curves. A new variable-length finite element called the ALE-
RANCF finite element, which is capable of accurately describing rational cubic Bezier curves, is
proposed and was formed by combining the desirable features of the ALE-ANCF and RANCF finite
elements. To control the reference length of the ALE-RANCF element within a suitable range, element
segmentation and merging schemes are proposed. It is demonstrated that the exact geometry and
mechanics are maintained after the ALE-RANCF element is divided into two shorter ones, and
compared with the ALE-ANCF elements, there are smaller deviations and oscillations after two
ALE-RANCF elements are merged into a longer one. Numerical examples are presented, and the
feasibility and advantages of the ALE-RANCF finite element are demonstrated.

Keywords: arbitrary Lagrange–Euler; rational finite element; absolute nodal coordinate formulation;
variable-length finite element; sliding joint

1. Introduction

The sliding joint on a flexible beam [1–4] is widely used in the dynamic modeling of
practical engineering systems, such as pantograph/catenary systems [5,6], tethered satellite
systems [7,8], and arresting systems [9]. The variable-length arbitrary Lagrange–Euler abso-
lute nodal coordinate formulation (ALE-ANCF) finite element [10,11], which can be used to
efficiently and effectively implement the sliding joint dynamic model, was established based
on absolute nodal coordinate formulation (ANCF) [12–16] in the framework of the arbitrary
Lagrange–Euler (ALE) description. The material coordinates of the nodal point are adopted as
generalized coordinates in the ALE formulation to enable the length variation of the ALE-ANCF
element. The ALE-ANCF sliding joint is implemented by positing the coupling point at a mov-
ing node on the axis of the beam, which is realized by changing the length of the two adjacent
elements of the sliding joint in a conjugate manner. The ALE-ANCF was successfully used in
the dynamic modeling of tethered satellite systems [7,8], arresting systems [9], and cable–pulley
systems [17–19], and its feasibility was demonstrated. Nonrational functions cannot be used
to exactly represent some geometric shapes such as conic and circular shapes; therefore, the
ALE-ANCF beam elements that employ nonrational interpolating polynomials cannot exactly
describe conic and circular curves. This problem can be solved by substituting the nonrational
interpolating polynomials with rational interpolating polynomials, which were used in the
rational absolute nodal coordinate formulation (RANCF) finite elements [20–24].

Hughes et al. [25] pointed out that the geometric description methods of computer-
aided design (CAD) and conventional computer-aided analysis (CAA) are inconsistent;
consequently, the construction of finite element geometry (i.e., the mesh) is costly and
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time-consuming and creates inaccuracies. The nonuniform rational B-splines (NURBS) [26]
curve, which is a standard technology employed in CAD systems, can be systematically
and linearly transformed into a series of RANCF finite elements [20,21]. The RANCF
finite elements, which employ rational interpolating polynomials, can exactly describe
the rational cubic Bezier curves and facilitate the integration of computer-aided design
and analysis (ICADA) [27]. The primary aim of this work is to combine the desirable
features of the ALE-ANCF finite elements and the RANCF finite elements to establish a
new variable-length ALE-RANCF finite element that could accurately capture rational
cubic Bezier geometric shapes.

The second aim of this study is to propose an element length-control scheme to control
the reference length of the ALE-RANCF element within a suitable range. The accuracy
of the simulation will decrease if the element length becomes too long [10]. The element
mass matrix will become singular and ill-conditioned, and the numerical integration will
be flawed, if the element length becomes too short [10]. In a practical simulation, a new
node could be inserted into the element to divide it into two shorter elements if the element
is longer than the prescribed threshold. By contrast, a node could be removed to merge
the element with its neighbor to form a new longer element if the element is shorter
than the prescribed threshold. It is demonstrated that the exact geometry and mechanic
are maintained after the ALE-RANCF element is segmented, and compared with that of
ALE-ANCF elements, there are smaller deviations and vibrations after two ALE-RANCF
elements are merged.

The third aim of this work is to develop dynamic model of sliding joint on a Euler–
Bernoulli beam [28] using the ALE-RANCF finite elements. Three numerical examples
are presented to demonstrate the feasibility and advantages of the ALE-RANCF finite
elements. The rest of this paper is organized as follows. In Section 2, a brief review of the
RANCF finite element is presented, and some fundamental concepts and equations that are
repeatedly used in the following sections are introduced. The ALE-RANCF finite element
is established and its governing equation is derived in Section 3. In Section 4, the ALE-
RANCF element length-control scheme is proposed, including the element segmentation
and merging scheme. A dynamic model of the sliding joint is established in Section 5.
Numerical examples are described, and the results are discussed in Section 6. A summary
and the conclusions drawn from this study are presented in Section 7.

2. RANCF Finite Element

In this section, a brief review of the RANCF finite element model and some fundamen-
tal concepts and equations that are repeatedly used in this paper are introduced. A simple
Euler–Bernoulli beam [28] whose geometric shape and displacement field only depend on
its material coordinate is adopted as an example. The RANCF finite element was derived
by integrating the NURBS geometry and the ANCF finite elements. A NURBS curve can
be converted into a series of rational Bezier curves and such a conversion preserves the
exact geometry of the curve [26]. The displacement field of a Bezier curve with n-degree is
defined as:

r(u) =
n

∑
i=0

Ri,n(u)Pi, 0 ≤ u ≤ 1 (1)

In this equation, r(u) is the position of any arbitrary point on curve, the coefficient Pi
are control points, and the basis functions Ri,n(u) are defined as:

Ri,n(u) =
wiBi,n(u)

∑n
i=0 wiBi,n(u)

(2)

where wi > 0 are the weights, Bi,n(u) are the n-degree Bernstein polynomials defined as:

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i (3)
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The rational cubic Bezier curve coordinates can be linearly transformed to the RANCF
form [20]. The RANCF element nodal coordinate vector is defined as:

e =
[
(rA)T (rA

x )
T (rB)T (rB

x )
T]T (4)

where rN, N = A or B are the nodal position coordinates, the superscripts A and B refer to
the start and end nodes of element AB as shown in Figure 1, rN

x = ∂rN/∂x are the nodal
position coordinate gradients, and x is the material coordinate. Assuming u = x/l, where l
is the reference length of the element. The transformation from the rational cubic Bezier
curve control points to the RANCF element coordinates [20] can be formulated as:


rA

rA
x

rB

rB
x

 =



P0
3w1

lw0
(P1 − P0)

P3
3w2

lw3
(P3 − P2)

 (5)

Figure 1. Rational absolute nodal coordinate formulation (RANCF) beam element model.

The inverse transformation can be written in a matrix form as:


P0

P1

P2

P3

 =



I 0 0 0

I
lw0

3w1
I 0 0

0 0 I − lw3

3w2
I

0 0 I 0




rA

rA
x

rB

rB
x

 (6)

where I is the identity matrix. By substituting Equation (6) into the Bezier curve expression
Equation (1), the displacement field of the RANCF finite element [20] can be written as:

r(u, t) = S(u)e(t) (7)

In this equation, e(t) is the element nodal coordinate vector at time t, S(u) is the shape
function matrix, where:

S(u) =
[
s1(u)I s2(u)I s3(u)I s4(u)I

]
(8)
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where 
s1(u)
s2(u)
s3(u)
s4(u)

 =



R0,3 + R1,3
lw0

3w1
R1,3

R2,3 + R3,3

− lw3

3w2
R2,3


=

1
W(u)


3w1u(1− u)2 + w0(1− u)3

lw0u(1− u)2

w3u3 + 3w2u2(1− u)
−lw3u2(1− u)


W(u) = w3u3 + 3w2u2(1− u) + 3w1u (1− u)2 + w0 (1− u)3 > 0

(9)

Different from the nonrational polynomial shape functions of the conventional ANCF
elements, the RANCF element shape functions are rational polynomials. Assuming all the
weight coefficients of the RANCF elements are equal, then new shape functions can be
obtained as:

s1(u) = 1− 3u2 + 2u3, s2(u) = l(u− 2u2 + u3)

s3(u) = 3u2 − 2u3, s4(u) = l(−u2 + u3)
(10)

This is exactly the same as shape functions of the conventional ANCF element [29,30].
Hence, one can say that the conventional ANCF element is a special case of the RANCF element.

Although the weights have a direct effect on the geometric shapes and properties of
the RANCF element, the weights are treated as the inherent attribute parameters rather
than the additional degree of freedom, of the element. This is because the RANCF finite
element is an estimation rather than an accurate description of the deformed element,
and treating the weights as the degrees of freedom of the elements will only increase the
complexity of the dynamic model. Furthermore, using the constant weights assumption,
all the desirable features of the ANCF finite elements can be retained for the RANCF finite
elements, including the constant mass matrix and the zero Coriolis and centrifugal forces.

3. ALE-RANCF Finite Element

The variable-length ALE-RANCF finite element (Figure 2) will be proposed in this section.
To enable the length variation of the RANCF finite element, the nodal material parameters
xA, xB, which denote the length from material points A and B to head point of the beam in
undeformed configuration, are employed as the generalized coordinates [10]. By combining
the nodal position coordinates, the nodal position coordinate gradients, and the nodal material
coordinates of the element, the generalized coordinate vector of the ALE-RANCF finite element
can be defined as:

Figure 2. Arbitrary Lagrange–Euler absolute nodal coordinate formulation (ALE-RANCF) beam
element model (X1 and X2 are axes of the global coordinate system).

q =
[(

rA)T (
rA

x
)T (

rB)T (
rB

x
)T xA(t) xB(t)

]T
(11)

The displacement field of the ALE-RANCF finite element can be written as:

r(x, t) = S(x, xA(t), xB(t))e(t) (12)
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where S(x, xA(t), xB(t)) is the shape function matrix of the ALE-RANCF element, which
can be obtained by make the substitutions

u =
x− xA(t)

xB(t)− xA(t)
, l = xB(t)− xA(t) (13)

for RANCF element shape functions (Equation (9)).
The expressions of velocity ṙ, acceleration r̈, as well as displacement variation δr, of the

point in the ALE-RANCF element, which will be used in deriving the element governing
equation, can be formulated in matrix form as:

ṙ = Nq̇, r̈ = Nq̈ + rv, δr = Nδq (14)

where

N =

[
S

∂S
∂xA

e
∂S
∂xB

e
]

rv = 2
(

∂S
∂xA

ẋA +
∂S
∂xB

ẋB

)
ė +

(
∂2S
∂x2

A
ẋ2

A + 2
∂2S

∂xA∂xB
ẋA ẋB +

∂2S
∂x2

B
ẋ2

B

)
e

(15)

According to the virtual work principle, one can obtain that:

δWm + δWl + δWt + δWg = 0 (16)

where δWm is the virtual work of the element inertia force, δWl and δWt are the virtual work
of the element elastic force due to the longitudinal and transverse deformation respectively,
and δWg is the virtual work of the element gravity. The virtual works can be formulated as:

δWm =
∫ xB

xA

δrT(−ρAr̈)dx = δqT(−Mq̈−Qa)

δWl =
∫ xB

xA

−δε0EA(ε0 + cε̇0)dx = δqT(−Ql)

δWt =
∫ xB

xA

−δκEI(κ + cκ̇)dx = δqT(−Qt)

δWg =
∫ xB

xA

δrT(ρAg)dx = δqTQg

(17)

By substituting Equation (17) into Equation (16), the dynamic equations of motion
without the constraint forces can be obtained as:

Mq̈ + Qa + Ql + Qt −Qg = 0 (18)

where M is the element mass matrix, Qa is the generalized additional inertia force due to
the time-variation of the material coordinates, Ql and Qt are the generalized elastic forces
due to the longitudinal and transverse deformation, respectively, and Qg is the generalized
gravitational force. The mass matrix and generalized forces of the ALE-RANCF element
can be formulated as:
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M =
∫ xB

xA

ρANTNdx = ρAl
∫ 1

0
NTNdu

Qa =
∫ xB

xA

ρANTrvdx = ρAl
∫ 1

0
NTrvdu

Ql =
∫ xB

xA

(
∂ε

∂q

)T
EA(ε + cε̇)dx = EAl

∫ 1

0

(
∂ε

∂q

)T

(ε + cε̇)du

Qt =
∫ xB

xA

(
∂κ

∂q

)T
EI(κ + cκ̇)dx = EIl

∫ 1

0

(
∂κ

∂q

)T

(κ + cκ̇)du

Qg =
∫ xB

xA

NT(ρAg)dx = ρAl
∫ 1

0
NTgdu

(19)

In this equation, ρ is the beam density, A is the beam cross section area, E is the Young’s
modulus, I is the second area of moment, c is the damping coefficient, g is the gravitational
acceleration vector in global coordinate system, ε =

(
rT

x rx − 1
)
/2 is the Cauchy–Green

longitudinal strain, and κ = |rx × rxx|/|rx|3 is the curvature. The expressions of the
longitudinal strain and curvature were derived in literature [29].

By using the method of Lagrange multipliers to introduce the virtual work of the
constraints’ forces, the governing equation of the ALE-RANCF element can be given as:

Mq̈ + CT
qλ + Q(q̇, q, t) = 0 (20)

where Cq = ∂C/∂q is the Jacobian matrix of the constraints, λ is the vector of Lagrange
multipliers, and Q(q̇, q, t) is the generalized force vector consist of additional inertia force,
elastic force, and gravitational force, respectively.

4. Element Length Control

As mentioned in the introduction Section 1, too long or too short element length will
reduce the accuracy of the dynamic model in practical simulation; therefore, it is important
to control the reference length of the ALE-RANCF element within a suitable range. A
length-control scheme for the ALE-ANCF element was introduced in reference [10]. A new
node can be inserted into the element to divide it into two shorter ones if the element is
longer than the prescribed threshold (Figure 3a). In contrast, a node can be removed to
merge the element with its neighbor to form a new longer element if the element is short
than the prescribed threshold (Figure 3b).

Figure 3. Illustrations of (a) element segmentation and (b) element merging scheme.

The segmentation of the element increases the degree of freedom of the dynamic model.
It will be demonstrated that the element segmentation scheme introduced in this section
maintains exact geometry and mechanic, although the weights and shape functions of the
elements will be changed after the ALE-RANCF element is segmented. While the merging
of the element decreases the degree of freedom of the dynamic model, as a result, the
geometric and mechanical deviation will be inevitable. However, it will be demonstrated
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that compared with the ALE-ANCF, the deviations and vibrations of the ALE-RANCF
elements could be reduced by adjusting the weights of the merged element.

4.1. Element Segmentation

To segment the ALE-RANCF element AB shown in Figure 4, the coordinate vectors
of element AB are converted to the rational Bezier control point representation by using
Equation (6), and then the homogeneous coordinates and the DeCasteliau algorithm [26]
are used to segment the Bezier curve. The weights and control points of the segmented
Bezier curves can be calculated as:

w̄0 = w0, w̄6 = w3 P̄0 = P0, P̄6 = P3

w̄1 = ∑1
i=0 Bi,1(uH)wi P̄1 =

1
w̄1

∑1
i=0 Bi,1(uH)wiPi

w̄2 = ∑2
i=0 Bi,2(uH)wi P̄2 =

1
w̄2

∑2
i=0 Bi,2(uH)wiPi

w̄3 = ∑3
i=0 Bi,3(uH)wi P̄3 =

1
w̄3

∑3
i=0 Bi,3(uH)wiPi

w̄4 = ∑2
i=0 Bi,2(uH)wi+1 P̄4 =

1
w̄4

∑2
i=0 Bi,2(uH)wi+1Pi+1

w̄5 = ∑1
i=0 Bi,1(uH)wi+2 P̄5 =

1
w̄5

∑1
i=0 Bi,1(uH)wi+2Pi+2

(21)

where wi and w̄i are the weights before and after the curve is segmented, respectively.
Pi and P̄i are the control points before and after the curve is segmented, respectively.
uH ∈ [ 0, 1 ] is the parameter of the inserted node H, Bi,n(u) are the n-degree Bernstein
polynomials defined in Equation (3).

Figure 4. Segmentation of ALE-RANCF element.

Although the weights and the control points of the Bezier curves are changed after
the curve is segmented, the geometry of the curve will be exactly preserved [26], and one
can demonstrate that the global parameterization, which denotes the mapping relationship
between the points in the original parameter domain and the points on the Bezier curve,
remains unchanged. We assume that u ∈ [ 0, 1 ] is the parameter of an arbitrary point P on
the Bezier curve AB. If u ∈ [ 0, uH ], the point P′ that correlated to point P will be on the
segmented curve AH, and the parameter of P′ in new parameter domain can be written as:

ū =
u

uH
(22)

Substituting Equations (21) and (22) into the parametric equation of the Bezier curve
Equation (1), the following equation can be obtained as:

rAH(ū) =
∑3

i=0 w̄iBi,3(ū)P̄i

∑3
i=0 w̄iBi,3(ū)

=
∑3

i=0 wiBi,3(u)Pi

∑3
i=0 wiBi,3(u)

= rAB(u) (23)
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where rAH(ū) is the position vector of the point P′ on the segmented curve AH, and rAB(u)
is the position vector of point P on the original curve AB. Similarly, if u ∈ [ uH, 1 ], P′ will
be on the segmented curve HB, and then:

ū =
u− uH

1− uH
(24)

The following equation can be obtained in the same way:

rHB(ū) = rAB(u) (25)

where rHB(ū) is the position vector of the point P′ on the segmented curve HB. Equations (23)
and (25) demonstrate that the global parameterization remains unchanged after the Bezier
curve is segmented. Since the material coordinates of the ALE-RANCF element and the
parameters of the Bezier curve are linearly correlated (x = ul), one can infer that an arbi-
trary material point of the ALE-RANCF element hold its position, and consequently, the
exact mechanic is maintained after the ALE-RANCF element is segmented. Furthermore,
one can also infer that the position coordinate and slope vector of an arbitrary node on the
segmented finite element will remain unchanged as well.

The generalized coordinate vector of the segmented elements AHB can be written as:

qAHB =
[(

rA)T (
rA

x
)T xA

(
rH)T (

rH
x
)T xH

(
rB)T (

rB
x
)T xB

]T
(26)

where 

rA = r̄A = P0, rB = r̄B = P3, rH = r̄H = P̄3

rA
x =

3w1

lABw0
(P1 − P0) =

3w̄1

lAHw̄0
(P̄1 − P̄0) = r̄A

x

rB
x =

3w2

lABw3
(P3 − P2) =

3w̄5

lBHw̄6
(P̄6 − P̄5) = r̄B

x

rH
x = r̄H(1)

x =
3w̄2

lAHw̄3
(P̄3 − P̄2) =

3w̄4

lBHw̄3
(P̄4 − P̄3) = r̄H(2)

x

(27)

In these equations, rN and r̄N are the nodal position coordinates of node N before and
after the element is segmented, respectively. rN

x and r̄N
x are the slope vectors of node N

before and after the element is segmented, respectively. r̄H(1)
x and r̄H(2)

x are the slope vectors
of the segmented elements on left and right side of the inserted node H, respectively. lAB is
the reference length of the original element AB. lAH and lHB are the reference lengths of the
segmented elements AH and HB, respectively. The relationships between these reference
lengths can be written as: 

lAB = xB − xA

lAH = xH − xA = uHlAB

lHB = xB − xH = (1− uH)lAB

(28)

where xN is the material coordinate of the node N. The shape functions of the segmented
element can be obtained by substituting the expressions of weights (Equation (21)) and
element lengths (Equation (28)) into the shape function expression (Equation (9)).

4.2. Element Merging

Element AH and HB in Figure 5 are the ALE-RANCF elements to be merged, and
element AB is the merged element. To ensure the continuity of the boundary node A and B,
their nodal coordinate vectors will be maintained; therefore, the generalized coordinate
vector of the merged element AB can be written as:
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qAB =
[(

rA)T (
rA

x
)T xA

(
rB)T (

rB
x
)T xB

]T
(29)

and the reference length of the merged element is:

lAB = xB − xA = lAH + lHB (30)

ALE-ANCF

ALE-RANCF

Figure 5. Merging of ALE-RANCF elements.

To calculate the shape functions of the merged element, the weights need to be deter-
mined. As mentioned before, due to the reduction in the degree of freedom of the system,
the element alteration will be unavoidable after the elements are merged. However, the
alteration could be reduced by adjusting the weights of the merged ALE-RANCF elements.
An effective method to determine the weights of the merged element can be established by
simply supposing the deleted node H on the original element coincides with the node H′

on the merged element. The parameter of the node H′ is defined as:

ūH =
lAH

lAB
(31)

and the following equations can be obtained as:

r̄H = S̄(ūH)ēAB = rH (32)

where rH is the position vector of the deleted node H, r̄H is the position vector of the node
H′ correlated to H on the merged element, S̄ and ēAB are the shape function matrix and the
generalized coordinate vector of the merged element.

Since all the weights of the ALE-RANCF elements are positive, without any loss
of accuracy, one can divide the numerator and denominator of the shape functions (see
Equation (9)) by w3 at the same time, and the new expression of the shape functions can be
written as: 

s1(u)
s2(u)
s3(u)
s4(u)

 =
1

K(u)


3k1u(1− u)2 + k0(1− u)3

lk0u(1− u)2

u3 + 3k2u2(1− u)
−lu2(1− u)


K(u) = u3 + 3k2u2(1− u) + 3k1u(1− u)2 + k0(1− u)3 > 0

(33)

where ki = wi/w3, i = 0, 1, 2. By substituting Equation (33) into Equation (32), the following
linear equations with ki as unknowns can be obtained as:

f(k) = r̄H(k)− rH = 0 (34)

where k =
[
k0 k1 k2

]T. In the two-dimensional plane case, there will be two equations
and three unknowns in Equation (34); therefore, the equations theoretically have an infinite
number of solutions. To optimize the parameterization of the merged element and improve



Machines 2022, 10, 174 10 of 18

the uniformity of point distribution on the element, an additional optimization target can
be imposed on the solutions by minimizing the norm of vector x that is defined as:

x = k− i (35)

where i =
[
1 1 1

]T. By substituting Equation (35) into Equation (34), the following
linear equations with x as unknowns can be obtained as:

f(k) = f(x + i) = Ax− B = 0 (36)

According to matrix theory, Equation (36) has a unique minimum norm least squares so-
lution:

x = A+B (37)

where matrix A+ is the Moore–Penrose generalized inverse matrix of matrix A. The vector
k can be obtained by solving Equation (35). In rare cases, some of the solutions may be
nonpositive, which is usually due to the large deformation of the elements to be merged,
and then vector k will be equal to vector i. Finally, the vector k can be obtained as:

k =

{
x + i all xi + 1 > 0
i others

(38)

where xi, i = 0, 1, 2 are the elements of vector x. In the three-dimensional space case, there
will be three equations and three unknowns in Equation (34). If the equations are consistent,
it can be directly solved; otherwise, one can solve its minimum norm least squares solution
using Equations (35)–(38). By substituting Equations (30) and (38) into Equation (33), one
can finally calculate the shape functions of the merged ALE-RANCF element.

5. Sliding Joint Model

The sliding joint model is developed using the ALE-RANCF elements as shown in
Figure 6. The sliding node is coupled with a moving node on the axis of the beam, which
is realized by changing the length of the two adjacent elements of the sliding joint in a
conjugate way. Slope vectors on two sides of the sliding joint are adopted as the generalized
coordinates to capture the discontinuity of the slopes. For efficiency, only elements adjacent
to the sliding joint are the variable-length ALE-RANCF elements, and other elements are
the fixed-length RANCF elements. The generalized coordinate vector of the beam can be
written as:

Figure 6. Sliding joint model.

qc =
[(

r1)T (
r1

x
)T · · ·

(
ri−1)T (

ri−1
x
)T (

ri)T
(

ri(1)
x

)T (
ri(2)

x

)T
xi(

ri+1)T (
ri+1

x
)T · · ·

(
rN)T (

rN
x
)T
] (39)



Machines 2022, 10, 174 11 of 18

where i is the number of the sliding node, N is the total number of the beam nodes, ri(1)
x

and ri(2)
x are the slope vectors on the left and right side of the sliding joint, respectively.

When the slopes on two sides of the sliding node are continuous or discontinuous, the
constraints on the slope vectors can be expressed as:

Cs
(

ri(1)
x , ri(2)

x

)
=

ri(1)
x − ri(2)

x = 0 continuous slopes∣∣∣ri(1)
x

∣∣∣− ∣∣∣ri(2)
x

∣∣∣ = 0 discontinuous slopes
(40)

Assembling governing equations of all the beam elements and the rigid body, and com-
bining all the constraint equations, one can obtain the dynamic equations with constraint
equations in the following standard form of multibody systems: [31]{

Mq̈ + CT
qλ−Q(q̇, q, t) = 0

C(q, t) = 0
(41)

In this equation, M the system mass matrix, q is the system generalized coordinate
vector, Q(q̇, q, t) is the system generalized force vector, C(q, t) is the constraint condi-
tions and Cq = ∂C/∂q is the Jacobian matrix of the constraints, and λ is the vector of
Lagrange multipliers. Equation (41) is a differential algebraic equation, and it can be solved
numerically by using the generalized-α method [32].

The illustration of the element length-control scheme of the sliding joint model is
represented in Figure 7. Without loss of generality, assuming that the reference length of
all elements in the initial configuration is Lstd. In a practical simulation, if the reference
length of the element on one side of the sliding node exceeds the given threshold length
(1.5Lstd), a new node could be inserted into the element to divide it into two new elements,
and the reference length of the new element away from the sliding node should be Lstd.
The adjacent node on the other side of the sliding joint should be deleted at the same
time. Reference length of all elements is controlled in the range of 0.5Lstd to 1.5Lstd, and
therefore, too long or too short elements are avoided. The node number of the beam and
the dimension of the generalized coordinate vector of the sliding joint model will always
remain constant as well.

Figure 7. Illustration of element length-control scheme in sliding joint model.

6. Numerical Examples
6.1. A Falling Beam with a Sliding Lumped Mass

A lumped mass point slides along a falling beam without friction under gravity is
shown in Figure 8. The left end of the beam is fixed supported and the right end is free.
The reference length of the beam is set to 1 m, the cross-section radius is set to 0.01 m,
the density is set to 7200 kg/m3, Young’s modulus is set to 20 MPa, the damping effect is
neglected. The lumped mass is 0.8 kg, its initial position is 0.1 m from the left end of the
beam and its initial speed is 0. A sliding joint is introduced to simulate the relationship
between the lumped mass and the flexible beam. Two dynamic models are developed
based on the ALE-RANCF and ALE-ANCF. A similar model based on ALE-ANCF was
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presented and the results were analyzed in paper [10]. The results of the two models are
analyzed and compared as follows.

Figure 8. Initial configuration of numerical example 1.

The configurations of the falling beam and the lumped mass are shown in Figure 9.
The lumped mass is separated from the beam in 0.6 s to 0.7 s. The beam is divided into 20
elements, and one can see from Figure 9 that the configurations between the ALE-RANCF
model and the ALE-ANCF model are very similar.

−0.2−0.2

−0.4

−0.6

−0.2

−0.2

−0.4

−0.6

−0.8

−0.2

−0.8

Figure 9. Configurations of (a) ALE-RANCF and (b) ALE-ANCF models.

Figure 10 shows the Y-axis displacement of the right end node of the beam. Figure 11
shows the trajectories of the sliding nodes. The numbers in the legends of figures denote
the numbers of the beam elements. One can see that as the element number increases, the
simulation results of both models tend to converge. When the element number increases to
40, the results of the ALE-RANCF model and ALE-ANCF model are almost identical.

−0.2

−0.4

−0.6

−0.8

−1

−0.6

−0.8

−0.2

−0.4

−0.6

−0.8

−1

−0.6

−0.8

Figure 10. Y-axis displacement of right end node of beam in (a) ALE-RANCF and (b) ALE-
ANCF model.
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−0.1

−0.2

−0.7

−0.5

−0.3
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−0.6

−0.3 −0.2 −0.1

−0.65

−0.7
−0.3 −0.2

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

−0.3 −0.2 −0.1

−0.64

−0.66

−0.68

−0.3 −0.25 −0.2−0.25

Figure 11. Trajectories of sliding nodes in (a) ALE-RANCF and (b) ALE-ANCF model.

Figure 12 shows the configurations of both models before and after element length
control. The beams of both models are divided into five elements, and element length
control is carried out twice. One can see from Figure 12 that exact element shapes are
maintained after elements are segmented in both models, while element shape alterations
in the ALE-RANCF model are smaller than the element shape alterations in the ALE-
ANCF model.

−0.2

−0.4

−0.6

−0.8

−0.2

−0.4

−0.6

−0.8

Figure 12. Configurations of (a) ALE-RANCF and (b) ALE-ANCF model before and after element
length-control processes. LC is short for length-control.

Table 1 shows the statistical results of the simulation time of the two models with
different number of elements. The total simulation time consists of the motion time and
the length-control time. The motion time is the simulation time when the beam and the
lumped mass are actually moving, and the length-control time is the simulation time of
node insertion and deletion. One can see from Table 1 that the motion time of both models
increases with the number of elements. Because of the complex rational shape function of
the ALE-RANCF elements (Equation (9)), the motion time of the ALE-RANCF models is
on average about 1.6 times that of the ALE-ANCF model. The length-control time of the
ALE-RANCF model increases with the length-control times, while the length-control time
of the ALE-ANCF model is too short to be correctly obtained in the simulation program. In
a practical simulation, the length-control times and the number of elements may not be
correlated; therefore, the influence of length-control time should be measured according to
the specific simulation objects.



Machines 2022, 10, 174 14 of 18

Table 1. Statistical results of simulation time of ALE-RANCF and the ALE-ANCF models. LC is short
for length-control.

Number of Elements LC Times
ALE-RANCF ALE-ANCF

Motion Time(s) LC Time(s) Motion Time(s) LC Time(s)

5 3 59.9 16.1 34.6 /
10 9 97.1 69.1 58.3 /
20 18 169.2 157.0 103.1 /
30 26 292.4 238.3 192.4 /
40 35 478.0 378.2 325.0 /

Table 2 presents the statistical results of the weight sets of the ALE-RANCF model with
different element numbers. The weights in Table 2 refer to the parameters in Equation (33),
which are transformed from original weights. The initial weight set is a null set, and new
weights will be added to the set when new element weights are calculated in the element
length-control process. The deviation σ in Table 2 is defined as:

σ =

√√√√ 1
N

N

∑
i=1

(ki − 1)2 (42)

where ki, i ∈ [1, N] are the elements in the weight set, N is the size of the weight set. One
can see that the weights of the ALE-RANCF elements tend to 1 as the element number
increases, and it implies that the dynamic model based on ALE-RANCF and ALE-ANCF
tend to be identical.

Table 2. Statistical results of weight sets of ALE-RANCF model.

Number of
Elements Size of Set Maximum Minimum Deviation(σ)

5 6 1.32 0.44 0.27
10 24 1.18 0.12 0.29
20 57 1.15 0.73 0.06
30 81 1.16 0.95 0.03
40 108 1.07 0.72 0.04

6.2. A Suspended Beam with a Sliding Lumped Mass

A lumped mass point slides along a suspended beam without friction under gravity
as shown in Figure 13. The beam has the same properties as the beam in example 1, and
both the left- and right-ends of the beam are simply supported. The lumped mass is 5 kg,
its initial position is 0.1 m from the left-end of the beam, and its initial speed is 0. Two
dynamic models are developed based on the ALE-RANCF and ALE-ANCF, the beams in
both models are divided into three elements, and the results of the two models are analyzed
and compared as follows.

Figure 13. Initial configuration of numerical example 2.

All the initial weights of the ALE-RANCF elements are equal to 1; therefore, one can
consider that the ALE-RANCF and ALE-ANCF model are equivalent before the element
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length-control process is carried out. Figure 14 shows the simulation results of two models.
One can see from Figure 14 that exact shapes are maintained after the element is divided in
both models, while the shape alterations of elements, abrupt changes and vibrations of the
beam length, and system energies arise after elements are merged in both models. But the
geometric alterations of elements, as well as the state vibrations in the ALE-RANCF model,
are smaller than they are in the ALE-ANCF model.

−0.05

−0.1

−0.15

−1

Figure 14. Simulation results of ALE-RANCF and ALE-ANCF model, including (a) model configura-
tions, (b) length of beam, (c) change velocity of beam length, and (d) system energies.

6.3. A Suspended Semicircular Beam with a Sliding Lumped Mass

A lumped mass point slides along a suspended semicircular beam without friction
under gravity as shown in Figure 15. Both the left- and right-ends of the beam is simply
supported. The semicircle radius is set to 2 m, the cross-section radius of the beam is set
to 0.02 m, the density is set to 7200 kg/m3, Young’s modulus is set to 200 MPa, and the
damping effect is neglected. The lumped mass is 0.8 kg, its initial position is set to 1/16 of
the beam length from the left-end of the beam, and its initial speed is 0. A dynamic model
is established using the ALE-RANCF finite elements.

The rational Bezier curve description method of the arc curve was introduced in
reference [26]. Element AB shown in Figure 15 is an arbitrary circular arc ALE-RANCF
element, and the tangent lines at the end node A and B intersect at point C. The weights
and nodal coordinate gradients of element AB can be formulated as:

w0 = w3 = 1

w1 = w2 =
1 + 2 cos (θ/2)

3

rA
x =

2
θR

cos(θ/2)
(
rC − rA)

rB
x =

2
θR

cos(θ/2)
(
rB − rC)

(43)
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where R, θ < π are the radius and central angle of arc AB. The simulation results are shown
in Figure 16. One can see that the shape of the semicircular beam is exactly described by
using the ALE-RANCF finite elements at the initial time, and as the number of the beam
elements increases, the simulation results tend to converge.

Figure 15. Initial configuration of numerical example 3.
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−2 −1

−10

−20

Figure 16. Simulation results of dynamic model, including (a) model configurations, (b) length of the
beam, (c) trajectory of the sliding node, and (d) system energies.

7. Conclusions

The ALE-RANCF finite element was established by combining the desirable features
of the ALE-ANCF and the RANCF finite elements. The variable-length ALE-RANCF finite
elements could be used to construct the dynamic model for sliding joint efficiently and
effectively, and it could also capture the exact geometry of rational cubic Bezier curves,
such as conic and circular curves.

The length-control scheme for ALE-RANCF finite elements, including the element
segmentation and merging scheme, is proposed. It is theoretically demonstrated that the
element segmentation scheme maintains exact geometry and mechanic after elements are
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divided. Compared with that of the ALE-ANCF elements, there are smaller geometric
deviations and state vibrations after the ALE-RANCF elements are merged.

The feasibility and advantages of the ALE-RANCF finite elements are demonstrated
with numerical examples.
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