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Abstract: In the motor drive system of electric vehicles, there are some nonlinear factors, such as
the deadtime and the conduction voltage drop of switching devices, which will generate low-order
harmonics of the stator current and the torque ripple. The frequency of the harmonic may coincide
with the natural frequency of the motor, so resonance may occur on the motor drive system. To
reduce the noise caused by motor resonance, the characteristics of harmonic distortion caused by the
deadtime, and the conduction voltage drop of the switching device, are analyzed firstly. Then, a motor
vector control strategy with specific low order is proposed. The sixth-order harmonic resonance
controller in d-q axis is introduced into the control loop, and the parameter designing principle of
the controller is also presented. Without affecting the control performance of the current loop, the
sixth-order harmonic of the stator current near the natural frequency can be significantly suppressed.
Finally, the simulation and the experiment are carried out to certify the correctness and effectiveness
of the proposed harmonic suppression method.

Keywords: induction motor (IM); harmonic suppression; motor resonance; controller parameter;
deadtime; natural frequency

1. Introduction

The development of electric vehicles is an effective means to solve the problems of
energy and environment [1], but serious vibration and noise exist in the motor drive system
of the electric vehicle [2]. The output voltage of the inverter is a square wave instead
of a sine wave [3], and contains abundant high-order harmonics around the switching
frequency and its integer multiples [4]. These higher-order harmonics will lead to serious
electromagnetic vibration and noise, and the life and comfort of the electric vehicle are
subsequently reduced [5,6]. To reduce the power of the harmonics near the switching
frequency, some modulation strategies, such as the random carrier frequency [7] and
periodic carrier frequency [8], are proposed. The above methods can disperse the main
harmonics spectrum into a wider frequency band, a good suppression effect on the high-
frequency noise of the motor caused by the harmonics of stator currents.

Ideally, there is no low-order harmonic in the inverter output voltage [9], but due
to nonlinear factors such as the deadtime [10], the conduction voltage drop of switching
devices and body diode [11], and the snubber capacitor [12], the lower order harmonics
of the stator current will be generated. The natural frequency of the induction motor (IM)
for electric vehicles is low, and the operating speed range of IM is wide, so the frequencies
of these low-order harmonics may coincide with the natural frequencies of the motor,
and the resonance may occur on the motor drive system of the electric vehicle [13]. In
reference [14], a reasonable slot fit is selected to weaken the electromagnetic force wave
related to electromagnetic vibration, and the vibration peak value of the IM at the natural
frequency can be reduced. In reference [15], a Y-type capacitor is introduced at the DC
terminal of the inverter; it is particularly effective to reduce the radiation emission of the
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vehicle in the above frequency range, and a simplified vehicle common-mode interference
model is established. Compared to the above two methods for the structural improvements
of the inverter or motor, it is more economical and practical to improve the modulation
and control algorithm. Compensation based on pulse time is the most conventional and
commonly used low-order harmonic suppression method. According to the polarity of the
stator current, the voltage error caused by the deadtime and the conduction voltage drop
of switching devices is converted into the duration of PWM pulse, and is subtracted in a
switching period [16]. However, the compensation effect of this method is not very obvious.
A modulation method without deadtime is proposed in [17]; according to the current
polarity, only one switching tube of a phase bridge arm remains in the active state, and
the other tube remains OFF state. The freewheeling is completed by the body diode, but
the current harmonics caused by the conduction voltage drop of switching devices cannot
be suppressed. In reference [18], a feedforward compensation of the average error on the
command value is proposed, which can reduce low-order harmonic distortion, but the
suppression effect is limited and depends on the sampling accuracy of the current polarity.
Reference [19] proposes a scheme for suppressing the 5th and 7th harmonics based on a PI
controller, this scheme needs to convert the 5th and 7th harmonic components of the stator
current to d-q axis, and then four PI controllers are adopted to obtain the compensation
amount of the 5th and 7th harmonics. Although the suppression effect is superior to
other methods, the implementation process of this method is a little complicated. In order
to suppress the low-order harmonics of the stator current, reference [16] optimizes the
current PI controller parameters, but this scheme will reduce the dynamic response speed
of the control system. Reference [13] proposes a current spectrum shaping control scheme
in the natural frequency range based on a band-pass filter, but the optimal parameters
design principle of the band-pass filter is not considered. In reference [20], a frequency
adaptive selective harmonic control implemented in Z-plane is proposed for grid-connected
inverters, and the fundamental frequency is fixed at 50 Hz. However, the speed range of
the motor drive system is wide, the applicability of this method needs further verification.
In reference [21], the resonance frequency is adjusted adaptively, however, whether the
resonant controller with the same gain and different frequencies will affect the control
performance of the current loop needs to be verified. Meanwhile, the calculation expression
of the fundamental angle frequency contains IM parameters, rotor flux, stator current in
q-axis and speed, so the motor parameters variation and the sampling accuracy will easily
lead to the calculation error of the fundamental frequency.

In this paper, the characteristics of harmonic distortion caused by deadtime, and the
conduction voltage drop of switching devices, are analyzed first. Then, the vector control
scheme is improved, a sixth-order harmonic proportional resonance (PR) controller in d-q
axis is introduced in the control loop, and the parameters of the PR controller are optimally
tuned in theory. Finally, the simulation and experimental validations of the proposed
method are carried out. The research steps are shown in Figure 1.
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2. Simulation and Measurement for the Natural Frequency of IM

Firstly, the modal analysis of the IM is carried out in ANSYS/Workbench, and the
IM parameters are shown in Table 1. One end of the IM is fixed, and a fixed constraint
is applied to the other end, the natural frequencies of the IM are obtained by simulation
and shown in Figure 2, the 1st to 4th natural frequencies are 850 Hz, 1152 Hz, 3125 Hz and
3893 Hz, respectively.
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Table 1. The parameters of the IM.

Parameters Value Parameters Value

Rated voltage 48 V Rotor outer diameter 109 mm
Rated power 10 kW Rotor inner diameter 36 mm

Maximum speed 6000 rpm Rotor slot number 42
Pole pairs 2 Iron core length 180 mm

stator Outer diameter 188 mm Stator resistance 0.047 Ω
Stator inner diameter 110 mm Stator leakage inductance 81.5 µF

stator slot number 36 Rotor resistance 0.028 Ω
Rotor leakage inductance 81.3 µF Excitation inductance 2.29 mH
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Then, the modal experiment is carried out, the hammering method is adopted to
measure the IM natural frequencies, and the vibration intensity of the IM at different
frequencies is shown in Figure 3. There are four vibration peak values, the corresponding
frequencies are very close to the simulation results.
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3. Analysis of Harmonic Characteristics Caused by Nonlinear Factors

Figure 4 shows the topology of the IM drive system fed by the three-phase volt-
age source inverter (VSI), where udc is the DC-link voltage, Cdc is the DC-link capacitor,
S1–S6 is the power switching tube and ia, ib, ic are the three-phase stator currents of the
induction motor.
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Figure 5 shows the low-order harmonic distribution of the line-to-line stator voltage
uab and the stator current ias using SVPWM without deadtime and conduction voltage
drop of switching devices. Except for the fundamental component, the harmonics of uab
only include the high-order harmonic components around the switching frequency and its
integer multiples. So only a few low-order harmonic components exist in the ias.
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If the switching on delay ton and off delay toff are considered, the dead time td should
be added to prevent the short circuit of the DC battery, the actual switching signals of S1
and S4 are noted as p1 and p4, which are shown in Figure 6, an obvious timing error can
be seen. At present, the low-order harmonic distribution of the stator current is shown
in Figure 7a. Compared to Figure 5b, the 5th and 7th harmonics increase significantly.
After setting the conduction voltage drops of the switching tube and body diode, noted as
uvt and uvd, respectively, the 5th and 7th harmonics further increase, which is shown in
Figure 7b. The output voltage uan of phase a in a switching period Ts is shown in Figure 6,
there is a nonlinear error ∆uan between uan and the ideal voltage u∗

an, and ∆uan is affected
by the polarity of ias, which is expressed as:

∆uan =

{
−[τudc + (da − τ)uvt + (1 − da + τ)uvd] (ia > 0)
τudc + (1 − da − τ)uvt + (da + τ)uvd (ia < 0)

(1)

where τ = (td + ton − toff)/Ts, da is the duty cycle. These low-order harmonics will increase
the torque ripple. If the frequencies of these lower-order harmonics are close to the natural
frequencies of the IM, the resonance will occur and the mechanical performance of the IM
will deteriorate.
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The sequence of the three-phase 5th harmonic is negative, the expressions of the 5th
harmonic component of the three-phase stator current are defined as follows:

ia5 = I5 sin(5ωt + ϕ5)

ib5 = I5 sin(5ωt + ϕ5 + 120◦)
ic5 = I5 sin(5ωt + ϕ5 − 120◦)

(2)

where I5 and ϕ5 are the amplitude and phase of the 5th harmonic component of the
stator current, ω is the fundamental angular frequency, respectively. After the coordinate
transformation based on the rotor flux orientation, the expressions of the 5th harmonic
component of the stator current in d-q axis are obtained as:{

id5 = I5 cos(6ωt + ϕ5)

iq5 = I5 sin(6ωt + ϕ5)
(3)

The sequence of the three-phase 7th harmonic is positive, the expressions of the 7th
harmonic component of the three-phase stator current are defined as follows:

ia7 = I7 sin(5ωt + ϕ7)

ib7 = I7 sin(5ωt + ϕ7 − 120◦)
ic7 = I7 sin(5ωt + ϕ7 + 120◦)

(4)

where I7 and ϕ7 are the amplitude and phase of the 7th harmonic component of the stator
current, respectively. The expressions of the 7th harmonic component of the stator current
in d-q axis are expressed as: {

id7 = I7 cos(6ωt + ϕ7)

iq7 = I7 sin(6ωt + ϕ7)
(5)

Figure 8 shows the low-order harmonics distribution of the stator current in d-q axis,
except DC component, the 6th harmonic content is obviously higher than other harmonics
in id and iq. Therefore, suppression of the 6th harmonic component of id and iq is equivalent
to reducing the 5th and 7th harmonic components of the three-phase stator currents.
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4. Design of Current Loop Controller with 6th Harmonic Suppression

In order to reduce the 6th harmonic content in id and iq, in this paper, a 6th harmonic
resonance controller GR(s) is added to the current loop controller, and the expression of
GR(s) is as follows:

GR(s) =
2krξωns

s2 + 2ξωns + ω2
n

(6)

where ωn is the resonant frequency, and it is also set as the 6th harmonic angular frequency,
ζ is the damping ratio, and kr is the coefficient of GR(s). Ignoring the influence of the
cross-coupling in d-q axis, the control diagram of the current loop d-axis is shown in
Figure 9.
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Where Td is the delay time and set as 100 µs in this paper, σ is the leakage coefficient,
Ls is the stator equivalent inductance, Rs is the stator resistance of the IM, respectively.

4.1. The Parameters Design of PI Controller

After zero and pole cancellation, the current loop is simplified to a type-I system, the
bandwidth of the current inner loop is set as one-tenth of the switching frequency, and the
parameters of the PI controller are as follows:{

kp = 2000πσLs
ki = 2000πRs

(7)

The open loop transfer function Gi_ol(s) of the current loop without GR(s) can be
expressed as:

Gi_ol(s) =
2000π

s(Tds + 1)
(8)

The close loop transfer function Gi_cl(s) of the current loop can be derived as:

Gi_cl(s) =
Gi_ol(s)

1 + Gi_ol(s)
=

2000π

Tds2 + s + 2000π
(9)
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The bode plot of Gi_cl(s) is shown in Figure 10a, the bandwidth is 1 kHz, which is
one-tenth of the switching frequency. The 6th harmonic distortion caused by the deadtime
and conduction voltage drop in d-q axis is regarded as a disturbance ud6, the expression of
the transfer function Gu_i(s) from ud6 to id can be derived as:

Gu_i(s) =
s(Tds + 1)

σLsTds3 + (RsTd + σLs)s2 + Rss + 2000π
(10)
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The bode plot of Gu_i(s) is shown in Figure 10b, it can be seen that the amplitude of
Gu_i(s) in the range of 70 Hz to 1.8 kHz is above 0 dB line, so the PI controller is not able to
suppress the low order harmonic distortion of the stator current caused by the disturbance
voltage in the range of 70 Hz to 1.8 kHz.

4.2. The Parameters Design of Resonance Controller

Next, the influence of different kr on control performance will be discussed. When
the fundamental frequency of the stator current is 167 Hz, the 5th and 7th harmonic
frequencies are 835 Hz and 1169 Hz, respectively, which coincides with the 1st and 2nd
natural frequencies of the IM. So ωn in GR(s) is set to 1002π rad/s, which is equal to six
times the fundamental angular frequency, and ζ is set as 0.5. When GR(s) is introduced,
the bode plot of Gi_ol(s) under different kr is shown in Figure 11. It can be seen that the
addition of GR(s) has no impact on the low-frequency characteristic of Gi_ol(s), but with the
increase of kr, the amplitude around 1000 Hz increases significantly, the cut-off frequency
also increases as the kr, but the phase margin of Gi_ol(s) decreases, which may lead to the
system instability.
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To further analyze the influence of kr on stability, when kr increases from 1 to 4, the pole
distribution diagram of Gi_cl(s) is shown in Figure 12. As kr increases, a pair of conjugate
poles move to the right. When kr > 3.5, Gi_cl(s) appears on the right half-plane pole, which
leads to system instability.
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In order to theoretically prove the suppression effect of GR(s) on the 6th harmonic
component in id, when kr increases from 1 to 3, the bode plot of Gu_i(s) is shown in Figure 13.
Due to the addition of GR(s), the amplitude around 1000 Hz is below 0 dB line. And with
the increase of kr, the suppression effect on the 6th harmonic component in id is more
significant, and the band of the voltage harmonic frequency that can be suppressed by the
GR(s) will also expand. Although another peak appears, the amplitude of the harmonic
components of the inverter output voltage in d-q axis is very few, so it will not cause
additional harmonic distortion. However, to prevent increasing the eleventh and thirteenth
harmonics of stator current, the cut-off frequency of Gu_i(s) should be less than the twelfth
harmonic frequency.
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4.3. Analysis of the Resonance Controller under Frequency Variation

According to the above analysis presented in Section 4.2, the suppression effect can be
improved with the increase of kr, however, the stability of the current loop is reduced, so kr
is set to 2.5 in this paper, and the transfer function of GR(s) is shown as:

GR(s) =
2505πs

s2 + 1002πs + (1002π)2 (11)

The bode plot of Gu_i(s) is shown in Figure 14. It can be seen that the resonance con-
troller can suppress the stator voltage whose 6th harmonic frequency is between 0.35 kHz
and 1.32 kHz. However, if the 6th harmonic frequency is between 0.065 kHz and 0.35 kHz,
the corresponding fundamental frequency is between 10.8 Hz and 58.3 Hz, the resonance
controller under kr =2.5 and ωn = 1002π rad/s is not able to suppress the harmonic distor-
tion caused by the deadtime and the voltage drops of switching devices and diode.
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In the case where the fundamental frequency is less than 60 Hz. Another resonance
controller is designed and adopted. In consideration of the stability and the harmonic
suppression effect, according to the bode plot and the pole distribution diagram, the transfer
function GR(s) is rewritten as:

GR(s) =
600πs

s2 + 100πs + 10000π2 (12)

At this time, the bode plots of Gi_ol(s), Gi_cl(s), and Gu_i(s) are shown in Figure 15. It
can be seen that the cut-off frequency of Gi_ol(s) is 1 kHz, the phase margin of Gi_ol(s) is 45◦,
and Gi_cl(s) has a good DC following characteristics. Meanwhile, the resonance controller
shown in Formula (10) can effectively suppress the disturbance from the stator voltage
whose 6th harmonic frequency is less than 0.38 kHz.
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Since the two resonant controllers shown in Formulas (11) and (12) are applicable
to different frequency ranges, the resonant controller needs to be selected according to
the fundamental frequency. The fundamental angle frequency ωs can be calculated by
the follows:

ωs = nωr +
LmRriq

Lrψr
(13)

where Rr is the rotor resistance, ψr is the rotor flux, ωr is the speed, and n is the number of
pole pairs. Lm and Lr are the mutual inductance and rotor inductance, respectively. The
fundamental frequency f s = ωs/(2π), if f s > 60 Hz, the GR(s) shown as (11) is adopted,
otherwise, the GR(s) shown as (12) is adopted.

5. Simulation Results

In order to verify the suppression effect of the proposed method in this paper on
the low-order harmonics in the stator current, the simulation model is established in the
environment of Matlab/Simulink. The IM parameters are the same as in Table 1, other
parameters are set in Table 2.

Table 2. Simulation parameters.

Parameters Value Parameters Value

Switching cycle 10 kHz Simulation step size 0.5 µs
Sampling cycle 10 kHz Voltage drop of the switching devices 0.5 V

Deadtime 2 µs Voltage drop of the diode 0.7 V

In order to unify with the digital control in the experiment, the controller composed
PI and resonance is implemented by a Matlab function module in the environment of
Matlab/Simulink, and the sampling time is set as 100 µs. According to the difference
equation, the discrete control algorithm is written in the Matlab function module, which is
shown as:

u∗
d(k) = (3 − 2ξωnTs)u∗

d(k − 1)− (1 − 2ξωnTs + ω2
nT2

s )u∗
d(k − 2)

+(kiTs + kp)e(k) + 2krξωnTse(k − 1)− 2krξωne(k − 2)
(14)

where e is the current error. The fundamental frequency and the load are set as 167 Hz
and N·m, respectively. Three different simulations are carried out under no compensation,
pulse time compensation, and the 6th harmonic controller in d-q axis proposed in this paper,
respectively. The simulation results under different conditions are shown in Figures 16–18,
respectively. The THD, 5th harmonic, and 7th harmonic of the stator current, and the torque
ripple, are summarized in Table 3; it can be seen that the low order harmonics suppression
effect of the 6th harmonic controller in d-q axis is optimal.
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Figure 16. Simulation results under no compensation. (a) ias; (b) FFT; and (c) output torque. Figure 16. Simulation results under no compensation. (a) ias; (b) FFT; and (c) output torque.
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Figure 18. Simulation results under 6th harmonic controller. (a) ias; (b) FFT; and (c) output torque.

Table 3. Comparison of the simulation results.

Compensation Method THD 5th Harmonic 7th Harmonic Torque Ripple (N·m)

No compensation 5.88% 2.9% 1.4% 3.6 to 4.3
Pulse time compensation 5.33% 2.3% 1.2% 3.7 to 4.3
6th harmonic controller 4.34% 0.58% 0.43% 3.8 to 4.2

To certify the effectiveness of the resonant controller shown in Formula (12) at low
frequency, the fundamental frequency is set as 30 Hz, two simulations are carried out
by the controller (11) and (12), respectively. The low-order harmonics distribution of the
stator current is shown in Figure 19. It is obvious that the resonant controller of (11) cannot
suppress the 5th and 7th harmonic components of the stator current. As opposed to this, the
5th and 7th harmonic components are significantly reduced when the resonant controller
of (12) is adopted.

Next, the impact on the dynamic performance of the system from the resonant con-
troller is verified. Firstly, the load torque is set to 4 N·m constantly, and the command value
of speed changes from 3000 rpm to 4500 rpm, the dynamic simulation results with and
without the resonant controller are shown in Figure 20. Then, the command value of speed
is set to 4000 rpm, the load torque increases from 2 N·m to 4 N·m, and the dynamic simu-
lation results with and without the resonant controller are shown in Figure 21. After the
resonant controller is introduced, only a slight difference occurs in the dynamic waveforms
of speed and torque, so the resonant controller has no impact on the dynamic performance.
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Figure 19. The FFT analysis results of the stator current under different resonant controllers. (a) GR(s)
of (11); (b) GR(s) of (12).
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Figure 21. The dynamic simulation waveforms when the load changes from 2 N·m to 4 N·m.
(a) Without resonant controller; (b) with resonant controller.
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6. Experimental Results

The experimental prototype, shown in Figure 22, is established to verify the sup-
pression effect of the proposed method on the low-order harmonics in the stator current.
TMS320F28069 is used to execute the control algorithm, and three non-contact sensors
MLX91205 is used to sample the stator current. The inverter bridge is composed by the
MOSFET, the type is IPB042N10N, the DC-link voltage is 72 V, and is supplied by the
battery pack. The parameters of the IM are the same as in Table 1, and the experimental
parameters and operation are the same as in Table 2. The experimental results under no
compensation, pulse time compensation, and the 6th harmonic controller in d-q axis are
shown in Figures 23–25, respectively. Under the influence of deadtime and conduction
voltage drop, without compensation, the stator current has serious harmonic distortion,
the 5th harmonic content is 3.2%, the 7th harmonic content is 2.3%, and there is a little DC
component. After the pulse time compensation, the content of the 5th and 7th harmonics
and THD are slightly reduced, and the power spectral density at the natural frequency
drops below −10 dB/Hz. By adopting the 6th harmonic controller in d-q axis proposed in
this paper, the 5th harmonic content is only 1%, the 7th harmonic content 0.6%, and the
THD decreases to 4.62%. At the same time, the DC component of the current is eliminated,
and the power spectral density at all frequencies is less than −20 dB/Hz. The experimental
results are consistent with the simulation results, which show that the proposed resonant
controller in d-q axis can reduce the low-order harmonics of the stator current.
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Figure 23. Experimental results under no compensation. (a) ias; (b) FFT; and (c) power spectral den-
sity. 

Figure 22. Experimental prototype.

To verify the effectiveness of the control algorithm in reducing vibration, a vibration
measurement instrument is used to measure the vibration of the IM, and the measurement
experiment platform is shown in Figure 26.
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Figure 27 shows the power spectral density of the vibration within 1.8 kHz under
no compensation, there are two peaks of vibration at the 1st and 2nd natural frequencies.
Figure 28 shows the power spectral density of the vibration within 1.8 kHz under the 6th
harmonic controller in d-q axis, the vibrations are significantly suppressed. The whole
experimental results further prove that the 6th harmonic controller with its parameter
design method in d-q axis has a good suppression effect on the 5th and 7th harmonics
distortion of the stator current, which can not only reduce the torque ripple, but also
weaken the vibration of the IM.
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7. Conclusions

The simulation and experimental results prove that the proposed 6th harmonic con-
troller with its parameter design method in d-q axis has good effects on reducing the 5th
and 7th harmonic distortion of the stator current, weakening the low-frequency resonance
of the motor, and improving the dynamic performance of the motor drive system. Finally,
the following conclusions are formed:

(1) The dead time and the conduction voltage drop of the switching tube and body diode
will produce nonlinear errors in the inverter output voltage. The current PI controller
based on rotor flux orientation cannot suppress the 5th and 7th harmonic distortion
of the stator current caused by the nonlinear voltage;

(2) Based on current loop stability and the harmonic suppression effect, according to the
bode plot and the pole distribution diagram, the proposed 6th harmonic controller
can effectively suppress the low-order harmonic distortion of the nonlinear voltage,
without generating harmonic distortion of other frequencies, and does not affect the
control performance of the current loop;

(3) Since another resonant controller for the low-speed range is introduced, low-order
harmonic suppression at all operating frequencies can be achieved;

(4) Suppressing the 6th harmonic component of the stator current in d-q axis is an effective
means to weaken the low-frequency resonance and vibration of the motor.
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