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Abstract: Generally, tire deflation results in a decrease in both handling performance and tire lifetime,
and in fuel consumption increment. Therefore, the real-time knowledge of the pressure is important.
Direct approaches via pressure sensors mounted on the rim of each tire are not practical, due to
technical and economic reasons. Cost-effective solutions with real-time estimation of tire pressure are
generally less accurate and reliable than direct ones. Dynamical estimators based on a suspension
model need road surface topology information to compute disturbances on the suspension system
as an input, which is typically unknown. This paper proposes an innovative approach to estimate
tire pressure indirectly, without actual road surface roughness information. A vertical suspension
dynamic model is used to build several unscented Kalman filters, parametrised around different
road surface topologies. These estimators are combined following the Interacting Multiple Model
approach, which gives an acceptable estimation of tire stiffness through a weighted average obtained
from a probabilistic model. A known linear static relationship between the tire stiffness and inflation
pressure is utilized to indirectly estimate the tire inflation pressure. A Monte Carlo analysis has
been performed on a wide range of driving scenarios and vehicle manoeuvres. The results of the
estimation have been compared to those of a single unscented Kalman filter, in order to validate the
effectiveness of the proposed solution and to highlight the improved performances in monitoring
tire pressure.

Keywords: indirect tire pressure monitoring system; unscented Kalman filter; interacting multiple
model

1. Introduction

Tire pressure has a significant influence on the behaviour of vehicles, especially in
terms of safety, consumption and wear. In 2007, the National Highway Traffic Safety
Administration (NHTSA) in the USA had already published a legal regulation (FMVSS
138) requiring the installation of a tire pressure monitoring system (TPMS) in light vehicles.
In 2012, the European Union also issued a similar regulation. Starting from 2014, the TPMS
is mandatory in USA and in some European countries. An underinflated tire induces: a
reduction of tire-road interaction forces; an undesirable steering behaviour; an increase of
fuel consumption; or an unexpected blowout due to high temperature. An overinflated tire
induces an undesirable steering behaviour and an uneven wear. The NHTSA estimates that
about 55% of vehicles have at least one underinflated tire causing the waste of 2.8 billion
gallons of fuel and about 260,000 accidents per year. Moreover, a low inflating pressure in
tires reduces tire tread life by 15% and increases the frequency of tire changes [1]. When
the tire inflation pressure measurement is realized by means of sensors mounted on the rim
of tires, the TPMS is classified as “direct” (dTPMS). In addition to the sensors in a direct
TPMS, there are devices for signal transmission and processing. The direct-type TPMS
is characterized by high precision, but it has high costs. Each sensor is equipped with a
battery that has to be replaced or recharged periodically. Winter tires also need their own

Machines 2022, 10, 1221. https://doi.org/10.3390/machines10121221 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10121221
https://doi.org/10.3390/machines10121221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2718-5706
https://orcid.org/0000-0003-2851-6925
https://doi.org/10.3390/machines10121221
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10121221?type=check_update&version=1


Machines 2022, 10, 1221 2 of 17

sensors. Therefore, a puncture or replacement requires an additional activity for the tire
dealer and additional costs.

As an alternative to dTPMS, techniques that allow the estimation of the inflation
pressure in the absence of pressure sensors have been developed. By exploiting the mea-
surements of the sensors already present in the vehicle, this type of TPMS is classified
as “indirect” (iTPMS). As early as 1996, an inflation tire pressure indirect measurement
technique was proposed by Mayer [2]. Some methods based on measurement of angular
velocity or wheel vertical acceleration are also described by Isermann in “Automotive
control: modelling and control of vehicles” [3].

By comparing the four angular speeds, Personn [4] identifies the wheel that loses pressure.
Due to the roughness of the road and the torsional deformation of the tire, an oscillation

of the angular velocity is induced. Tire stiffness is affected by inflation pressure so, as the
pressure value changes, so does the wheel speed oscillation frequency.

Some iTPMS using different angular speed frequency analysis techniques have been
proposed [4].

The algorithms use [5] the wheel vertical acceleration frequency analysis to estimate
the inflation pressure.

The algorithms exploiting the measurement of both angular velocity and vertical
acceleration are very interesting too [6].

Another class of estimation algorithms use the vehicle dynamics. In particular, Sol-
maz [7] starts from the measurements of lateral acceleration, yaw rate, steering angle and
vehicle speed available by ESC system to estimate lateral vehicle dynamics state, together
with the detection of tire pressure drops.

Reina [8] also starts from the ESP measurements, but he exploits the vehicle vertical
dynamics to build the prediction model of a Kalman filter estimator for tire stiffness.

Road roughness is a critical unknown input for the model-based estimator [9], but often
it is overlooked in the previously proposed estimation techniques.

Recently, Lee [10] addressed this problem and proposed an iTPMS based on Adaptive
Extended Kalman Filter (AEKF) that can estimate both the pressure and the roughness of
the road. However, since the vertical vehicle dynamics is characterized by great complexity
and can further vary unexpectedly with the road roughness, an estimator based on a single
dynamical model can exhibit poor closed-loop performances. As a result, it may be subject
to significant estimation errors.

In this paper, a novel estimation algorithm based on vehicle vertical dynamics is
proposed. In particular, the Unscented Kalman Filter (UKF) technique is considered to
indirectly estimate the tire inflation pressure.To take into account the unknown road surface
profile, an innovative procedure was ad hoc developed.

Specifically, an Interactive Multiple Model (IMM) estimator was considered to deal
with abrupt changes of road roughness. This algorithm is composed of a bank of UKFs, each
of them tailored to predict vertical dynamics behaviour when the vehicle is on a specific
road with a specific degree of roughness. It can choose the model that best approximates
the real dynamic behaviour for each instant. Many versions of IMM exist in the literature,
based on the linear Kalman Filter (KF) or on its nonlinear version, such as the the Extended
Kalman Filter (EKF) [11], the Unscented Filter [12,13]. The developed IMM combines
four vertical vehicle dynamic models parameterized for four different road pavement
types. Each filter gives a proper estimation of the vehicle state and covariance. All these
estimations are combined through a weighted average obtained from a probabilistic model.
Therefore, the IMM obtains the tire pressure estimation without an a-priori knowledge
of the road surface. The method was validated by means of the dSPACE ASM vehicle
dynamics simulation code [14].

Compared to the dPTMS, the proposed system has the advantage of having the
accelerometers on the vehicle. This is the reason why they do not need to be replaced
together with the tires, they can be easily powered, and they do not require a wireless data
transmission to communicate the measurements.
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2. Vehicle Dynamics and Road Profile Synthesis Modelling

The inflation pressure of the tire was estimated based on a two Degree-Of-Freedom
(2DOF) Quarter Car (QC) non-linear model for passive suspensions, widely used to study,
in ride comfort analyses, the vertical motion of vehicles caused by roads’ surface uneven-
ness [15]. It assumes the coupling of pitch, roll and heave motions of the vehicle are negli-
gible, since it has poor significance for typical passenger-cars [16]. The model, in Figure 1,
consists of basic elements of the suspension system such as sprung mass ms (representing
sprung mass of a vehicle quarter) connected via a spring and a damper (representing the
suspension system) to the unsprung mass mus (representing the wheel assembly).

𝒎𝒖𝒔

𝑧𝑢𝑠

𝑧𝑠

𝑧𝑟

𝐴

𝒎𝒔

𝑘𝑠, 𝑘𝑠𝑛𝑙 𝑐𝑠 , 𝑐𝑠𝑛𝑙

𝒌𝒕

Figure 1. Quarter car model.

The fundamental assumption of the model is to neglect the effects of suspension
systems’ complex linkages [17]. Suspension systems generally exhibit non-linear be-
haviour [18], which can be taken into account considering a cubic stiffness ksnl in parallel
with a linear stiffness ks [19], and a quadratic damping non-linearity modelled with linear
cs and non-linear damping coefficients csnl [15]. The vertical behaviour of the unsprung
mass is modelled with a “single point contact model” approach [20], composed of a spring
with a linear stiffness kt (representing tire), while damping contribution is neglected [21]. It
considers that the entire part of the tire in contact with the road is reduced to a single point
contact A, which receives from the road a displacement according to its surface profile
zr(t). This approach for modelling vehicle dynamics reduces the complexity of the system,
while being highly effective [22]. For a 2DOF QC non-linear model representing 1/4th of
a vehicle passive suspension system, according to d’Alembert’s principle, the governing
equations of motion are:

ms z̈s = −ks(zs − zus)− ksnl (zs − zus)
3 − cs(żs − żus)− csnl (żs − żus)

2

mus z̈us = −ks(zus − zs)− ksnl (zus − zs)
3 − cs(żus − żs)− csnl (żus − żs)

2 − kt(zus − zr)
(1)

with the sprung mass of a vehicle quarter ms, calculated as [21]:

ms =
1
2

ms,vehicle
a2

l
(2)

where, zs is the vertical displacement of the sprung mass, zus the is the vertical displacement
(hop) of the unsprung mass, a2 is the longitudinal distance of the centre of mass from the
opposite axle, and l is the wheelbase. The total sprung mass of the vehicle ms,vehicle is
calculated as the sum of vehicle chassis mass mchassis (vehicle body) and loading mass mload,
ms,vehicle = mchassis + mload.

The proposed methodology indirectly estimates the tire pressure using its explicit
relationship with the tire vertical stiffness. According to preliminary investigations, draw-
ing an indirect estimation of tire inflation pressure by direct estimation of tire stiffness,
during vehicle driving, seems to be a promising solution [8]. The relationship between the
rolling dynamic vertical stiffness and the inflation pressure can be reasonably assumed
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as linear [23], neglecting viscoelastic properties of the tire, since the 2DOF QC non-linear
model operates under transient inputs [24]. This assumption can be successfully used to
indirectly monitor the tire inflation pressure [10]. A linear relationship between vertical
stiffness and inflation pressure of the tire is used [25]:

kt = kt0

(
1 + pFz1 dpi

)
(3)

with,

dpi =
pe f f − p0

p0
(4)

where, p0 is the nominal pressure of the inflated tire, pe f f is the effective inflation pressure
of the tire, kt0 is the vertical stiffness at the nominal inflation pressure p0, and pFz1 is the
coefficient representing the pressure effect on vertical stiffness.

2.1. Road Surface Profile Synthesis

The 2DOF QC non-linear model reliable simulates vertical dynamics of vehicles if its
input, road surface profile, is known. In this paper, we have adopted a methodology to syn-
thesize the road profile numerically. Considering a single specific degree of road roughness,
according to one of A–H classes of ISO (International Organization for Standardization)
8608 classification [26], the Power Spectral Density (PSD) of the road-velocity profile żr
can be assumed to be essentially flat [27]. Therefore, road input excitation, expressed
as a velocity żr, can be represented as a white-noise. The road profile displacement zr
can be generated in time domain, non-linear vehicle models requirement, filtering the
white-noise with a first-order linear shape filter [28]. We employ a method that provides
for low frequency cutoff [29], with PSD Gd(ω) given by [30]:

Gd(ω) =
2αvσ2

π

1

(αv)2 + ω2
(5)

where, ω is the angular frequency, σ2 is the variance of road roughness, v is the vehicle
longitudinal velocity, and α is the parameters that limit the maximum spectral height at
low frequency. The road profile zr, which has PSD given by (5), can be generated by the
linear shape filter expressed as:

d
dt

zr(t) = −αvzr(t) + η(t) (6)

where, η(t) is a zero-mean Gaussian noise with a one-side PSD equal to 2παvσ2 [30],
with the variance σ2 = 4Gd(Ω0) [31], considering the values of PSD at Ω0 = 1 rad/m as:

Gd(Ω0) = 4a × 10−6 (7)

where, a ∈ {0, 1, . . . , 7}, according to ISO 8608 [26]. From previous literature [31], the value
of parameter α is set to 0.127 rad/m. Considering a lower spatial frequency limit
ΩL = 0.01 cycles/m and an upper spatial frequency limit ΩU = 10 cycles/m the re-
quired length of generated road should be L ≥ 1/ΩL = 100 m, while the sampling time
∆t ≤ 1/(2ΩUv) [32]. This is a suitable methodology for the generation of a road surface
profile, whose compatibility with ISO 8608 standard was assessed by Lee, D. H. et al. [33].

3. Interacting Multiple Model Filter

The road surface profile acts as a disturbance input to the suspension system, which is
a critical issue in simulating car ride dynamics, since it is not known a-priori. The prediction
model adopted partially mitigates this problem, generating an artificial profile of the road
numerically, with the approach described in Section 2.1, used to compute road excitation
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for the 2DOF QC model. However, reliable simulation of the effective car ride dynamics
can be only carried out if the artificial road profile truly reflects the actual conditions.

The implemented methodology numerically generates road profiles conforming to a
specific ISO class, according to the parameter a of the Equation (7). The road class that the
vehicle is driving in is not known a− priori, and can abruptly change during driving. We
address this issue through a Multiple Model (MM) approach; the MM system is governed
by two relationships:

xτ+1 = fs(xτ , uτ) + q
yτ = hs(xτ) + r

(8)

where fs(·) is the process function, hs(·) is the measurement function, s ∈ {0, 1, . . . , S} is the
state mode , x ∈ Rnx is the state vector, and y ∈ Rny is the measurement vector. The process
q and measurement r noises are both assumed as zero-mean uncorrelated processes with
covariances Q and R, respectively. The IMM system is composed of a bank of multiple
KFs, identified by value of s, each of them tailored to represent ride dynamics behaviour
of the vehicle for one of road classes that the vehicle could driving in. Here, nonlinear fs
and hs are considered; thus nonlinear filters, such as UKFs, must be used. The interacting
multiple model unscented filter (IMMUF) for estimation of tire inflation pressure is given
by an algorithm composed of the following steps; for time step τ = 1, . . . , τf :

1. Mode Probability Prediction:

µ̂τ|τ−1 = Pzµ̂τ−1|τ−1. (9)

2. Mixing of the previous estimates:

x̂i,∗
τ−1|τ−1 =

S

∑
j=1

Pzi,jµ̂
τ|τ−1
j x̂j

τ−1|τ−1

µ̂
τ|τ−1
i

, (10)

P̂xx,i,∗
τ−1|τ−1 =

S

∑
j=1

Pzi,jµ̂
τ|τ−1
j P̂xx,j

τ−1|τ−1

p̂τ|τ−1
i

. (11)

3. Mode dependent UKFs, whose equations can be found in [34].
4. Mode Probability Correction:

µ̂
τ|τ
j =

µ̂
τ|τ−1
j exp

(
− 1

2

(
ν

j
τ

)T(
P̂yy,j

τ|τ−1

)−1
ν

j
τ

)
c det

(
P̂yy,j

τ|τ−1

) , (12)

5. IMMUF’s corrected estimates:

x̂τ|τ =
S

∑
j=1

µ̂
τ|τ
j x̂j

τ|τ , (13)

P̂xx
τ|τ =

S

∑
j=1

µ̂
τ|τ
j

(
P̂xx,j

τ|τ +
(

x̂j
τ|τ − x̂τ|τ

)
(�)T

)
. (14)

where, µ(s) is the probability vector, Pz is the Markov Transition Matrix (MTM) , P is the
covariance matrix, ν is a noise, c is a normalizing constant. Note that, considering a generic
matrix A, (A)(�) stands for (A)(A), and det(A) for the determinant of A.

4. Tire Inflation Pressure Estimation

The proposed IMMUF for estimation of the tire inflation pressure is schematized
in Figure 2. It consists of a bank of UKF, each of them with a prediction model able to
represent ride dynamics behaviour of the vehicle when driving on a road belonging to
a specific ISO class. Usually, road profiles hardly belong to classes worse than D (repair
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interventions should be performed to restore optimal conditions), so, only the classes A
(very good), B (good), C (average) and D (poor) are considered; therefore, the proposed
multiple model, to be able to estimate the inflation pressure when vehicle driving on roads
whose roughness level can significantly change, a bank of four UKF is considered. The state
vector considered is x = [zs, zus, żs, żus, kt]T ∈ R5×1. Since measurements available to the
IMMUF are the sprung and unsprung vertical acceleration, z̈s and z̈us, the measurement
vector is y = [z̈s, z̈us]T ∈ R2×1. To indirectly estimate the tire inflation pressure, the tire
vertical stiffness kt is modelled as a random walk process [35] that artificially varies the
parameters at every sampling instant. Discretizing 2DOF QC nonlinear model equations
through the forward Euler method, the particular nonlinear function fs(.) of the state
equations is given by:

zsτ+1 = zsτ + [żsτ ]∆t
zusτ+1 = zusτ + [żusτ ]∆t

żsτ+1 = żsτ +

[
−ks(zsτ−zusτ )−ksnl (zsτ−zusτ )

3−cs(żsτ−żusτ )−csnl (żsτ−żusτ )
2

ms

]
∆t

żusτ+1 = żusτ +

[
−ks(zusτ−zsτ )−ksnl (zusτ−zsτ )

3−cs(żusτ−żsτ )−csnl (żusτ−żsτ )
2−ktτ (zusτ−zr)

mus

]
∆t

ktτ+1 = ktτ + wtτ

(15)

where, wtτ is assumed to be zero mean Gaussian white noise process with variance σt. The
measurement function hs(.) is as follows:z̈sτ =

−ks(zsτ−zusτ )−ksnl (zsτ−zusτ )
3−cs(żsτ−żusτ )−csnl (żsτ−żusτ )

2

ms

z̈usτ =
−ks(zusτ−zsτ )−ksnl (zusτ−zsτ )

3−cs(żusτ−żsτ )−csnl (żusτ−żsτ )
2−ktτ (zusτ−zr)

mus

(16)

Figure 2. Scheme of the interacting multiple model unscented filter.

The MTM Pz, to assign the same probability to each mode, is defined as:

Pz =


0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97

 (17)
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The process noise covariance matrix Q is defined as:

Q =


q1∆t3 0 0 0 0

0 q2∆t3 0 0 0
0 0 q3∆t3 0 0
0 0 0 q4∆t3 0
0 0 0 0 q5∆t3

 (18)

where q0–q5 are five tuning parameters of the IMMUF, and ∆t is the sampling time of the
filter. While the covariance matrix of measurement noise Rν is defined as:

Rν =

(
σazs 0

0 σazus

)
(19)

being σazs and σazus the respective standard deviations.

5. Algorithm Validation

In this section, the effectiveness of the approach is assessed through a numerical
campaign. First Monte Carlo simulation was carried out to compare tire inflation pressure
estimation accuracy by the proposed methodology with respect to a single unscented filter.
Then, the capability of the IMMUF to deal with abruptly change of road surface profile
class and tire inflation pressure was verified.

5.1. Simulation Platform

High-fidelity simulations were executed to assess the accuracy of tire inflation pressure
estimation. The simulation platform used consists of a three-levels architecture, in Figure 3.0Assessment with a High Fidelity Simulation

Drivetrain

Vehicle
Dynamics

Powertrain

Segment-D SUV

Vehicle Level Simulation

Environment and sensors 
for surrounding perception

Vehicle

Environment Level Simulation

SimulationComponent Level

Acceleration of sprung �̈�𝑧𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
and unsprung �̈�𝑧𝑢𝑢𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 masses

Corruption of measurements 
by zero-mean, Gaussian noises

IMMUF for estimation of tire inflation pressure 

Measurements of sprung �̈�𝑧𝑠𝑠 and 
unsprung �̈�𝑧𝑢𝑢𝑠𝑠 masses acceleration

�𝑃𝑃, estimation of tire inflation pressure

Figure 3. High-fidelity vehicle simulation environment.

The first layer is composed of models for simulation of the environment and sensors
for the surrounding perception. The second layer consists of models for the simulation of a
Segment-D SUV vehicle, whose parameters are reported in Table 1 [36]. Then, in the third
layer, the algorithm for the estimation of tire inflation pressure.
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Table 1. Segment-D SUV vehicle parameters.

Quantity Value Quantity Value

Mass of vehicle chassis mchassis (vehicle body) 1788 kg Height of the center of mass hg 0.6 m
Front semi-wheelbase a1 1.347 m Rear semi-wheelbase a2 1.471 m

Front track width t1 1.606 m Rear track width t2 1.6364 m
Yaw moment of inertia Jz 3230 kg m2 Frontal area Sa 2.75 m2

Front wheel mass mus,F 61.14 kg Rear wheel mass mus,R 52.75 kg
Nominal pressure of inflated tire p0 250 kPa vertical stiffness kt0 at p0 264,700 N/m

Simulation of the Segment-D SUV vehicle was carried out with the dSPACE software
Automotive Simulation Model (ASM). It allows us to model the longitudinal, lateral,
and vertical dynamics of passengers’ cars through a multi-body approach: the vehicle is
composed of 5 bodies (15 degrees of freedom), the vehicle and four wheels (4 d.o.f. of the
system represent the vertical speed of the wheels), including suspension kinematics and
forces, tire-road contact forces and torques (TNO MF-Tyre 6.1), aerodynamics, steering,
and brakes. In the vehicle simulation software, the suspension system is modelled in order
to include nonlinearities in the analysis of the dynamic of the vehicle. The suspension
system of the vehicle consists of double wishbones in the front axle, and a multi-link
configuration in the rear axle. Figure 4 shows the spring and damper characteristics.
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Figure 4. (a) Spring force. (b) Damper force.

5.2. 2DOF QC Parameters Identification

As mentioned above, the IMMUF consists of a bank of four UF, each with different
parameterisations for the prediction model. Specifically, the approach provides one model
properly parametrised to represent the ride dynamics behaviour of the vehicle for each
of A - D road classes that the vehicle could driving in. Herein, for each of these four
classes, we have tailored a prediction model to the ASM high-fidelity vehicle simulation
by levering the results obtained from several numerical simulations [37]. By doing so, we
have obtained prediction models that reliable reproduce the ride dynamics behaviour of
the vehicle under several roads, belonging to A - D classes, such that they can be exploited
for the estimation methodology. Four system identification problems have been solved,
one for each of the A - D road classes, any of them formulated as an optimization task
where the objective was to find a set of parameters that minimizes the prediction error
between outputs of the ASM simulation, and the 2DOF QC model [38]. Two outputs have
been considered, the vertical accelerations of sprung z̈s and unsprung z̈us masses, here
computed considering the tire inflation pressure (parameter to be estimated) and the road
surface profile (that acts as unknown input during estimation) as known inputs. More
specifically, the outputs have been computed in nine simulation scenarios, by combining
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three vehicle speeds (40, 60 and 80 km/h) and three tire inflation pressures (130, 180 and
230 kPa), in a straight-line manoeuvre, considering the road model of ASM environment
subsystem set to provide properties of road according to one of the classes. The exploited
identification procedure has been performed four times, changing the road from class A
to D, which, leveraging a Genetic Algorithm (GA), found four sets of parameters for the
2DOF QC model, respectively. Each prediction model is characterized by 12 parameters,
four of which, listed in the Table 2, were unknown and needed to be identified; therefore
we have considered these four parameters as decision variables of the optimization task.

Table 2. 2DOF QC model unknown parameters.

Parameter Description

cs Linear damping coefficient
csnl Non-linear square damping coefficient
ks Linear spring stiffness coefficient

ksnl Non-linear cube spring stiffness coefficient

The Root Mean Square Error (RMSE) between the ASM simulation and the 2DOF QC
model outputs, z̈s and z̈us, in the nine simulation scenarios, have been defined as objective
functions to be minimized, as: √√√√ 1

N

N

∑
k=1

(zs(τ)− ẑs(τ))
2 (20)

√√√√ 1
N

N

∑
k=1

(zus(τ)− ẑus(τ))
2 (21)

where, N is the number of samples.
The population size was set according to the technical literature [39], while, the one-

point crossover method and the bit-string mutation were used for the crossover and
the mutation, respectively [40]. The number of generation was set to 1000, enough for
identifying solutions belonging to the 18-dimensional hypersurface of the Pareto frontier.
Among the dominant solutions, the one situated at the minimum distance from the origin of
the 18-dimensional hyperspace was considered. Solutions of the four system identification
problems are reported in Table 3, where each of its columns contains parameter values for
the 2DOF QC model exploitable to simulate ride dynamics behaviour of the vehicle under
test on roads belonging to one of the four A - D classes.

Table 3. Optimal solutions of the four system identification problems.

Parameter Road Class A Road Class B Road Class C Road Class D

cs [Ns/m] 6576 4585 14,819 14,708
csnl [Ns/m2] 4319 6016 5839 4555

ks [N/m] 113,086 173,415 94,544 118,114
ksnl [N/m3] 130,098 151,886 62,836 121,723

The results of the identification problems, therefore, have a poor physical meaning,
since they not are the real stiffness and damping coefficients of the vehicle suspension
system, but are values identified by the optimization methodology to reproduce the in-
put/output behaviour of the vehicle system, as shown by Figure 5.
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Figure 5. Unsprung mass acceleration; (a) tire inflation pressure 230 kPa; and (b) tire inflation
pressure 130 kPa. Vehicle speed 60 km/h, road class B.

5.3. Monte Carlo Simulation

To assess the tire inflation pressure estimation accuracy by the proposed methodology,
a Monte Carlo numerical campaign has been carried out. The Monte Carlo method is gener-
ally used to evaluate the uncertainty of estimations [41], since it leads to more advantages
then conventional methods, which require the evaluation of the separate effect of each
input quantity on the result through a parametric analysis [42]. When, in a complex system,
multiple input variables are correlated, uncertainty analysis become a not trivial task and
sometimes even unreliable. Monte Carlo simulation [43,44] is a probabilistic method to
solve deterministic problems thanks to the use of electronic calculators, which can simulate
a lot of experimental trials that have random outcomes. When applied to uncertainty
evaluation, random numbers are generated to randomly sample parameters’ uncertainty
space. Such an analysis is closer with the probabilistic nature of the actual processes.

Both the IMMUF and the single UF solutions have been tested executing a set of
100 simulations, where the initial conditions have been varied according to
x̂0|0 ∈ N (x0,

√
P0|0), with P0|0 = diag[σ2

z,s, σ2
z,us, σ2

vz,s , σ2
vz,us , σ2

k,t].

Straight-line manoeuvres were executed in all Monte Carlo simulations, varying the
tire inflation pressure pe f f , ISO class of road profile according to the parameter a of the
Equation (7), and the vehicle speed v, according to a uniform distribution in the ranges
of Table 4.

Table 4. Scenario parameters range.

Parameter Range

pe f f (130–230) [kPa]
v 40–80 [km/h]
a 0–3 [-]

The measurements employed in the IMMUF are acquired with the high-fidelity vehicle
simulation model and corrupted by zero-mean, Gaussian noises:{

z̈s = z̈strue + νazs , νazs ∈ N (0, σazs)

z̈us = z̈ustrue + νazus , νazus ∈ N (0, σazus)
(22)

where, σazs and σazus are the values of the noise covariances. In this numerical campaign,
they were both set equal to 0.5 m/s2, as reported in the sensors datasheets. The single UF
used to compare the results is based on the same model parametrised for the road class A.
The results of the Monte Carlo simulation require a post-processing to clearly represent the
uncertainty of the estimation algorithm. Four indexes have been considered:
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• Mean estimation error from all the Monte Carlo samples ∈ {1, . . . , j, . . . , N} (the red
line in Figure 6). For each τ-th time step, the mean estimation error is calculated as

Errτ =
∑N

j=1 ktτ,j − k̂tτ,j

N
(23)

• Standard deviation of the estimation errors (the dashed blue line in Figure 6). For each
τ-th time step, the standard deviation of the errors is calculated as√√√√ 1

N − 1

N

∑
j=1
|Errτ,j − Errτ |2 (24)

• Covariance bound σ computed by the filter (the dashed black line in Figure 6). For each
τ-th time step, the σ-bounds is calculated by the square root of the diagonal elements
of the covariance matrix P, as

∑N
j=1
√

Pτ,j

N
(25)

• Comparison of sample estimation error (the green line in Figure 6) with the σ-bounds.

Figure 6. (a) IMMUF and (b) classic UF estimation error on kt.

The results show how the IMMUF outperforms the single filter solution: the mean
error is around zero; the standard deviation converges to the same values of the σ-bounds,
lower than the single UF solution; and the sample estimation error remains within the
σ-bounds for all the simulation time. These results confirm the possibility to use a Multiple
Model algorithm to deal with more realistic and non-trivial scenarios.

5.4. Tire Inflation Pressure Estimation

To assess the capability of IMMUF to deal with abrupt changes of road surface profile
class and tire inflation pressure, several numerical simulations have been executed. Figure 7
shows the results of a simulation scenario where a road profile according to ISO class A
was considered. In the top, it can be noted that after 2 of 10 s of simulation, the IMMUF
converges to an acceptable estimation of tire inflation pressure. In the bottom of Figure 7 are
reported the moving average of each single mode estimation: as shown, mode 1, exploitable
for estimation on roads of class A, fast converges to a real value of tire inflation pressure,
while the other modes diverge to much lower values. Similarly, Figure 8 shows the results of
a simulation executed on a road with a ISO class D profile, confirming the capability of the
IMMUF to estimate tire inflation pressure on different road, without a-priori information
on surface profile.
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Figure 7. Estimation of tire pressure on an ISO class A road.

Figure 8. Estimation of tire pressure on an ISO class D road.

To verify the capability of the IMMUF to deal with abrupt changes of road surface
profile class, a scenario with two different road surface profiles has been considered. For 5 s
of simulation, the vehicle drives on a class A road, and then, with a sudden change of road
profile, drives on a class D road. The results, shown in Figure 9, highlight how the MM
approach is able to deal with changes of road pavement conditions, as usually happens
in real-world driving. Comparing the measurements to every single prediction, claims
are made as to which filter most likely represents the true vehicle dynamics. According
to it, the algorithm steps provide for evaluation of the likelihood function of each filter,
and their probability is so updated, in order to place more trust in that filter. In particular,
for the first 5 s of simulation (class A road), mode 1 has been the most representative, while
in the last 5 s (class D road), more trust has been placed in mode 4, as highlighted by the
moving averages of modes probability showed in the bottom of Figure 9. Instead, to verify
the capability of the IMMUF to estimate tire deflection, a simulation on a class B road was
executed, with a sudden reduction of tire inflation pressure from 230 kPa to 180 kPa in
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about 1.5 s (Figure 10). The estimation converges to a real tire inflation pressure value in
about 2 s, and then accurately follows the transient behaviour without significant delay in
response to the pressure drop, with a low estimation error.

Figure 9. Estimation of tire pressure with abrupt change of class for road surface profile.
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Figure 10. (a) Estimation of tire pressure with abrupt change of tire inflation pressure and
(b) estimation error.

A sensitivity analysis has been carried out to investigate the reliability of the proposed
algorithm with respect to the variability of the sprung mass of the vehicle, because the
vehicle sprung mass depends on loading, which is one of the significant model uncertainties
leading to mismatched process noise. Considered constant, the sprung mass of the quarter
car model, the nominal sprung mass of the vehicle in the high-fidelity simulation (empty
vehicle, 1788 kg) was perturbed by +8% (1928 kg) and +24% (2218 kg), respectively,
as shown in Figure 11. The estimated and actual inflation pressure show good agreement in
the three scenarios. The results highlight the reliability of the estimation algorithm against
the uncertainty on vehicle unsprung mass because the mean estimation error is lower
than 5%. This behaviour confirms the well-known robustness of the Kalman filter against
mismatched process noise covariance due to parameter uncertainty [45].

Finally, capability of the proposed algorithm to accurately estimate the tire inflation
pressure without information on road surface roughness, on any type of road pavement
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whose surface roughness belongs to A− D ISO 8608 classification, was proven. To this
purpose, an experimental measure of road roughness measured with a mobile LIDAR
system, and reported in [46], has been used. In Figure 12 is plotted the road displacement
Power Spectral Density (PSD) versus angular spatial frequency in a bi-logarithmic plan.
In particular, a simulation scenario was considered, that consists of the Segment-D SUV
vehicle driving in a road, whose roughness profile is reproduced according to the road
roughness measure. Simulation results, in Figure 13, show how the algorithm successfully
estimates the tire inflation pressure, confirming, in a real-word scenario, the capability of
the multiple model approach to work on any type of road pavement, dealing with unknown
road surface roughness.

Figure 11. (a) Estimation of tire pressure with respect to different total sprung mass of the vehicle
ms,vehicle and (b) estimation errors.

Figure 12. (a) Power spectral density of (b) experimental road profile.
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Figure 13. Estimation of tire pressure with experimental road.

6. Conclusions

In this paper, an innovative algorithm for the estimation of tire inflation pressure
was presented. The estimation is based on an Interacting Multiple Model Unscented
Filter scheme that considers a bank of four UF, each of them exploitable for estimation of
ride dynamics behaviour of a car on different road surface profiles, belonging to A - D
ISO classes. The validation of the algorithm was carried out with an extensive numerical
campaign, using a simulation platform representative of a real SUV vehicle, developed with
dSPACE software ASM. Numerical simulations have confirmed the validity of the approach
and have disclosed how the estimation of tire inflation pressure could be successfully
carried to detect tire deflation, also when the road profile changes. The next steps will
concern the evaluation of real time applicability, and definition of the procedure for on-
board measured data input selection, which define the limits for vehicle manoeuvres
exploitable for estimation purposes.
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Abbreviations
The following abbreviations are used in this manuscript:

NHTSA National Highway Traffic Safety Administration
TPMS Tire Pressure Monitoring System
dTPMS direct Tire Pressure Monitoring System
iTPMS indirect Tire Pressure Monitoring System
KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
MM Multiple Model
IMM Interactive Multiple Model
IMMUF Interacting Multiple Model Unscented Filter
2DOF Two Degree Of Freedom
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QC Quarter Car
PSD Power Spectral Density
MTM Markov Transition Matrix
RMSE root Mean Square Error
ASM Automotive Simulation Model

Nomenclature
The following symbols are used in this manuscript:

Symbol Description Symbol Description
ms Sprung mass mus Unsprung mass
mchassis vehicle chassis mass mload loading mass
ms,vehicle total sprung mass of the vehicle l wheelbase
a2 rear semiwheel base dpi inflation pressure increment
cs Linear damping coefficient csnl Non-linear square damping coefficient
ks Linear spring stiffness coefficient ksnl Non-linear cube spring stiffness coefficient
kt Tire stiffness coefficient kt0 vertical stiffness at the nominal inflation pressure
zs sprung mass vertical displacement zus unsprung mass vertical displacement

Symbol Description Symbol Description
zr road profile p0 nominal pressure
pe f f effective pressure pFz1 pressure effect on vertical stiffness
ω angular frequency Gd(ω) PSD
σ2 road roughness variance v vehicle longitudinal velocity
α linear shape filter parameter µ(t) probability vector
Ω0 reference spacial frequency ΩL lower spatial frequency
ΩU upper spatial frequency Pz Probability transition matrix
Q process noise covariance matrix x(t) state vector
y(t) measurement vector fs process function
hs measurement function P covariance matrix
Rv noise covariance matrix σ2

azs sprung mass acceleration variance
τ time step ν noise
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