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Abstract: Wind power has become an important source of electricity for both production and domestic
use. However, because wind turbines often operate in harsh environments, they are prone to cracks,
blisters, and corrosion of the blade surface. If these defects cannot be repaired in time, the cracks
evolve into larger fractures, which can lead to blade rupture. As such, in this study, we developed
a remote non-contact online health monitoring and warning system for wind turbine blades based
on acoustic features and artificial neural networks. Collecting a large number of wind turbine blade
defect signals was challenging. To address this issue, we designed an acoustic detection method
based on a small sample size. We employed the octave to extract defect information, and we used an
artificial neural network based on model-agnostic meta-learning (MAML-ANN) for classification.
We analyzed the influence of locations and compared the performance of MAML-ANN with that of
traditional ANN. The experimental results showed that the accuracy of our method reached 94.1%
when each class contained only 50 data; traditional ANN achieved an accuracy of only 85%. With
MAML-ANN, the training is fast and the global optimal solution is automatic searched, and it can be
expanded to situations with a large sample size.

Keywords: damage detection; artificial neural network; small sample; model-agnostic meta-learning;
octave; wind turbine

1. Introduction

In the context of the transformation of the global energy structure toward low carbon
and the continuous optimization of energy consumption, the demand for renewable energy
has continuously grown [1–3]. With its abundant resources, environmental protection,
a high degree of automatic operation and management, and a continuous reduction in
electricity costs, wind energy has become one of the most widely developed and applied
renewable energy sources. However, wind turbine blades (WTBs) can suffer severe damage
due to atmospheric oxidation, strong wind loads, air corrosion, gravel erosion, material
fatigue, snow and ice cover, etc. [4,5]. Damaged blades can then catastrophically fail due to
the extent of damage. Rotating blades suffer from such damage, which gradually expands
due to centrifugal force, resulting in more serious secondary damage [6].

The manual periodic inspection method has been widely adopted for defect detection
in wind farms [7]. In this method, the blade surface is observed with the eyes or a telescope
to judge the health of the WTBs. However, regular manual inspection can often not be
performed in time, poses safety hazards for the inspector, and requires professional skills,
which restrict the operation and maintenance of WTBs [8,9].

The structural health monitoring methods of WTBs in the literature can be categorized
into two classes: non-contact and contact measurement [8,10]. For instance, Wang et al. [11]
used unmanned aerial vehicles (UAVs) to collect WTB images, accomplishing WTB defect
recognition and location through image noise reduction processing and Haar-like feature
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extraction, and used a cascade classifier to analyze the features. Yang et al. [12] proposed
a non-destructive ultrasonic testing technology that could detect blade damage through
guided waves and had strong positioning ability. Naderi et al. [13] developed a data-driven
non-linear approach by using only frequency response data to detect and isolate a fault.
Jiang et al. [14] proposed an improved and fast independent component analysis (ICA)
algorithm that reduced the quantity of the required sensors and provided practical data
support for blade damage location. However, these studies have shortcomings, such as
requiring wind turbine shutdown, poor real-time performance, and contact measurement,
which hinder operation in practice. These studies were also data-driven and resource-
intensive; additionally, the construction of a diverse defect datasets is difficult. To resolve
the issues caused by the lack of information owing to the limited number of available
fault data samples, some fault diagnosis methods based on a small sample size have
been proposed. Su et al. [15] proposed a wind turbine gearbox diagnosis method based
on improved generative adversarial networks (GANs) to achieve fault classification and
diagnosis with a small sample. Liu et al. [16] developed an artificial intelligence (AI)-
based method that was trained by a large amount of GAN-generated fault data to defect
wind turbine defects. In [17], Guo et al. proposed a new unsupervised small sample defect
detection model that can accurately extract defect contours without any postprocessing, and
its accuracy was high. Most methods are based on samples generated through generative
adversarial networks. Because extracting defect information from wind turbine blades is
difficult, signal processing is another challenge [18–20]. Researchers [21] used a short-time
Fourier transform and smoothing techniques to analyze real-time spectrograms and the
rotor speed. In [22], the authors traced vital signs from vibration signals through statistical
modeling and used various tree-based algorithms for classification. In [23], they used
a spectrogram and deep learning ensemble to investigate unknown vibration moments.
Therefore, signal processing to monitor wind turbine blade structural health is important
and meaningful.

As such, in this study, we developed a WTB health monitoring and warning system
based on acoustic feature analysis to judge and provide early warnings of wind turbine
blade damage. This system requires less labor and places no demands on the sensor
arrangement on the blades, and so does not affect the normal operation of the wind turbine.
The system consists of a microphone, a signal acquisition and communication module, an
optical network, and a central monitoring server. The signals collected by the front end
of the acoustic signal acquisition are sent to the monitoring central server for saving and
processing through the optical network. After obtaining the characteristic vector of the
acoustic signal, it is sent to the artificial neural network for the classification and identifying
faulty signals. Users can remotely log onto the server, view the acoustic features in real
time, and listen to the original acoustic signals. The system is shown in Figure 1.

Collecting a large number of blade defect signals is difficult; in this study, we designed
a wind turbine blade defect detection system based on model-agnostic meta-learning
(MAML) for small sample sizes, which is both highly accurate and fast. We obtained WTB
signals from two wind farms at different directions and heights, which we used to study the
mechanisms through which defects occur in wind turbine blades. We extracted the octave
characteristics by a 1/6 octave, which we used to train the artificial neural network based on
model-agnostic meta-learning (MAML-ANN). We then used the well-trained MAML-ANN
to determine the status of the WTBs. The experimental results indicated that the proposed
method was more accurately able to detect WTB faults, and does not experience problems
such as slow convergence or falling into local optimal solutions, and has a high recognition
rate with a small sample size. Moreover, MAML-ANN can be extended to large amounts
of data.
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Figure 1. Wind turbine blade defect detection system.

2. Materials and Methods
2.1. Study Workflow

To achieve wind turbine blade defect detection with a small sample size, we developed
an approach combining MAML and octave for defect detection. This approach is outlined
in Figure 2:

(1) We used fast Fourier transform (FFT) to convert the time-domain signal into the
frequency domain;

(2) We used the octave feature extraction algorithm to extract the features of the acoustic
signals of wind turbine blades, then used principal component analysis (PCA) to
analyze the spatial distribution of the samples;

(3) We used the training set to train MAML-ANN, and used the validation set to adjust
the training direction of the model;

(4) We tested the performance of MAML-ANN using the test set, and compared its results
with those of traditional ANN.

Time domain data

FFT

Frequency domain data

Octave

Octave feature data

Train dataset

Test dataset

Val dataset

MAML

Feature Extraction 

Train

Train

Test

MAML Training

MAML Testing

PCA

Verification

Figure 2. Workflow of the MAML-based acoustic defect detection approach.

2.2. Octave Feature Extraction

For WTB signals, we could not analyze the frequency of each signal: this would
be extremely time-consuming. So, we used the octave method to extract the feature
information. Octave [24] is a macro signal analysis method that does not consider the
amplitude of a specific frequency, but instead focuses on the power spectrum characteristics



Machines 2022, 10, 1184 4 of 18

of the frequency band, which is composed of multiple frequencies. The steps for extracting
the feature information using the octave method are as follows:

(1) Divide the frequency bands according to the octave center frequency. The two methods
to determine the octave center frequency are constant increase and constant percentage
increase. In our method, we adopted the “GB3240-82 Preferred frequencies for the
acoustic measurement” standard, which divides the discrete frequency domain into
frequency bands with a constant bandwidth ratio. The reference frequency was
1000 Hz. The center frequency, lower cut-off frequency, and upper cut-off frequency
of the frequency band can be expressed as:

fcenter = 1000× 10n/10

flower =
fcenter√

2N

fupper =
√

2N fcenter

(1)

where n represents an integer (0, ±1, ±2, ±3, . . . ); N is the order of the octave (1, 1/2,
1/3, 1/6, 1/12, 1/24, . . . ).

(2) Calculate the sound pressure (SP) of each frequency band. The square sum of fre-
quency points was used for each frequency band to obtain the SP, which can be
expressed as:

Pi =

√√√√ fu

∑
j= fl

F2
j (2)

where Pi is the SP of the frequency band, fl is the lower cut-off frequency, fu is the
upper cut-off frequency, and Fj is the amplitude of the frequency point.

(3) Calculate the sound pressure level (SPL) of each SP. Due to the logarithmic relation
between human ears and frequency, SP must be converted into SPL. SPL can be
expressed as:

Si = 20log10

(
Pi/Pre f

)
(3)

where Pre f = 2× 10−5 Pa, and Pi denotes the SP values.

2.3. Model-Agnostic Meta-Learning

MAML [25] is an algorithm that trains the initial model parameters. The parameters
of the model are explicitly trained such that a small number of gradient steps with a small
amount of training data from a new task will produce good generalization performance
on that task. Compared with the traditional model training, MAML adopts N-way K-shot
and secondary gradient descent. It is more sensitive to changes in the task, such that
small changes in the model parameters will produce substantial improvements on the loss
function from all tasks from the training or testing data. The MAML training process is
shown in Figure 3.

(1) N-way K-shot

MAML training of the model parameters does not directly use data points, but rather a
set of tasks. The task contains the meta-training set and meta-testing set. The meta-training
set consists of K samples from each class, for a a total of N× K data points. The meta-testing
set is composed of Q samples (q-shot) from each class (usually set to 2 or 5), for a total of
N × Q data points.

(2) Secondary gradient descent

For model training, the model is trained with the meta-training set to determine
the training loss and obtain feedback from the corresponding loss, and is then tested
on the meta-testing set to determine the testing loss. The model parameters are not
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optimized through training loss, but considering how the testing loss changes with respect
to the parameters.

θ′ = θ − α∇θLmeta−training( fθ)

θ = θ − β∇θLmeta−test( fθ′)
(4)

where f denotes the model; L is the loss function; α and β are the learning rate of steps one
and two, respectively; θ is the model parameters; θ′ is the updated model parameters.

meta-training set

meta-test set

…

…

…

…

class 1

class 2

class N

…

…

…

…

class 1

class 2

class N

Model  fθ Training loss

Model  fθ`Test loss

Train data input

Test data input

parameters

update
parameters

update

Calculate loss

Calculate loss

Figure 3. Diagram of MAML.

2.4. Artificial Neural Network

The artificial neural network [26] is a multilayer feedforward neural network trained
according to the error reverse-propagation algorithm. It is usually composed of 3 parts: the
input, hidden, and output layers. The output of each layer is directly sent to the next layer.
The structure of the model is schematically presented in Figure 4.

…

… …

……

…

Input Layer

Hidden Layer

Output Layer

Data forward propagation

Error back propagation

Figure 4. Schematic diagram of ANN structure.

The numbers of neurons in the input, hidden, and output layers are denoted by M,
Hi (where i is the number of the hidden layer), and N, respectively. The input data are
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X = [x1, x2, . . . , xM]T , and the output of ANN is presented as Y = [y1, y2, . . . , yN ]
T . The

output of the nth neuron in the kth layer can be expressed as:

vn(k) = f

(
Hk−1

∑
m=1

wmn(k)vm(k− 1) + bn(k)

)
(5)

where Hk−1 is the number of neurons in the previous hidden layer, wmn(k) is the weight
from the mth neurons in the previous layer to the nth neuron in the current layer, vm(k− 1)
is the output of the mth neuron in the previous layer, bn(k) is the offset parameter of the
nth neuron in the current layer, f is the activation function (leaky ReLu was adapted in the
ANN). The input data were fed to the input layer, and Y was generated by the output layer.
Then, the neural network reversely transferred the error between the predicted and real
values to adjust the parameters. The cross-entropy loss function was used to estimate the
performance of ANN during the optimization process.

2.5. Evaluation Metrics

To address the binary classification problem of class imbalance, the confusion matrix
is an effective evaluation method [27–29], which is defined in Figure 5. We defined the
normal label as 0 and the abnormal label as 1 In the confusion matrix, true positive (TP) is
defined as when the true label is 0 and the predicted label is also 0; false negative (FN) is
defined as when the true label is 0 and the predicted label is 1; false positive (FP) is defined
as when the true label is 1 and the predicted label is 0; and true negative (TN) is defined as
when the true label is 1 and the predicted label is also 1. For WTB detection, we paid more
attention to two indicators: precision and recall. They are a pair of contradictory measures.
When the precision is high, the recall tends to be low, and vice versa. Estimating the merits
and drawbacks of a model using precision and recall is difficult, so we introduced the F1
score. Using a confusion matrix, the above three evaluation indicators are defined by the
following formulas, respectively:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× P× R

P + R

(6)

TP

TP/SUM

FN

FN/SUM

TP/(TP+FN)

FN/(TP+FN)

FP

FP/SUM

TN

FN/SUM

TN/(FP+TN)

FP/(FP+TN)

TP/(TP+FP)

FP/(TP+FP)

TN/(FN+FN)

FN/(FN+FN)

(TP+TN)/SUM

(FP+FN)/SUM
SUM=TP+FN+FP+T

N

0

1

0 1

a
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u
a

l 
 l

a
b

el

predict  label

Figure 5. Schematic of the confusion matrix.
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2.6. Front-End Acoustic Acquisition System

To work normally in harsh environments, we used a specialized outdoor microphone
unit DMK01, which was composed of a stainless steel body, a dedicated PR22 preamplifier,
a noise cone, a specific windscreen, and a prepolarized weatherproof microphone 40CD.
The unit was delivered with CUBE to realize data transmission and storage, as shown in
Figure 6. The front-end acoustic acquisition system met the IEC61672 standard, which had
a sampling frequency of 51.2 kHz, a large dynamic range (max to 118 dB), and its frequency
response ranges from 20 Hz to 20 kHz. To ensure the reliability of the samples, we twice
confirmed each acoustic signal. First, the status of wind turbine blades was investigated by
professional institutions and wind farm staff before data acquisition. Second, the collected
signals were identified and verified by the wind farm staff.

Figure 6. Front-end acoustic acquisition system.

3. Results
3.1. Data Acquisition

To detect WTB defects, we went to two wind farms (Dawu and Diaoyutai) to collect
the acoustic WTB signals. Selecting the location of the microphone in a harsh natural
environment is difficult because the background noise can affect the analysis of the acoustic
signals. In our experiment, we acquired the acoustic signals from different directions and
heights, as shown in Table 1 and Figure 7. To verify the performance at different positions,
we used the short-time Fourier algorithm to observe the defect information.

Because the collected acoustic signals contained a large amount of low-frequency wind
noise, the defect information had low contrast on the time–frequency map. Therefore, we
considered the time–frequency map above 1 kHz to facilitate the observation of the defect
information. As shown in Figure 8, at the same height, the behind placement had the best
ability to capture defects, front was second best, and the side placement was the worst. In
the same direction, the ability to capture defects at different heights was similar because
the microphones were directional. Therefore, the placement had a considerable influence
on the signal-capturing ability of the microphone, whereas height had no influence. So, we
decided to acquire signals at location B.
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(a) (b)

Figure 7. Data acquisition at wind farm: (a) location C; (b) location D.

Figure 8. Time–frequency map at different locations: (a) A; (b) B; (c) C; (d) D; (e) E; (f) F.
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Table 1. Locations with different placements and heights.

Location Placement Height (m)

A behind 5
B behind 1.5
C front 5
D front 1.5
E side 5
F side 1.5

3.2. Acoustic Feature Extraction

Next, we analyzed three different types of WTB acoustic signals to to achieve WTB
defect detection, including the detection of normal status, cracks, and imbalance. The
original acoustic signals and spectrograms of the different types are shown in Figure 9. As
the acoustic signals show no notable characteristics, the different types of defects could
not be distinguished in the time domain. Hence, we analyzed the acoustic signals of the
different types using spectrograms. For normal signals, the spectrogram of each blade is
the same as the other two. Compared with the normal signals, periodic crack information
occurs in the spectrogram of crack signals, as shown in the yellow box in Figure 9d,
which is due to cracks in the WTB. The unbalanced WTB signals also indicate a defect.
A spectrogram of unbalanced signals is presented in Figure 9f, where the spectrogram of
blade 1 is stronger than that of the other two.

As the acoustic signals showed no remarkable characteristics, we could not distin-
guish the different types of defects in the time domain. Hence, we used octave to extract
defect information from the frequency domain. The order in the octave feature extraction
algorithm must be carefully selected. The common orders are 1/3, 1/6, 1/12, 1/24, and
so on. Different orders have different spectral resolutions, and their ability to describe
spectral changes is different. In our experiment, we tried three orders, 1/3, 1/6, and
1/12, and discussed the performance of feature extraction and WTB defect detection of
the different orders. As shown in Figure 10, the 1/3-octave features were sparse over the
whole frequency. Within the defect frequency range of 10 kHz∼12.5 kHz, the interval
of the frequency bands was too large to effectively extract the frequency change in the
defect information. The characteristics of the 1/6 octave were relatively uniform over the
whole spectrum, and the defect information was effectively extracted (capture the law of
defect changes). Although the characteristics of the 1/12 octave could effectively obtain the
defect information in the acoustic signal, the features were dense in the spectrum. This not
only led to the complexity in the follow-up model but was also sensitive to changes in the
natural environment. Finally, we selected 1/6 as octave order.

We analyzed the acoustic signals of different types of defects with the 1/6 octave, as
shown in Figure 11. The 1/6-octave characteristics of the normal acoustic signals were
similar to a power function. Compared with the normal signals, we observed an apparent
protrusion in the crack signals at a specific frequency band (10∼12.5 kHz). For unbalanced
signals, the octave features showed no obvious defect information, such as protrusion,
but the characteristic octave curve was different, similar to a linear function. Therefore,
the octave used in this study could effectively extract information regarding WTB defects,
which is convenient for subsequent model training.
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Figure 9. Time domain and spectrogram of different signals: (a) time domain and (b) spectrogram of
normal signal; (c) time domain and (d) spectrogram of crack signal; (e) time domain; and (f) spectro-
gram of unbalanced signal.

Figure 10. Octave performance with different orders for cracked WTB signal.
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Figure 11. The 1/6-octave feature of different types of defects.

However, in the early stages of WTB damage, distinguishing defect information is
challenging. This poses challenges for the detection of WTB defects: the traditional defect
detection methods are unable to cope with this complex situation. For data visualization,
we adopted PCA to reduce the feature dimensions from 31 to 3, preserving 84.5% of the
feature information. As shown in Figure 12, most of the normal and abnormal samples
could be effectively separated, but the boundary between classes was complex. With the
rapid development of the new generation of artificial intelligence, ANN has provided
opportunities to create new approaches to achieve defect detection. Nevertheless, the
traditional ANN can be extremely easily overfit with complex boundaries and imbalanced
classes. Therefore, we used MAML to solve the problem of small sample size and class
imbalance to fit these complex boundaries.

Figure 12. Visualization of data (red: normal, blue: abnormal).
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3.3. Hyperparameter Selection

We obtained a large amount of data to verify the effectiveness of MAML-ANN. We
collected a total of 2705 samples for the normal, crack, and unbalanced states, and the
time length of each sample was 10 s. We divided all data into three parts, which were a
training set (normal, 300 samples; abnormal, 300 samples), a validation set (normal, 51;
abnormal, 199), and a testing set (normal, 264; abnormal, 1591). The percentages of normal,
crack, and unbalance samples in dataset were 22.7%, 62.2%, and 15.1%, respectively. The
shallow MAML-ANN we used in this experiment consisted of an input layer, three hidden
layers, and an output layer, for which the number of neurons was M, (256, 128, 64), and
2, respectively. M was determined by the number of input data points. The hidden layer
contained three layers, with 256, 128, and 64 neurons. The two was determined by the
number of classes (normal and abnormal).

The selection of hyperparameters strongly impacted the performance of MAML-ANN.
We analyzed the k-shot, q-shot, and batch size in this experiment. As shown in Figure 13,
we discussed the performance of the model under different k-shot, q-shot, and batch size
values. We considered 50 as an inflection point. When we had fewer than 50 data, MAML-
ANN could not effectively distinguish samples from the different classes because the data
size was too small. However, the accuracy rapidly increased as the data size increased.
When the data size was greater than 50, the performance of the MAML-ANN can be slightly
improved with the number of samples increasing. We verified that the training method
could quickly learn the correlation function of each class of feature data in the case of small
sample. By comparing and analyzing the effects of different hyperparameters, we found
that changes in k-shot had no effect. The accuracy with a q-shot of two first increased
and then decreased. When the q-shot was five, the accuracy was 2% higher on average
than with a q-shot of two. The fluctuations in accuracy were 1.96% and 0.75% with q-shots
of two and five, respectively. The latter was 38.3% of the former. In addition, when the
batch size was four or eight, the accuracy was about 3.5% higher than when the batch size
was two.

0 50 100 150 200 250 300
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0.90
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 k-shot = 2

 k-shot = 5

(a)
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Figure 13. Comparison between accuracies for different (a) k-shot, (b) q-shot, and (c) batch size.
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Considering the running time and other factors, we set the k-shot of the tasks to two,
q-shot to five, batch size to four, and the learning rate to 0.0005, as shown in Table 2. To
prevent overfitting in the training process, we added a dropout layer.

Table 2. Hyperparameters of MAML-ANN.

Hyperparameters Numerical

learning rate 0.0005
k-shot 2
q-shot 5

batch size 4

3.4. Performance of MAML-ANN

(1) Comparison between MAML-ANN and traditional ANN

The performance evolution as a function of training iteration of MAML-ANN and
traditional ANN is illustrated in Figure 14. In Figure 15, the results of MAML-ANN
and traditional ANN are thoroughly analyzed for different data sizes. In general, the
performance of MAML-ANN was better than that of traditional ANN. For traditional
ANN, the accuracy slowly increased with the growth in data size. Overfitting occurred
during the training process, and reached a stable state at around 100 epochs, indicating
traditional ANN had fallen into a local optimum. Additionally, the average interval of
accuracy for the normal and abnormal observations for different data sizes was higher
than that of MAML-ANN, by about twice. This means that the model trended to one of
the classes. The convergence of MAML-ANN was faster than that of traditional ANN,
to produce a better model. Because the task was random, the accuracy showed certain
volatility during the training process, which helped the model avoid the local optimum and
find the global optimum. Moreover, this randomness caused the performance of the model
to sharply deteriorate, but MAML-ANN could quickly adjust to a new and better solution.
Overfitting also occurred in MAML-ANN. With the increase in epochs, the accuracy on the
training and testing sets diverged. In addition, the overfitting gradually disappeared with
the increase in data size, indicating MAML-ANN is still useful for large amounts of data.
In summary, MAML-ANN produced a huge improvement of about 10% compared with
traditional ANN. It not only has accurate performance when the sample size is small, but
also showed good generalization performance with large amounts of data, and does not
suffer from the problem of the training process falling into the local optimal solution.

Figures 16 and 17 show the confusion matrix and F1 score of MAML-ANN and
traditional ANN for different data sizes. The TP and TN of MAML-ANN were both higher
than those of traditional ANN for the same data size. The precision was approximately 10%
higher, indicating the performance of MAML-ANN was better than that of traditional ANN.
The recall was approximately 20% higher, which means the confidence in the predicted
label was strong.

(2) Recognition speed

To successfully apply MAML-ANN to a wind turbine blade defect monitoring system,
the running time must meet the system requirements. The monitoring time interval of
the wind turbine blade defect detection system is 5 min, and the signal acquisition time is
1 min. Therefore, the time from feature extraction to model judgment output results is less
than 4 min. According to the test, the defect detection algorithm requires approximately
0.7 s for a 10 s signal, so it takes approximately 4.2 s for a 1 min signal, which is far less
than the requirements of the system. It can be embedded into a wind turbine blade defect
monitoring system.
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Figure 14. Training process of MAML-ANN and traditional ANN.
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Figure 15. Performance of MAML-ANN and traditional ANN. (a) Accuracy for different data sizes;
(b) average interval of accuracy between normal and abnormal samples.
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Figure 16. F1 score of MAML-ANN and traditional ANN.
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Figure 17. Confusion matrix of MAML-ANN and traditional ANN for different data sizes.

4. Discussion

Our study has several limitations, especially the diversity of dataset. The types and
degrees of WTB defects are diverse, but constructing a complete dataset is challenging. The
dataset we constructed mainly contained normal, cracked, and unbalanced samples, but did
not contain lightning strikes. This will result in poor performance for samples not included
in the database. However, our method involved training the initial model parameters such
that the model had maximal performance on new defects after a few gradient steps with a
small amount of data. Furthermore, our proposed method is scalable. For wind turbine
blade defect detection, the single-modal defect detection method can only detect some
defects well, but cannot detect all defects. The use of multimodal defect detection, such as
acoustics, vision, infrared, etc., is the future development trend. Our proposed scheme can
be well-integrated with other detection schemes to achieve multimodal defect detection.

5. Conclusions

In our study, we designed and experimentally tested an acoustic detection method
based on MAML. The results showed that the proposed method can very accurately detect
defects in WTBs. To verify our method, we collected signals from WTBs on wind farms
and discussed the impact of different directions and heights of sensor placement on data
acquisition. We explored the performance of feature extraction in different octaves, from
which we selected the 1/6 octave. Finally, we analyzed the characteristics of the three defect
types (normal, crack, and imbalance) in detail and verified the performance of MAML-ANN.
Compared with traditional ANN, MAML-ANN performed better and achieving a defect
detection accuracy of 94.1% when the sample size was only 50. Moreover, MAML-ANN
has a fast convergence speed and can automatically search for the global optimal solution.
The method also performed well with a larger data sample, indicating the MAML-ANN is
suitable for small as well as large sample sizes. Our proposed method offers an attractive
option to improve the detection of WTB defects from small sample sizes, and reduces the
labor cost for WTB data collection.

In the future, we will study the defect detection method for wind turbine blades from
two aspects: first, we want to obtain acoustic signals through artificially produce damage.
Second, we want to try tree-based algorithms [30] for WTB defect detection.
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