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Abstract: The dual-motor precision transmission mechanism (DMPTM) is an alternative way to
eliminate backlash while ensuring the stiffness of the servo system. However, most of the established
models of DMPTM are not accurate enough, and are not conducive to the optimization of system
performance and the design of high-precision controllers. In this paper, based on the detailed linear
model of the single components of the DMPTM, the dead-zone model, considering the time-varying
stiffness, is proposed to describe the backlash of the two transmission chains, and the friction of
the mechanism is depicted by the Stribeck model. Then, a high-precision dynamic model of the
DMPTM is formed. Finally, the model validation experiments for the open-loop and closed-loop
are carried out in the time domain and frequency domain. The experimental results show that the
proposed model can accurately describe the nonlinear characteristics of the mechanism. The Pearson
correlation coefficient between the proposed model and the actual system is ropen−loop > 99.41%, for
the open-loop, and rclosed−loop > 83.7%, for the closed-loop, and these results are both better than
those of the existing model. In the frequency domain, whether it is the open-loop or closed-loop
model, the frequency response of the proposed model also reproduces the actual system well, which
verifies the accuracy of the model.

Keywords: dual-motor precision transmission mechanism; detailed linear model; dead zone; friction

1. Introduction

Inertially stabilized platforms (ISPs) have been widely used in precision pointing
mechanisms, such as remote control weapon stations, tracking radars, optical imaging
equipment, antennas, and telescopes [1–4], to isolate the influence of base disturbances
on pointing accuracy. As the load of ISPs increases, a torque amplification device must
be added to drive the load for high dynamic response. Due to the compact space of the
azimuth platform of ISPs, the traditional reducer with a large reduction ratio cannot meet
the volume requirements, so the two-stage transmission mode of the planetary reducer and
the in series large ring gear (LRG) is still irreplaceable. However, due to the large diameter
of the LRG, it is difficult to ensure the manufacturing accuracy of the teeth, resulting in
an unpredictable meshing backlash between the gears. Backlash not only deteriorates the
control accuracy, reduces the bandwidth, and causes limited cycle oscillation, but also gives
rise to nonlinear dynamic responses, such as frequency jump, chaos, and bifurcation [5–9].

For this problem, scholars have proposed various solutions to eliminate backlash.
Among them, using the dual-motor precision transmission mechanism (DMPTM) is re-
ceiving more and more attention. By applying equal and opposite bias torques to the two
sets of motors, it can theoretically eliminate backlash while ensuring the stiffness of the
servo system [10–12], which is a distinctive superiority of DMPTM. However, the DMPTM
complicates the kinetic properties of ISPs and makes the analysis of the system properties
difficult. To improve the control accuracy of the system, an elaborate dynamic model of the
DMPTM needs to be established. However, up until now, most of the models of DMPTM
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directly simplify the DMPTM to a three-inertia mechanism and apply the traditional dead-
zone model to describe the particularity of the backlash [13–15], which is not conducive
to the optimization of system performance. The reason is that the traditional dead zone
model does not reflect the system backlash characteristics, and the nonlinearity of friction
is ignored.

The backlash has a serious impact on system performance, and many mathematical
models for backlash and gear play have been published. Ref. [16] reviewed the progress of
nonlinear dynamics of gear-driven systems in the past twenty years, especially the gear
dynamic behavior considering the backlash. Guesalaga A. [17] established a backlash model
using the “bristle” approach. The model introduces a continuous hysteresis representation,
different from classical discontinuous models, showing a behavior closer to what has
been observed empirically. Merzouki R. [18] modeled disturbing backlash torque by a
continuous and derivable mathematical function describing the opposite of the sigmoid
function. Barbosa RS [19] and Duarte FB [20] analyzed the dynamical properties of systems
with backlash and impact phenomena based on the describing function method. However,
the describing function has the defect that it can only be used for frequency domain
stability analysis. The dead-zone model [21] is the most widely used to depict backlash in
the time domain. Due to the non-differentiable property of the traditional dead-zone model,
which makes the control design problem very complex and difficult, Shi Z [22] proposes
a “soft degree” concept based on a recently developed differentiable dead-zone model
and then presents a practical backstepping algorithm to achieve not only high-precision
output tracing, but also limited cycle elimination. Yongjun S. [23] considered the time-
varying stiffness based on the dead-zone model when studying the nonlinear dynamics
of the gear pair based on the incremental harmonic balance method. Based on the results
presented in his paper, the periodic solution with arbitrary precision can be expeditiously
obtained, which is useful in analyzing or controlling the dynamics of the gear system.
A shortcoming of the studies above is that the non-contact area is regarded as having
no output by ignoring the influence of viscous damping. Aiming at this phenomenon,
Kranawetter K. [24] proposed a new dead-zone model based on phase plane analysis,
which takes into account the damping of gears in the non-contact phase and corrects the
boundary of the non-contact area. The accuracy of the models is improved, providing
a reference for the backlash analysis in this paper, but these models do not consider the
friction nonlinearity of the gears.

In summary, the existing research on the accurate modeling of the transmission chain
in the field of the DMPTM has not yet generated relevant reports. When studying the
nonlinearity of backlash, friction is not given enough attention, resulting in a comparatively
large deviation from the actual system.

Compared with previous studies, this paper contributes the following two works:
(1) A case study of the complex transmission chain of the DMPTM is first worked out in
detail; (2) The time-varying stiffness is premeditated in the modified dead-zone model.

The organization of this study is as follows. The detailed linear model of the trans-
mission chain of the DMPTM is established in Section 2., while the dead-zone model
considering the time-varying stiffness and the friction model of the system are established
in Section 3. Then, the accuracy of the proposed model is experimentally verified in the
time domain and the frequency domain in Section 4. Finally, the conclusion of this study is
summarized in Section 5.

2. Component Modeling
2.1. Overall Structure of the DMPTM

The system presented in this paper is shown in Figure 1. The structure of a typical
DMPTM is sketched in Figure 1, which consists of two identical transmission chains (in-
cluding a permanent magnet synchronous motor (PMSM), an L-shaped planetary reducer
(LSPR), a pinion, and an LRG.
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Figure 1. Schematic diagram of the transmission structure of the DMPTM.

First of all, a detailed linear model of the DMPTM has been derived, which reveals
the torque transmission principle of the mechanism. In this process, it is necessary to
identify the degrees of freedom that mainly contribute to the exchange of mechanical
actions. The degrees of freedom included in the model are those that are directly implied by
the transmission of the torque from the motor to the last stage of the transmission. Details
on modeling the single components are reported in the following subsections.

2.2. Motor and Driving Wheel of LSPR

Figure 2 shows the coupling between the motor and the driving wheel of the LSPR,
whose equations are easily derived as a two-mass compliant system:

Jm
..
θ0 + Dm

.
θ0 = Tm − T01 (1)

J1
..
θ1 + D1

.
θ1 = T01 − F12tR1 (2)

Tm = KdKMu (3)

T01 = K01∆θ01 (4)

∆θ01 = θ0 − θ1 (5)

where Jm, Dm are the inertia and damping of the motor rotor, while J1, D1 are the inertia
and damping of the driving wheel of the LSPR; θ0, θ1 are the rotation angle of the motor
rotor and the driving wheel, respectively; K01 is the stiffness of the motor shaft; Tm, T01 are
the electromagnetic torque of the motor and the input torque of the LSPR, respectively; Kd
is the amplification factor of the driver, while KM is the torque constant of the motor; u is
the input voltage of the motor; F12t is the circumferential force of the driving wheel; and R1
is the radius of the driving wheel.

Figure 2. Motor and the driving wheel of the LSPR coupling.

2.3. Internal Bevel Gear Drive of LSPR

The LSPR is composed of a planetary gear stage and a bevel gear stage. As the first
stage, the backlash of the planetary stage is so small that it can be ignored, and its friction
can be equivalent to the motor side. Therefore, the focus is on the bevel gear transmission.
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Figure 3 shows the bevel gear transmission inside the reducer. The dynamic equation of
the LSPR is:

J2
..
θ2 + D2

.
θ2 = F12t · R2 − T23 (6)

where J2, D2 are the inertia and damping of the driven wheel of the LSPR; R2 is the radius
of the driven wheel; and T23 is the output torque of the LSPR. The force analysis of the
bevel gear teeth is shown in Figure 4, and the circumferential force F12t and normal force
F12n when the gear teeth mesh can be obtained as follows:

F12t = F12n cos α1 (7)

F12n = K12∆L12 + D12∆
.
L12 (8)

where α1 is the pressure angle of the bevel gear, K12, D12 are the meshing stiffness and
meshing damping of the bevel gear, respectively; ∆L12 is the deformation of the teeth of
the bevel gear. Figure 5 shows the relative motion of gear meshing, and the deformation
∆L12 can be expressed by Equation (9):

∆L12 = (θ1R1 − θ2R2) cos α1 cos δ1 (9)

where δ1 is the taper angle of the bevel gear.

Figure 3. Bevel gear meshing transmission of the LSPR.

Figure 4. Force analysis of the bevel gear teeth.

Figure 5. The relative motion of gear meshing.
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2.4. Driven Wheel of LSPR and Pinion

The coupling of the driven wheel of the LSPR to the pinion is shown in Figure 6, and
the dynamic equation can be described as:

J3
..
θ3 + D3

.
θ3 = T23 − F34tR3 (10)

T23 = K23∆θ23 (11)

∆θ23 = θ2 − θ3 (12)

F34t = (K34∆L34 + D34∆
.
L34) cos α3 (13)

where J3, D3 are the inertia and damping of the pinion, while K23 is the stiffness of the
output shaft; θ2, θ3 are the rotation angle of the driven wheel and the pinion, respectively;
F34t is the circumferential force of the pinion, and R3 is the radius of the pinion; K34, D34 are
the meshing stiffness and meshing damping of the pinion, respectively; α3 is the pressure
angle of the gear, and ∆L34 is the deformation of the teeth of the gears. The deformation
∆L34 can be expressed by Equation (14):

∆L34 = (θ3R3 − θLRL) cos α3 (14)

where θL, RL are the rotation angle and the radius of the LRG, respectively.

Figure 6. Coupling between the driven wheel of the LSPR and the pinion.

2.5. Pinions and LRG

Figure 7 shows a schematic diagram of the coupling between one of the pinions and
the LGR, and Figure 8 shows the meshing dynamics model of the two pinions and the LGR.
By analyzing Figures 7 and 8, the dynamic equation of the LGR can be obtained as:

JL
..
θL + DL

.
θL = Fl34tRL + Fr34tRL

= (K34∆Ll34 + D34∆
.
Ll34)RL cos α3

+(K34∆Lr34 + D34∆
.
Lr34)RL cos α3

(15)

where JL, DL are the inertia and damping of the LRG; Fl34t, Fr34t are the circumferential
forces of the LGR on both sides; ∆Ll34, ∆Lr34 are the deformations of the teeth of the gears.
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Figure 7. Pinion and LGR coupling.

Figure 8. The dynamic model of meshing two pinions with the LGR.

2.6. Overall Linear Model

The equations derived above are all linear, forming a detailed linear model of the
overall transmission chain of the DMPTM, which can be represented by Figure 9.

Figure 9. The overall linear model of the DMPTM.

The model depicted in Figure 9 contains 9 degrees of freedom, resulting in a very
complex model. To analyze the factors that have a greater impact on the system performance
inside the system, we can find ways to reasonably simplify the model. The rigidity of the
motor shaft is large enough and the backlash of the LSPRs is within 7 arcmin. Moreover,
the internal detailed parameters of the LSPRs are not convenient to obtain, since they
form the proprietary background of the manufacturer of the transmission. Hence, the
motors and the LSPRs can be regarded as ideal transmission links, so θlm ≈ θl1, θrm ≈ θr1,
θl2 ≈ θl3, θr2 ≈ θr3 are obtained. The relationship of the motor angle to the pinion angle
can be simplified as:

θlm ≈ N1θl3, θrm ≈ N1θr3 (16)
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where N1 is the reduction ratio of the LSPR. The simplified overall linear model of the
system is shown in Figure 10.

Figure 10. The simplified overall linear model of the DMPTM.

Where J3 = N2
1 Jm + J1 + J2 + J3 in the figure is the sum of the inertia equivalent to the

pinion end. The simplified system vibration equation is shown in Equation (17):

M
..
X + D

.
X + KX = ET (17)

where
T =

[
Tlm Trm 0

]T

E =

 N1 0 0
0 N1 0
0 0 0


X =

[
θl3 θr3 θL

]T

M = diag
[

J3 J3 JL
]

See Appendix A for the expression of matrix D and K. Neglecting the effect of
damping in the vibration equation, Equation (17) can be simplified to an undamped free
vibration equation:

M
..
X + KX = ET (18)

Therefore, the resonant frequency ωNTF of the system satisfies:

K−ω2
NTF M = 0 (19)

Substitute M and K into Formula (19) to get the determinant:

det

∣∣∣∣∣∣∣
k1,1 −ω2

NTF J3 0 k1,3

0 k2,2 −ω2
NTF J3 k2,3

k3,1 k3,2 k3,3 −ω2
NTF JL

∣∣∣∣∣∣∣ = 0 (20)

The system resonance frequency can be obtained by solving Equation (20).

3. Analysis of Nonlinear Dynamics

The two transmission chains of the DMPTM consist of two stages. The first stage is an
LSPR, whose backlash on the system after deceleration can be ignored, but its friction is
nonnegligible. The second stage consists of a pinion and an LRG, whose manufacturing
and assembly errors make the backlash large, which directly affects the servo performance
of the system. At the same time, the friction of the LRG is also a key factor affecting
the performance.

Based on the detailed linear model established in Section 2, a modified dead-zone
model considering the time-varying stiffness is proposed to depict the backlash between
the pinion and the LRG. Furthermore, the Stribeck model is adopted to describe the friction.
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3.1. Modified Dead-Zone Model

The backlash of gears is shown in Figure 11, and 2∆ represents the backlash. According
to Ref. [20], the dead zone model of the pinion gear and the LRG can be expressed by
Equation (21):

τc =


k(z− ∆) + c

.
z
(
z,

.
z
)
∈ A+

c f
.
z

(
z,

.
z
)
∈ A0

k(z + ∆) + c
.
z
(
z,

.
z
)
∈ A−

(21)

where
A+ =

{(
z,

.
z
)

: z− c f
k

.
z +

c+c f
k

.
ze
− k

c+c f
( z+b.

z
+ c

k ) ≥ ∆,
.
z > 0

k(z− ∆) + c
.
z ≥ 0, ∀ .

z


A− =

{(
z,

.
z
)

: z− c f
k

.
z +

c+c f
k

.
ze
− k

c+c f
( z−b.

z
+ c

k ) ≤ −∆,
.
z < 0

k(z− ∆) +
.
z ≤ 0, ∀ .

z


A0 =

{(
z,

.
z
)}
\(A+ ∪ A−)

where k and c are the meshing stiffness and damping, respectively; z = θ3 − N2θL =
θ3 − zL

z3
θL is the transmission error between the pinion and the LRG, while z3, zL are the

number of teeth of the pinion and the LRG, respectively; c f is the damping when the pinion
and the LRG are in a non-contact state.

Figure 11. Backlash of gears.

The dead-zone model in Ref. [20] ignored the time-varying characteristics of stiffness,
resulting in the inaccuracy of the model. The stiffness k in the teeth engagements (between
the pinion gear and the LRG) has been computed, referring to a simplified scheme of the
tooth, sketched in Figure 12. The tooth is represented as a clamped bracket with variable
sections and with the force applied to the pitch circle of the wheel. The stiffness of the tooth
has been computed with the formula:

k =

(∫ h1

0

x2

EJ(x)
dx
)−1

(22)

where h1 is the distance from the base of the tooth to the pitch circle of the tooth; E is
Young’s modulus of gears; x is the linear coordinate along the distance, and J(x) is the
polar moment of inertia. For the specific calculation process of J(x), please refer to Ref. [25].
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Figure 12. Scheme of the tooth profile.

Convert k to the stiffness in the circumferential direction of the gear as the gear
meshing average stiffness km. The time-varying mesh stiffness k(t) of gear meshing can be
expressed by Equation (23) [21]:

k(t) = km + ka cos(ωzt + ϕr) (23)

where ka is the amplitude of the stiffness variation; ωz is the fundamental frequency of the
stiffness, and ωz = 2πn3z3/60; n3 is the pinion rotary speed; ϕr is the phase angle of the
stiffness, and ϕr = 0.

The meshing damping of gears can be expressed by Equation (24) [21]:

c = 2ζ

√
kmR2

3R2
L J3 JL

R2
3 J3 + R2

L JL
(24)

where ζ is the damping ratio, which is taken as 0.03–0.17.

3.2. Stribeck Friction Model

The frictions of the system are all represented by the Stribeck model, and its expression
is as follows [26]:

Tf

( .
θ, Tm

)
=



Tm, if
( .

θ = 0 and T−s < Tm < T+
s

)
T+

s , if
( .

θ = 0 and Tm > T+
s

)
T−s , if

( .
θ = 0 and Tm < T−s

)
T+

C +
(
T+

s − T+
c
)
e−(

.
θ/Ω+) + B+

.
θ, if (

.
θ > 0)

T−C +
(
T−s − T−c

)
e−(

.
θ/Ω−) + B−

.
θ, if (

.
θ < 0)

(25)

where Tf is the friction torque; T+
s , T−s are the static friction torques; T+

c , T−c are the Coulomb
friction torques; Ω+, Ω− are the Stribeck velocities; and B+, B− are the viscous dampings.

3.3. Overall Dynamic Model

First, the linear model of the DMPTM transmission chain is established step by step,
according to the torque transmission process, and then the modified dead-zone model,
considering time-varying stiffness and the Stribeck friction model, are added. The over-
all dynamic model of DMPTM finally established is shown in Figure 13. In the figure,
Tf 1, Tf 2, Tf L are the friction of the two LSPRs and the LRG, while ∆1, ∆2 are the backlash
between the two pinions and the LRG, respectively. In the actual system, due to the
uncertainty of manufacturing and assembly, the backlash and friction of the two transmis-
sion chains are different. Therefore, the following model parameters need to be obtained
through separate identification.
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Figure 13. Block diagram of the nonlinear dynamic model of the DMPTM.

4. Model Validation
4.1. Experimental Setup

A DMPTM experimental device, as shown in Figure 14, was built, mainly consisting
of two PMSMs (model: SPALY80), two drivers (model: Elmo P/N: SOL-WHI 20/100PYE),
two LSPRs (model: FABR060-25-S2-P1), an azimuth platform, an absolute encoder (model:
CAPRO-B112050), a fiber optic gyroscope (model: FOG-118), a 24 V power supply, a 48 V
power supply, dSPACE1104, and an industrial computer.

Figure 14. Experimental device for testing the DMPT.

4.2. Determination of Model Parameters

The kinetic model worked out so far involves many mechanical parameters, whose
accurate knowledge is essential. An analysis has been performed to derive expressions for
these parameters in terms of the geometrical properties of the bodies, and the properties
(inertial and elastic) of the materials. This analysis is briefly summarized hereafter.
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4.2.1. Inertia Parameter

The acquisition of the inertia parameters is relatively simple. The inertia of the motor
and reducer is directly provided by the manufacturer, and the inertia of the pinion gear, the
LRG, and the rotating tower can be calculated using a 3D modeler.

4.2.2. Dead-Zone Model Parameters

The parameters that need to be obtained for the dead-zone model mainly include the
size ∆1, ∆2 of the meshing backlash between the two pinions and the LRG teeth and the
dead zone transition damping c f .

The value of ∆1, ∆2 is mainly obtained through the experimental test. In this paper, the
reverse motion measurement method is used to obtain the ∆1, ∆2 through the difference
between the forward and reverse rotation angles. Dead-zone transition damping c f is
an adjustable parameter, and it takes a value with a higher degree of fitting with the
measured data.

4.2.3. Friction Model Parameters

The Stribeck friction models of the LSPRs and the LRG have been obtained through
standard identification experiments and are not reported here for brevity.

By consulting the parameters provided by the equipment manufacturer and the test
results, the system parameter values shown in Table 1 are obtained. Table 2 shows the
friction model parameters of the LSPRs and the LRG.

Table 1. System parameter values.

Symbol Value Symbol Value

Kd (A·V−1) 3 z3 20
KM (Nm·A−1) 0.13 zL 165

Jm (kg·m2) 2 × 10−4 km (Nm·rad−1) 3.6 × 104

J2 (kg·m2) 0.125 c (Nm·deg−1·s) 1
JL (kg·m2) 2.5 ∆1 (arcmin) 14

N1 25 ∆2 (arcmin) 10
N2 8.25

Table 2. Friction model parameter values.

Friction of the LSPRs Friction of the LRG

Symbol Value Symbol Value
T+

3s (Nm) 2.5 T+
Ls (Nm) 23

T−3s (Nm) −2 T−Ls (Nm) −20
T+

3c (Nm) 2.8 T+
Lc (Nm) 20

T−3c (Nm) −1.8 T−Lc (Nm) −17
Ω3+ (◦/s) 2 ΩL+ (Nm) 1
Ω3− (Nm) −2 ΩL− (Nm) −1

B+
3 (Nm·deg−1·s) 0.01 B+

L (Nm·deg−1·s) 1.2
B−3 (Nm·deg−1·s) 0.008 B−L (Nm·deg−1·s) 1

4.3. Experimental Results

To fully verify the accuracy of the model, the model response and the actual system
response when the system is open-looped and closed-looped are compared in the time
domain and frequency domain, respectively. Reference would be made to the velocity
control loop (Figure 15); the loop is closed on the load side, the speed measurements
being numerical differentiations of position measurements obtained with an encoder. A PI
(proportional integral) regulator Gc(s) = kp + ki

1
s is used, whose tuning had already been

performed independently of this analysis. This tuning, however, is essential here, as the
goal is just the validation of the model.
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Figure 15. PI speed control system.

In the figure,
.
θrL is the velocity setpoint, and

.
θL is the velocity response of the LRG.

4.3.1. Open-Loop Time Response

First, the open-loop time-domain responses of the system are verified experimentally.
Different excitation signals are applied to the motor, and the comparison results are shown
in Figure 16a–d. In the figure, the red solid lines are the model established according to
the existing method of Ref. [10], the blue solid lines are the model proposed in this paper,
and the black dotted lines are the response of the actual system. It can be seen from the
comparison results that the fitting degrees of the proposed model and the actual system are
higher than that of the existing model, under either the excitation of sinusoidal signals or
square wave signals, with different amplitudes and frequencies. The proposed model can
better reproduce the zero-crossing dead-zone characteristics and the transition time of the
commutation of the actual system, which are the key factors affecting the performance of
the servo system. It can be found from Figure 16 that the DMPTM has a large dead zone
and jitter in the process of changing direction due to the existence of backlash and friction.

Figure 16. Simulated and experimental time responses under an open-loop.
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4.3.2. Open-Loop Frequency Response

In the frequency domain, the frequency responses of the model and the system at
different voltage amplitudes are also contrasted, and the results are shown in Figure 17a,b.
The results show that the amplitude and phase of the proposed model also fit the system
frequency response characteristics better than the existing model.

Figure 17. Simulated and experimental frequency responses under an open-loop.

4.3.3. Closed-Loop Time Response

After adding the closed-loop PI regulator, an additional set of experiments was con-
ducted to test the ability of the model to reproduce the response of the system to setpoints.
The comparison results shown in Figure 18a–d also reveal that the proposed model is much
better than the existing model. The proposed model can accurately reproduce the zero-
crossing dead zone and velocity fluctuation when following a sinusoidal signal, as well as
the overshoot and oscillation times when following a square wave, while the existing model
cannot. It can be seen from Figure 18 that the velocity of DMPTM fluctuates greatly after
the closed-loop due to the difference in the clearance between the two transmission chains.

4.3.4. Closed-Loop Frequency Response

In the frequency domain, the closed-loop frequency responses of the model and the
system at different speed command amplitudes are compared, and the results are shown in
Figure 19a,b. The comparison results show that the proposed model accurately reproduces
the system frequency response in terms of amplitude and phase. In particular, the 5.5 Hz
resonance point after the system is closed is well captured, which shows that the backlash
and friction nonlinearity of the system lead to a low bandwidth, which is not conducive
to the high dynamic control of ISPs. However, the existing model cannot reproduce the
closed-loop frequency domain characteristics of the system.
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Figure 18. Simulated and experimental time responses under a closed-loop.

Figure 19. Simulated and experimental frequency responses under a closed-loop.

To quantify the accuracy of the model, the Pearson correlation coefficient was used to
evaluate the fitting degree of the model response curve and the actual response curve. The
Pearson correlation coefficients are calculated according to Figures 16 and 18, as shown in
Tables 3 and 4. From the results, it can be seen that the fitting degree between the proposed
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model and the actual is ropen−loop > 99.41% for the open-loop and rclosed−loop > 83.7% for the
closed-loop, which verifies the accuracy of the model. Compared with the existing model, it
can be improved by up to 5.61% and 1.78% in the open-loop and closed-loop, respectively.

Table 3. The Pearson correlation coefficient for open-loop time responses.

Experiments Existing Model/% Proposed Model/% Improvement/%

0.6 sin(πt)/V 94.13 99.41 5.61
0.75 sin(2πt)/V 97.47 99.67 2.26

0.6square(0.8πt)/V 99.14 99.68 0.54
0.75square(0.8πt)/V 99.30 99.73 0.43

Table 4. The Pearson correlation coefficient for closed-loop time responses.

Experiment Existing Model/% Proposed Model/% Improvement/%

10 sin(πt)/(◦ /s) 98.53 99.17 0.65
15 sin(2πt)/(◦ /s) 98.13 98.66 0.54

10square(πt)/(◦ /s) 92.77 94.42 1.78
15square(2πt)/(◦ /s) 82.75 83.70 1.15

5. Conclusions

High-performance control of ISPs can be achieved, provided that a reasonable knowl-
edge of the dynamic model of the mechanical system is available. In this paper, the single
components of the transmission chain are introduced in detail. Then, the overall linear
dynamic model of the DMPTM is formed. In the nonlinear aspects of the system, the
dead-zone model, considering the time-varying stiffness, is proposed to describe the sys-
tem backlash, and the Stribeck model is used to analyze the friction of the system, which
can more accurately depict the details of DMPTM in the process of speed reversal. The
experimental results in the time domain show that the proposed model is highly consistent
with the actual system. The fitting degree between the model and the actual speed response
is ropen−loop > 99.41%, for the open-loop, and rclosed−loop > 83.7%, for the closed-loop, which
are better than the results for the existing model. In the frequency domain, whether it
is under the open-loop or the closed-loop, the fitting degree is very good, verifying the
accuracy of the proposed model.

The research of this paper can provide a theoretic guide for the optimization of system
performance and the design of high-precision controllers.
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Appendix A

D =

d1,1 0 d1,3

0 d2,2 d2,3

d3,1 d3,2 d3,3

, K =

k1,1 0 k1,3

0 k2,2 k2,3

k3,1 k3,2 k3,3


where

d1,1 = D3 + D34R2
3C34

d1,3 = d3,1 = −D34R3R4C34

d2,2 = D3 + D34R2
3C34

d2,3 = d3,2 = −D34R3R4C34

d3,3 = DL + 2D34R2
4C34

k1,1 = K34R2
3C34

k1,3 = k3,1 = −K34R3R4C34

k2,2 = K34R2
3C34

k2,3 = k3,2 = −K34R3R4C34

k3,3 = 2K34R2
4C34

C12 = cos2 α1 cos δ1

C34 = cos2 α3
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