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Abstract: Autonomous driving vehicles (ADVs) are sleeping giant intelligent machines that perceive
their environment and make driving decisions. Most existing ADSs are built as hand-engineered
perception-planning-control pipelines. However, designing generalized handcrafted rules for au-
tonomous driving in an urban environment is complex. An alternative approach is imitation learning
(IL) from human driving demonstrations. However, most previous studies on IL for autonomous
driving face several critical challenges: (1) poor generalization ability toward the unseen environ-
ment due to distribution shift problems such as changes in driving views and weather conditions;
(2) lack of interpretability; and (3) mostly trained to learn the single driving task. To address these
challenges, we propose a view-invariant spatiotemporal attentive planning and control network
for autonomous vehicles. The proposed method first extracts spatiotemporal representations from
images of a front and top driving view sequence through attentive Siamese 3DResNet. Then, the
maximum mean discrepancy loss (MMD) is employed to minimize spatiotemporal discrepancies
between these driving views and produce an invariant spatiotemporal representation, which reduces
domain shift due to view change. Finally, the multitasking learning (MTL) method is employed to
jointly train trajectory planning and high-level control tasks based on learned representations and
previous motions. Results of extensive experimental evaluations on a large autonomous driving
dataset with various weather/lighting conditions verified that the proposed method is effective for
feasible motion planning and control in autonomous vehicles.

Keywords: autonomous vehicles; deep learning; invariant representation learning; motion planning;
spatiotemporal attention; vehicle control

1. Introduction

Autonomous driving vehicles (ADVs) have become the subject of much research
because of their potential to transform transportation, reduce traffic accidents, and alleviate
congestion [1,2], as well as assist soldiers with various tasks, including surveillance, fire
fighting, and monitoring [3]. For ADVs to efficiently operate and reach their full potential,
they must understand their environment, recognize static and dynamic obstacles, generate
feasible trajectories toward the goal position, and then execute the desired driving behavior.
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However, achieving fully autonomous driving, particularly feasible motion planning and
decision-making remains challenging due to the high complexity of driving scenarios.
Following the taxonomies used in [4–6], existing motion planning and control methods can
be divided into three alternative approaches: mediated perception (modular), end-to-end
(behavioral reflex), and intermediate (direct perception). The modular paradigm [7,8]
decomposes complex ADV tasks into several more tractable sub-modules, such as percep-
tion, planning, and control modules; each module is solved sequentially and serves as an
input for the next. Such a decomposition of complex ADV systems enables solving each
problem independently with less effort. However, such a decomposition of tasks may add
extra computational burden due to duplicated feature extraction for each task. In addition,
such systems cause error accumulation and propagation from the upstream module, e.g.,
perception to subsequent modules that may cause an overall system failure [9]. Although
deep learning has helped advance the perception module of ADVs, more crucial motion
planning and control tasks still rely on classical rule-based algorithms [7,8], which are time-
consuming and inefficient in satisfying all driving scenarios in a dynamic environment.

Recently, the end-to-end deep learning approach integrates perception, planning, and
control tasks and has shown impressive results. These approaches use neural networks
to directly map raw sensor data as input into control commands [10–15] or future trajec-
tories [16–22]. However, end-to-end ADV approaches have poor generalization toward
the unobserved driving environment due to distribution shift problem [23]. Consequently,
learned decision-making in such approaches is typically limited to the driving environ-
ment or tasks in which it was trained [16]. Moreover, driving decisions made in such an
approach lack interpretability due to the black-box nature of end-to-end learning mod-
els [24]. To improve the robustness of these methods, many researchers have proposed
more advanced deep learning models that can leverage multi-modal and multi-view infor-
mation [25–28]. Nevertheless, a naive addition of very complex (various raw sensor) inputs
and directly mapping it into driving decisions may lead to increased sampling and training
complexity [29,30]. In addition, it increases memory requirements in decision-making units
of ADVs [29] and may lead to worse generalization/performance [31], especially in the
presence of multiple sensors that can cause a distributional shift.

To further improve the efficiency, generalization, and interpretability of end-to-end driving
models, many researchers also proposed intermediate representation learning [6,32–34] and
multi-task learning (MTL) [35] methods. Unlike the aforementioned explicit manual task de-
composition [7,8] or blind direct mapping [12] approaches, intermediate (direct perception)
approaches [6] first learn a mapping from raw perceptual input to intermediate representa-
tions and then use this representation to make more generic driving decisions [30,32–34].
These approaches, however, require predefined representations, which can lead to lim-
ited robustness and may introduce spurious inputs. Unlike all aforementioned methods,
MTL approaches typically have a shared backbone network that learns shared represen-
tations that allows the model to simultaneously learn multiple tasks related to motion
planning [36–38] and control [16,39–41]. Recently, attention mechanisms [42–52] have
shown great success in further improving the efficiency and interpretability of end-to-end
ADVs by learning salient representations while filtering out irrelevant inputs [12].

Despite the success of deep learning-based methods in enabling ADVs to perform
and generalize well, the methods still have several shortcomings: (1) learning of invariant
representation, which can enhance the generalization capability of generated trajectories
or driving actions are under-explored so far; (2) various end-to-end learning methods
neglect joint learning of spatiotemporal representations and focus on single-task learning,
which limits the robustness of ADVs under a changing environment; (3) several works on
intermediate [30,32–34] and MTL [36–38] approaches for motion planning heavily rely on
post-processed detail environmental maps for driving decision making, which are costly
to create and transfer to new driving scenarios; (4) fnally, most works only evaluate their
ADV models in simple environments with limited complexity without considering diverse
weather/lighting conditions and dynamic obstacles.
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To address the above-mentioned challenges, we propose V iew-invariant Spatio-
Temporal Attentive Motion Planning and Control Network (ViSTAMPCNet) for autonomous
vehicles. In summary, our contributions are:

• We propose an end-to-end motion planning and control network for ADVs based
on imitation learning. The proposed ViSTAMPCNet takes front and top-view image
sequences and first learns view-invariant spatiotemporal representations, which are
more robust to domain shift and more interpretable than directly mapping raw camera
images or using detailed environment map post-processing. Then, use the learned
shared invariant representations to predict feasible future motion plans and control
commands simultaneously.

• We conducted ablation studies to verify the benefit of shared view-invariant spatiotem-
poral representations for joint motion planning and high-level control.

• In order to demonstrate its superiority, we also compared ViSTAMPCNet to other
baselines and existing state-of-the-art methods on a large-scale driving dataset with
dynamic obstacles and weather/lighting conditions (e.g., clear, rainy, and foggy).

The rest of the article is organized as follows. Section 2 introduces related works, in
particular, some elements of end-to-end learning, multi-task learning, attention mecha-
nisms, and invariant feature learning methods. Section 3 presents a basic overview, problem
formulation, and architectural components of the proposed method, i.e., ViSTAMPCNet.
Section 4 describes the experiment settings and then presents the results and discussion to
verify the performance of ViSTAMPCNet. Section 5 concludes the paper.

2. Related Work
2.1. End-to-End Learning Methods

End-to-end (behavior reflex) approaches directly map perceptual input into driving
decisions. The pioneering work of Pomerleau [10] proposed using a single neural network
that directly outputs a driving control command. Following this work, Lecun et al. [11]
proposed DAVE, an end-to-end obstacle avoidance system. This system learns obstacle
avoidance directly from low-resolution images using a six-layer convolutional neural net-
work (CNN). In light of these works, Bojarski et al. [12] developed a driving model named
DAVE-2 that takes front-view camera images and predicts steering commands using a
nine-layer CNN and achieves autonomous lane following in relatively simple real-world
scenarios, such as flat or barrier-free roads. Following this work, end-to-end control mod-
els have been explored in [13,14]. However, these approaches do not consider temporal
information that is critical for self-driving. To address this, many works introduced tem-
poral information as input into their driving decision-making models. For example, Chi
and Mu [15] used carefully designed recurrent layers (e.g., LSTM and Conv-LSTM) to
jointly utilize spatial and temporal cues to predict wheel angle or other steering control
operations. Xu et al. [16] proposed dilated fully convolutional networks (FCNs) and long
short-term memory (LSTM) to predict future ( discrete and continuous) moving paths given
trajectory history and image frames. In a similar architecture with [16], Song et al. [17]
proposed an end-to-end motion network but used VGG-16 for extracting more rich visual
features instead of a dilated FCN as in [16]. Fernando et al. [18] also adopted a pre-trained
VGG-16 backbone with multiple LSTM modules to extract spatial features and tempo-
ral dependencies from visual and motion history inputs for generating path plans with
good performance.

Besides their success in end-to-end control, CNN and RNN architectures also showed
promising results in end-to-end planning [19–22]. Bergqvist et al. [20] also designed several
CNN and RNN-based path planning networks that use various input types, including
gray-scale images and ego-motions. They showed LSTM or CNN-LSTM’s ability to gen-
erate smooth and feasible path plans in many situations, although they only considered
lane-following tasks in simple scenarios. Recently, Cai et al. proposed a similar CNN-
LSTM architecture that computes a future trajectory for autonomous vehicles using image
sequences and three discrete command values (Turn Left, Turn Right, and Keep Straight),
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which uses different sub-networks [21]. In their following work, they proposed a similar
network architecture that takes image sequences, trajectory histories, and three discrete
commands and estimates uncertainty and trajectory planning [22].

All of the above works on end-to-end learning-based methods employ one specific
input and output module, which makes it inefficient and unscalable for self-driving in a
dynamic environment. In addition, these systems have poor generalization toward unseen
environments and lack interpretability.

2.2. Multi-Task Learning Methods

Instead of having a separate network for each task, the multi-task learning paradigm [35]
aims to simultaneously learn several autonomous driving tasks by sharing parameters and
computations, while achieving state-of-the-art performance. Yang et al. [39] proposed a multi-
modal multi-task learning (MMTL) network for vehicle control that predicts both steering angle
and vehicle speed instead of having two distinct networks for each task. Their encoder network
comprises five convolutional layers, LSTM, and FCN layers to process single front-facing camera
images and current vehicle and past vehicle motion inputs. These are then passed through an
FC layer to predict future vehicle speed. Similarly, Codevilla et al. [40] proposed an MMTL
network that predicts both steering angle and acceleration. Besides visual inputs, they
used high-level navigation commands (i.e., keep straight and turn left) as auxiliary input
representations while training their CNN. In their following work [41], they modified their
network architecture to use a residual network as a perception module to extract a richer
representation and prediction speed in addition to the prior acceleration and steering angle
outputs. In both cases, the use of secondary high-level command inputs allows ambiguity
in a change of driving behavior and makes the network more flexible and adaptive to the
unseen situation. A work by Xu et al. [16] can also be considered an MMTL model as it
jointly learns (discrete and continuous) motion control and image segmentation auxiliary
tasks and takes multi-modal input, sequence of camera images, and trajectory history.
Different from other works, they have used spatiotemporal information and large-scale
crowd-sourced video data, making the system more robust toward unseen scenarios.

The works mentioned above generally focus on jointly training the main and auxiliary
tasks to enhance the training performance and robustness of final control commands. How-
ever, these approaches are not trained for challenging sequential decision-making tasks
such as motion planning. In addition, these methods still lack interpretability as they follow
direct mapping techniques and may suffer over-fitting problems, which is most common
in soft parameter sharing [35]. Recent studies have adopted bird’s eye view (BEV)-centric
cascaded multi-task learning approaches that jointly learn several interpretable interme-
diate representations, e.g., the object detection and prediction results or the egocentric
semantic maps in BEV space, and then use it to perform motion planning [36–38]. These
approaches generally require expensive sensors such as LiDAR and HD maps, which are
time-consuming to process and have a large gap with perspective (front)-view space. In
contrast to these methods, we use easily accessible front and top-view camera images (RGB
image sequences) to learn view-invariant spatiotemporal representations from which we
predict more interpretable motion planners and controllers while maintaining robustness
and efficiency.

2.3. Attention-Based Methods

Due to its potential to improve model efficiency, robustness, and interpretability in
deep learning models, the attention mechanism has a great promotion in learning various
tasks such as caption generation [42], classification [43,44], etc. For ADVs, several attention
mechanisms were designed to point out important factors that could assist in correcting
the prediction and classification of driving behavior. For instance, Kim and Canny [45]
investigated using a visually attentive CNN to learn steering angles from images and
showed the importance of simpler visual attention maps to learn and maintain control
accuracy. Mehta et al. [46] introduced soft attention for extracting observation attention
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from route-planer, residual block, and speed inputs. Then, they apply the same attention
module to efficiently learn primitive action and affordance of sub-driving policies, which
are used as input to enhance the final control command outputs. Motivated by [42,43],
which applies the attention mechanism to RNNs and LSTM, temporal attention mechanisms
have also been adopted in autonomous driving [19,22,50]. Deo and Trivedi [19] applied
temporal attention mechanisms for vehicle trajectory prediction. Cai et al. [22] introduced a
self-attention-based LSTM module for trajectory planning. Zhao et al. [50] applied separate
spatial and temporal attention mechanisms to capture driver speed and steering decision
information for vehicle speed and angle prediction. However, the methods mentioned
above require different modules for learning intermediate representations in channel,
spatial, and temporal dimensions.

Recently, module-based attention mechanisms [47–49], which can easily be applied to
existing CNNs and simultaneously learns attentive feature maps in different dimensions
(e.g., channel, spatial, temporal) without requiring additional modules, have been proposed.
for example, Mori et al. [51] introduced attention block network (ABN) [47] into the
autonomous driving model to obtain attention maps, which enables not only improved
control performance but also intuitively analyzes it. Ishihara et al. [52] adopted CBAM [48]
to generate a task-specific channel and spatial attention-weighted latent feature maps for
multitask learning. Although these methods dealt with learning attentive features, which
are mostly applied to classification and segmentation tasks, they do not take into account
the simultaneous acquisition of spatiotemporal attention for sequential decision-making
problems. Recently, STAMPNet [24] applied the squeeze-and-excitation (SE) module [49]
in their feature extractor and 3D-ResNet [53] to learn attended intermediate features of the
video and trajectory history for trajectory planning. Following this work, we introduced
the SE module into our 3DCNN feature extractor, but instead of using a single backbone,
we use a Siamese backbone to simultaneously learn intermediate spatiotemporal features
that are invariant across (front and top) driving views. Then, the learned intermediate
representations are utilized to co-optimize and train LSTM trajectory planning and CNN-FC
controller modules. To further enhance spatiotemporal information and make it applicable
to sequential decision-making, we introduce an attention mechanism into the LSTM module
to produce feasible future trajectory plans.

2.4. Invariant Representation Learning

Using deep learning to train autonomous driving systems has seen many successes.
However, learning representations that generalize across domains and tasks remains chal-
lenging due to the inherent domain shift problem. To deal with the issue of domain shift
(e.g., variation in road views, weather, and lighting conditions), most approaches use data
augmentation as well as diverse data collection methods [12,30]. For example, authors
in [12] augment driving center road view training data by adding corresponding shifts
(off-center), i.e., left and right road view camera images from onboard cameras. This
increases the driving model’s generalization ability and tackles the domain shift problem.
Bansal et al. [30] add synthetic perturbation to the expert trajectory by training a driving
policy on the semantic segmentation as well as the image to increase the robustness of
the network towards domain shift. However, the data distribution shift problem remains
challenging even with data augmentation.

Other approaches are domain knowledge transfer [6,33] and privileged information [16,54],
which provide intuitive representations and can be applied to domain adaptation, transfer
learning, or multitask learning scenarios. The authors in [6,33] proposed to predict “affor-
dances” such as the distance between lanes and vehicles, or the status of the streetlights
and use it as domain knowledge to improve driving performance. Learning such represen-
tations may add robustness, interpretability, and efficiency into models; however, they have
limited scale in a dynamic environment. As such, they are predefined and may introduce
spurious inputs. Xu et al. [16] proposed a method that exploits a privileged/side-task
(e.g., segmentation) training paradigm, which shares the same labels but differs in their
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input modalities; thus, input modality from the source task is privileged. This enables the
model to learn a relevant scene representation feature that improves motion prediction
performance. The data-driven multi-source domain adaptation [55] is closest to ours. The
recent popular domain adaptation methods have maximum mean discrepancy loss (MMD
loss) [56,57], which projects different views of data into a shared subspace to minimize
their discrepancy.

Motivated by these works, we incorporate multi-view metric learning (MMD loss)
into our attentive 3DCNN network decision-making spatiotemporal representations that
are invariant across front and top road views.

3. Proposed Approach
3.1. Overview

This section describes the general overview of the proposed ViSTAMPCNet for au-
tonomous vehicles, shown in Figure 1. In general, the ViSTAMPCNet is based on imitation
learning using CNN-LSTM models [16,22,24], which involves a mapping from expert
observations to view-invariant spatiotemporal representations. Then, the view-invariant
spatiotemporal representations are used for driving decision making, i.e., driving con-
trol command and future trajectory generation. The proposed ViSTAMPCNet comprises
Siamese backbones to extract the discriminative spatiotemporal representations from two
views of driving scenes. To minimize the representation distribution shift between two
driving views, we adopt maximum mean discrepancy (MMD) metric learning [56], which
takes representative features from Siamese backbones as input to capture the view-invariant
information from center- and top-views of video input. Finally, the learned view-invariant
representations are fed into the trajectory planner and controller modules.

Trajectory History

Center View

+
LSTM

Attentive 3DCNNTop View

𝐿𝑇  

AV Trajectory Planner

AV Controller

𝐻 

𝑋𝑐  

𝑋𝑡  

𝑧 𝑖
𝑐  

𝑇𝑖+1 
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𝑡  
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𝑐  
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𝑓𝜃  Param sharing
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1 
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Figure 1. The proposed ViSTAMPCNet is comprised of two parts: representation learning and driving
decision making. The representation learning uses Siamese 3DCNN, which is responsible for learning
a mapping from raw image sequences directly to view-invariant spatiotemporal representations. The
driving decision making part is responsible for learning the mapping from the learned representation
to future trajectories and control output using LSTM and CNN, respectively.

3.2. Problem Formulation

Considering view-invariant trajectory planning and control tasks, given a set of
recorded videos from human driver in the center and top views of the road: (1) let
Xc = {(xc

i , yc
i , Tc

i )}
Nc
i=1 denote the center views, where xc

i is an instance of Xc, yc
i is the

corresponding control command (ground truth label), and Tc
i is the ground truth trajec-

tory; (2) let Xt = {xt
j}
Nt
j=1 denote the top views, where {xc

i , xt
j} ∈ RT×H×W×C, i = j and
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{Nc,Nt} represent the total number of videos in center and top views, respectively. Addi-
tionally, corresponding to each center view video input xc

i , there exists a trajectory history
H = {h1, h2, . . . hNc}, where hi ∈ [1,Nc] is a single trajectory instance.

Subsequently, we adopt 3D-ResNet [53] as a backbone encoder. Spatiotemporal atten-
tion is incorporated in the backbone encoder, which we denote as an attentive 3D Siamese
backbone fθ(.) to encode discriminative spatiotemporal features from the center and top
views of video inputs. We also define a convolutional layer followed by the fully connected
layer as gθ(.) to extract the previous trajectory information hi. Suppose f k

θ is the residual
blocks (layers) of the 3D ResNet18 fθ , where k ∈ [1, 5]. The center view xc

i and top view
xt

i are encoded as z̄c
i = f k

θ (xc
i ) and z̄t

i = f k
θ (xt

j) from the penultimate layer of the Attentive

3D-ResNet-18 fθ(.) backbone, where k = {1, 2, 3, 4}. Then, theseR512 dimensional feature
embeddings are used to compute the MMD loss LM (z̄c

i ,z̄t
i ) to minimize the spatiotemporal

feature discrepancy between the center and top driving view image sequences. Since the
inter-channel information across the temporal dimension is aggregated and extracted using
the Squeeze-and-Excitation [49] attention module, these spatiotemporally attended feature
representations are considered to be more discriminative. Therefore, MMD loss reduces
the distributional discrepancy between these low-dimensional spatiotemporal features
based on the assumption that if the mean of the corresponding driving views z̄c

i and z̄t
i

generated by fθ(.) are equal or similar. The trajectory history can be encoded as zh
i = gθ(hi).

Afterward, the feature vector from the center view ẑc
i = f k

θ (z̄
c
i ) is further utilized for atten-

tive trajectory planing jointly with motion features extracted from the trajectory history as
ẑi = zh

i + ẑc
i . A three-layer LSTM module Gθ(.) is defined to generate the future trajectories

from highly representative spatiotemporal features as Ti+1 = σ(Gθ(ẑi)), where σ(.) is a
SoftMax function to further refine trajectory features. Similarly, the vehicle controller Fθ(.)
takes in the feature ẑc

i and predicts high-level driving commands as ŷi = Fθ(ẑc
i ).

3.3. View-Invariant Representation Learning Module

Attentive spatiotemporal feature extractor. For driving decision-making, autonomous
vehicles need to encode the surrounding environment’s information from the perceptual
input. To achieve this, the proposed Siamese 3D networks take center xc

i and top xt
i view

image sequences as input and extract spatiotemporal features z̄c
i and z̄t

i using the residual
block shown in Figure 2. However, naively passing all extracted information from the 3D-
ResNet-18 fθ(.) backbone may increase the computation burden and lack interpretability.
Instead of directly passing these extracted features to the MMD module, attention is applied
to the residual block to selectively learn more salient spatiotemporal representations while
filtering out irrelevant inputs for driving decision-making. Attention block guides the
model to selectively learn spatiotemporal representations from the center and top-view
image sequences while adding interpretability to the model. As in Figure 2, the channel-
wise attention module Sse aggregates the inter-channel relationship to attend meaningful
patterns and perform two major tasks: the squeeze operation performs Global Average
Pooling (GAP) to squeeze the input tensor T × C × H ×W into T × C × 1× 1 and then
extract the mean values across each channel H ×W.

As shown in Figure 2, the squeeze-and-excitation block Sse takes the output feature
map {zc

i , zt
i} ∈ RT×H×W×C as an input and transform them into attentive intermediate fea-

ture vectors z̄c
i and z̄t

i , where {z̄c
i , z̄t

i} ∈ RT′H′×W ′×C′ dimensions, which can be obtained as:

z̄c
i = Sse(σ(W2ρ(W1

1
W × H

H

∑
k=1

W

∑
L=1

zc
i (k, l)))) (1)

z̄t
i = Sse(σ(W2ρ(W1

1
W × H

H

∑
k=1

W

∑
L=1

zt
i(k, l)))) (2)

where Sse is a squeeze-and-excitation block, σ is a sigmoid activation function, ρ is a ReLU
activation, W1 ∈ R

c
r xC and W2 ∈ R

c
r xC are learned weights from two fully connected layers
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and added non-linearity. C denotes channel, r is reduction ratio The attended output
features obtained from the Sse block are re-weighted through the re-scale operation as:

z̄c
i = fθ(Fscale(zc

i , z̄c
i ) + xc

i )) = fθ(zc
i × z̄c

i ) + xc
i ) (3)

z̄t
i = fθ(Fscale(zt

i , z̄t
i) + xt

i )) = fθ(zt
i × z̄t

i) + xt
i ) (4)

where Fscale is a scaling factor and z̄c
i and z̄t

i are the attentive feature vectors from the center
and top driving views, respectively.
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Figure 2. An illustration of the residual and attention block for center view input xc
i .

View-invariant feature learning. To minimize the feature distribution shift between
the center and top driving view training samples, the learned intermediate features z̄c

i
and z̄t

i are used as input to MMD loss LM. The LM loss is used to penalize the whole
Siamese backbone network and encourage shared feature learning, while minimizing the
spatiotemporal representation discrepancy.

Then LM loss function is given by:

LM = ψ(z̄c
i , z̄t

i)

= Ez̄c
i ∼c[ψ(z̄

c
i )],Ez̄t

i∼t[ψ(z̄
t
i)]

= E∼c[ψ(z̄c
i )] +Ez̄t

i∼t[ψ(z̄
t
i)]− 2Ez̄c

i ∼c,z̄t
i∼t[ψ(z̄

c
i , z̄t

i)] (5)

where ψ(.) is a kernel function.

3.4. Trajectory Planning and Control Module

High-level control. We introduce the methods for predicting discrete control commands.
Most of the existing end-to-end ADV approaches [6,12,16] rely on single modal input
sequences, which are insufficient to make robust driving control decisions. Moreover,
features learned by these methods have limited robustness towards domain-shift and inter-
pretability [41]. To address these challenges, we introduce view-invariant attention-based
motion prediction models that provide more generalizable features, which further improves
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interpretability of the driving commands. Therefore, given discriminative spatiotemporal
features ẑc

i from the Siamese backbone fθ , we further transform it using the control module
ŷi = Fθ(ẑc

i ). Then, calculate high-level control commands Lc with N-class cross-entropy
loss using the following equation:

LC = −
N

∑
i

yi log Fθ(ẑc
i ) = −

N

∑
i

yi log ŷi (6)

where N is the number of high-level control commands defined as predicting three feasible
actions (i.e., go-straight, turn-left, turn-right).

Trajectory planner. Given learned attentive view-invariant features ẑc
i extracted from

the complementary Siamese backbones, and the corresponding sequence of trajectory
histories zh

i as input, our LSTM network predicts its future trajectories Gθ(.), which can be
expressed as follows:

ẑi = zh
i + ẑc

i

Ti+1 = Σ(Gθ(ẑi)) (7)

where Ti+1 is the predicted future trajectory. To optimize the trajectory planning model, we
use the MSE [24] objective function over Tc

i and the predicted trajectory Ti+1 as follows:

LT = ‖Tc
i − Ti+1‖2

2 (8)

To better leverage sequential information and encourage discriminative learning, we
also introduced the SoftMax function Σ(.) into the LSTM module, which produces refined
spatiotemporal features for the trajectory planner.

The overall objective. To optimize the proposed ViSTAMPCNet, we aggregate all the
losses, namely MMD loss Lm, trajectory loss LT , and control loss LC as follows:

Ltotal = γLm + LC + LT (9)

where γ = 1 is a hyper-parameter to control the MMD loss.

4. Experiments

In this section, we evaluate the performance of the proposed ViSTAMPCNet. To this
end, we introduce the experimental settings, including datasets, implementation details,
and experiment results.

4.1. Dataset and Evaluation Metrics

We implement the proposed ViSTAMPCNet with PyTorch and train it on the VTG-
Driving dataset [22]. The VTG-Driving dataset consists of three driving situation sub-
datasets, i.e., go-straight, turn-left, and turn-right, each containing front (center) and top
road view image sequences in different weather/lighting conditions. Our final dataset
contains 88,558 image sequences that cover five different weather/lighting (e.g., clear day,
sunset, night, foggy day, rainy day) driving environments as illustrated in Figure 3, each
having a unique style of visual appearance and difficulty level for autonomous driving as
mentioned in [22].

For evaluation, we adopt the L2 loss (Equation (8)) and top-1 accuracy metrics to vali-
date the trajectory generation performance and high-level control command classification
accuracy following VTG-Net [22] and FCN-LSTM [16], respectively. We use trajectory
generation results and control accuracy obtained from prior works, such as FCN-LSTM [16],
CNNState-FCN [20], VTGNet [22], and STAMPNet [24] as baselines.
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Clear day 23%

Rainy day 32%Foggy day 

15%

Night 21%

Sunset
 9%

Figure 3. Dataset distribution across various weather conditions.

4.2. Implementation Settings

We split the training and test dataset 80:20. We sampled 12 frames per video clip with a
frame size of 3× 112× 112 resolutions. The experiments were conducted on two RTX2080Ti
11GB GPUs with a batch size of 64 for 100 max epochs. The Adam optimizer with learning
rate of 0.001 was used for model optimization. As shown in Table 1, the proposed method
employed 3D ResNet18 Siamese backbone network integrated with channel-wise attention
module to extract intermediate spatiotemporal features from center and top road views as well
as trajectory history. While both the center and top views are used during model training, only
center view is used during testing. In addition, we employed GradCam [58] to generate the
attention heatmap from the proposed backbone weight and 2D-tSNE [59] to project learned
features in the embedding space for high-level control commands.

4.3. Experiment Results and Discussion
4.3.1. Ablation Study

In this subsection, we conduct extensive experiments to validate various components
of the proposed ViSTAMPCNet across dataset with diverse weather conditions. In order
to demonstrate the contribution of each component of the proposed ViSTAMPCNet, we
evaluate the effectiveness of the 3DResNet blocks, spatiotemporal attention mechanisms,
and MMD loss components on trajectory planning and control under various weather and
lighting conditions.

Effectiveness of each 3DResNet18 block. To show the effectiveness of the 3DResNet18
layers in learning intermediate representations for trajectory planning and control, we
trained the proposed backbone 3DResNet18 by removing the last layer as 3DResNet18(-1),
two layers as 3DResNet18(-2), and three layers as 3DResNet18(-3), and show the evaluation
results in Table 2.

As shown in Table 2, the 3DResNet18(-2) backbone has a trajectory error of 1.23,
which is lower than the of 3DResNet18(-1) and 3DResNet18(-3) backbone networks, which
are 5.58 and 3.22. In addition, 3DResNet18(-2) achieved a high-level control accuracy
of 93.348, which is higher than 3DResNet18(-1) and 3DResNet18(-3), which are 79.890
and 92.97, respectively. This result indicates that the 3DResNet18(-2) can capture better
intermediate representation that is beneficial for joint optimization of planning and control
tasks compared to other blocks. Hence, the backbone for the proposed ViSTAMPCNet
is constructed by removing the last two layers from the attentive 3DResNet18 Siamese
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backbone, which achieves the best performance in trajectory planning and control compared
to other blocks.

Table 1. A detailed description of the different layers of ViSTAMPCNet is provided, including
(i) Siamese 3DResNet Video encoder Backbone, which extracts discriminative intermediate spatiotem-
poral features via the residual and attention blocks, (ii) feasible future trajectory generation module,
and (iii) high-level control command classification module.

Modules Blocks Conv Layers Number of Blocks

(i
)S

pa
ti

ot
em

po
ra

lF
ea

tu
re

Ex
tr

ac
to

r
(3

D
R

es
N

et
)×

2 Input Conv3d (7,7), 110, stride = 2
MaxPool3d, 3 × 3, stride = 2

BasicBlock

Conv3d, (3,3), 144, stride = 1

2Conv3d, (1,1), 64, stride = 1
Conv3d, (3,3), 144, stride = 1
Conv3d, (1,1), 64, stride = 1

AttentionBlock FC(64,32), FC(32,64), Sigmoid 2

BasicBlock

Conv3d, (3,3), 230, stride = 1

2Conv3d, (1,1), 128, stride = 1
Conv3d, (3,3), 288, stride = 1
Conv3d, (1,1), 128, stride = 1

AttentionBlock FC(128,64), FC(64,128), Sigmoid 2

BasicBlock

Conv3d, (3,3), 460, stride = 1

2Conv3d, (1,1), 256, stride = 1
Conv3d, (3,3), 576, stride = 1
Conv3d, (1,1), 256, stride = 1

AttentionBlock FC(256,128), FC(128,256), Sigmoid 2

BasicBlock

Conv3d, (3,3), 921, stride = 1

2Conv3d, (1,1), 512, stride = 1
Conv3d, (3,3), 1152, stride = 1
Conv3d, (1,1), 512, stride = 1

AttentionBlock FC(512,256), FC(512,256), Sigmoid 2

(ii) Trajectory
LSTM

LSTM(704, 512) 3
FC(512,66), FC(512,1) 1

Trajectory History Conv1d,(1,1), 256, stride = 1
FC(256,256), FC(256,256) 1

(iii) Control Output FC(8192,128), FC(128,Command = 3), Softmax 1

Table 2. Effectiveness of attentive Residual Blocks. − indicates the number of removed last layers in
attentive 3DResNet18 when learning spatiotemporal representations.

Attentive 3DCNN Block Layers L2 Loss Accuracy (%)

Attentive 3DResNet18 −1 5.580 79.890
Attentive 3DResNet18 −2 1.230 93.348
Attentive 3DResNet18 −3 3.220 92.970

Effectiveness of attention mechanism. To see the effectiveness of the attention mechanism
in learning discriminative spatiotemporal representation for planning and control, we
trained the proposed method with and without the attention module. As shown in Table 3,
the trajectory planning error of Vi STAMPCNet with spatiotemporal attention was 2.944,
2.4, 1.23, which is significantly lower than that of ViSTAMPCNet without spatiotempo-
ral attention: 3.123, 2.74, 2.491, respectively, in foggy, rainy, and clear days. Similarly,
with attention, the proposed method achieved much higher high-level control accuracy:
88.242, 91.857, and 93.34 than ViSTAMPCNet without attention—85.205, 87.164, and 87.424,
respectively, across foggy, rainy, and clear weather conditions.

Effectiveness of MMD loss. To show the importance of the MMD component in the
proposed method, we also trained ViSTAMPCNet with and without MMD loss. The
experiment results presented in the middle of the Table 3 indicate that ViSTAMPCNet with
MMD has a much lower trajectory planning error (L2 loss) 2.944, 2.401, and 1.23 compared
to ViSTAMPCNet without MMD 4.82, 3.404, and 1.61, respectively, in clear, rainy, and
foggy weather conditions. Similarly, ViSTAMPCNet with MMD also achieved much better
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control accuracy (Acc.) 88.242, 91.857, and 93.348 compared to ViSTAMPCNet without
MMD 78.950, 85, and 93.2, respectively, in clear, rainy, and foggy weather conditions.

Considering the experimental results presented in Table 3, it is evident that jointly
training both spatiotemporal attention and MMD loss components highly contribute to the
proposed method’s generalization and performance improvement in motion planner and
controller regardless of change in environmental (weather/lighting) conditions.

Table 3. Evaluation of the performance of ViSTAMPCNet with and without spatiotemporal attention
mechanism and MMD in motion planning and control under different weather/lighting conditions.
Att., w/o, and Acc. denote attention, without, and accuracy, respectively.

Weather
ViSTAMPCNet w/o Att. ViSTAMPCNet w/o MMD ViSTAMPCNet

L2 Loss Acc. L2 Loss Acc. L2 Loss Acc.

Foggy day 3.123 85.205 4.820 78.950 2.944 88.242
Rainy day 2.741 87.164 3.404 85.001 2.401 91.857
Clear Day 2.491 87.424 1.601 93.207 1.23 93.348

4.3.2. Qualitative Analysis

Effectiveness and interpretability analysis. To evaluate the effectiveness and interpretabil-
ity of the proposed method for planning and control, we generated attention heatmaps
using ViSTAMPCNet and visualized them using Grad-CAMs [58].The Grad-CAM visu-
alization results shown in Figure 4 illustrate a comparison of the learned spatiotemporal
attention using the proposed method (Figure 4d) and baselines without MMD (Figure 4b)
and without attention (Figure 4c). As shown in Figure, the proposed model with attention
and MMD (Figure 4d) clearly focuses on the dynamic agents (e.g., vehicles and pedestrians)
and the road ahead across different environments while giving some attention to distant
road markings and vehicles. This ability to dynamically pay attention in important driving
regions is why our model outperforms the baseline, which indiscriminately pays equal
attention, e.g., ViSTAMPCNet (w/o Att.) (Figure 4c), which is less effective in capturing
critical driving road regions due to the absence of spatiotemporal attention mechanism. As
expected, the other baseline model, STAMPNet (ViSTAMPCNet without MMD; Figure 4b)
showed the worst visualization performance compared to ViSTAMPCNet with MMD loss.
This shows the importance of MMD loss in assisting the proposed method to capture
invariant representation, which thereby improves model ability to handle distribution
shifts due to dynamic changes in driving views across weather and lighting conditions.

(a) Sample image inputs

C
le

ar
 d

ay
R

ai
n
y
 d

ay
F

o
g
g

y
 d

ay

(b) STAMPNet (baseline) (c) ViSTAMPCNet (w/o att.) (d) ViSTAMPCNet (ours)

Figure 4. Attention heat map visualization of our ViSTAMPCNet and baselines. (a) Sample image
sequence across different weather conditions. (b–d) Attention heat map visualization of STAMPNet
baseline (without MMD loss), ViSTAMPCNet(without attention), and ours (ViSTAMPCNet with
attention and MMD loss), respectively.
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In summary, the proposed ViSTAMPCNet (Figure 4d) achieves better attention heat
map visualization results than baseline methods without MMD loss as well as attention
mechanisms. While the attention mechanism enables ViSTAMPCNet to learn more impor-
tant regions of the driving environment, MMD loss minimizes spatiotemporal discrepancy
due to dynamics in view and weather/lighting condition shifts in a driving environment.
The results are further confirmed and illustrated in Figures 5 and 6, where our model gener-
ates control commands and future trajectories which are consistently closer to demonstrated
driving behavior (ground truths) compared to other baselines.

Two-dimensional tSNE visualization of embedding space for control. We use the tSNE [59]
to visualize the effectiveness of the proposed method in classifying high-level control
commands in the embedding space earned with the proposed ViSTAMPCNet. Specifically,
the 2D tSNE projection of 5.9 k test samples shown in Figure 5, illustrates the ability
of proposed ViSTAMPCNet (right) in clearly semantically classifying control commands
(turn-left, turn-right, and go-straight) compared to the other baselines: ViSTAMPCNet
without MMD(left) and attention (middle). The visualized qualitative result indicates the
effectiveness of joint MMD loss and attention mechanisms in our method for improved
control classification performance and robustness.

ViSTAMPCNet (ours)ViSTAMPCNet (w/o att.)ViSTAMPCNet (w/o MMD)

Figure 5. tSNE visualization for ViSTAMPCNet on 5.9 k test dataset taken from different
weather conditions.

Trajectory prediction analysis. To further visualize the effectiveness of the proposed
method on the trajectory prediction downstream task, we predict mid- and long-range
future trajectories in three challenging driving scenes, including a clear day, a foggy day,
and a rainy day as shown in Figure 6.

VISTAMPCNet (ours)VISTAMPCNet (ours w/o att.)STAMPNet (bassline)

F
o
g
g
y
 D

a
y

R
ai

n
y

 D
ay

Figure 6. Visualization of future trajectory prediction for 22 way points.
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The generated trajectories indicate that the proposed ViSTAMPCNet (ours) generates
22 trajeconfirmaypoints and has demonstrated that the predicted future trajectory is consis-
tently close to the actual (ground truth) regardless of changes in driving views and weather
conditions. On the other hand, the generated future trajectory waypoints with baseline
models STAMPNet (without MMD) and the ViSTAMPCNet without attention deviated
from the actual trajectories in both rainy and foggy weather conditions, demonstrating low
performance. This illustrates the ViSTAMPCNet’s ability to learn discriminative invariant
representations that improve the robustness in driving decision-making ( e.g., motion plan-
ning) toward changes in driving environment, e.g., views and weather/lighting conditions.

4.3.3. Comparison with State-of-the-Art Methods

To show the superiority of VISTAMPCNet in motion planning and high-level control
tasks, we compare the proposed VISTAMPCNet with several competing algorithms: CNN-
LSTM [20], FCN-CNN [16], VTGNet [22], and STAMPNet [24]. For a fair comparison,
Refs. [16,20] are re-implemented on VTG-Driving dataset [24] by replacing their backbone
network with 3DResNet and results reported in [22,24] are directly compared as we use
the same dataset and following similar setting with these works. As shown in Table 4,
VISTAMPCNet has shown better planning performance and control accuracy improvement
when compared with other multitask leaning networks FCN-CNN [16] and STAMPNet [24].
For example, our method outperforms the FCN-LSTM [16] model without attention and
MMD loss by 20.948 and 1.677, respectively, in control and planning tasks. Compared
to attentive 3D-CNN-LSTM [24], VISTAMPCNet has also shown better performance in
planning (1.23 vs. 1.601) and control accuracy (93.207 vs. 93.348). The proposed method
also achieved better performance in planning (2.491 vs. 1.230) and control (87.424 vs. 93.348)
when compared against our baseline Siamese 3D-CNN-LSTM model without attention.

Table 4. Comparison with State-of-The-Art planning and control methods. † indicates our implemen-
tation on VTG-Driving dataset [22]. Att., Tp, and Lc denote motion planning, high-level control, and
attention, respectively.

Approaches
Task

Architecture L2 Loss Accuracy (%)
Tp Lc

Bergqvist [20] † X – CNNState-FCN 1.444 –
VTGNet [22] X – 2D-CNN-LSTM 1.036 –
STAMPNet [24] X – Att. 3D-CNN-LSTM 1.015 –

Xu et al [16] † X X FCN-LSTM 2.907 72.400
STAMPNet + Lc [24] † X X Att.3D-CNN-LSTM 1.601 93.207
ViSTAMPCNet (without Att.) X X Siamese 3D-CNN-LSTM 2.491 87.424
ViSTAMPCNet (Ours) X X Siamese Att.3D-CNN-LSTM 1.230 93.348

Compared to single-task learning models, ViSTAMPCNet achieved better performance
in motion planning against the CNN-LSTM model without attention and MMD [20],
whereas it achieves competitive results with VTGNet [22] and STAMPNet [24] architectures
that use attention mechanism without considering MMD loss. Although these single-task
learning models are good at performing a single task, they perform worse when trained for
other driving skills. For example, the attentive 3D-CNN-LSTM model [24] scored a higher
planning error of 1.601 and lower control accuracy of 93.207 compared to ViSTAMPCNet’s
planning error of 1.23 and higher control accuracy of 93.348.

Overall, the experiment results provided in Figures 4 and 5, as well as comparison
against state-of-the-art planning and control models shown in Table 4, confirm the impor-
tance of proposed spatiotemporal attention and MMD loss in improving the generalization
of the capability of ViSTAMPCNet to new driving environments and tasks.
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5. Conclusions

In this paper, we proposed a view-invariant spatiotemporal attentive motion planning
and control network (ViSTAMPCNet) for autonomous vehicles. The proposed ViSTAMPC-
Net consists of invariant representation learning and driving decision-making modules.
The representation learning module uses Siamese 3DCNN, which is responsible for learning
a mapping from raw image sequences directly to view-invariant spatiotemporal repre-
sentations. The driving decision-making module is responsible for learning the mapping
from the learned representation to future trajectories and control output using LSTM and
CNN, respectively. We demonstrate the effectiveness of the proposed ViSTAMPCNet
through extensive experiments on a large-scale driving dataset with dynamic obstacles
and weather/lighting conditions (e.g., clear, rainy, and foggy). Results from the evaluation
and comparison against state-of-the-art methods confirm that invariant representations
learned via the ViSTAMPCNet enable more generalizable motion planning and control in
autonomous vehicles.

Although ViSTAMPCNet has shown promising results in motion planning and high-
level control, it still has some limitations. (1) Even with learned invariant representation
learning, the proposed method’s robustness/scalability is limited, as it requires expert
demonstrations in every scenario for training the network. Therefore, more studies are
needed to improve the system’s scalability, for example, by leveraging self-supervised learn-
ing approaches. (2) For autonomously driving in complex road scenarios, ADVs require
more than discrete high-level commands. Therefore, more studies are needed to integrate
low-level vehicle control tasks such as steering angle and speed control. (3) For good
motion planning and control in extreme weather conditions, we also aim to incorporate
multi-modal data from complementary sensors (such as lidar, radar, and thermal cameras)
in future work while maintaining efficiency. This would increase the system’s robustness
in challenging environments.
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