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Abstract: With the increasing awareness of the importance of environmental protection and the
fierce competition in the construction machinery market, improving the vibration comfort of a
whole construction machine has become a new focus of competition; therefore, optimizing the
performance of cab mounts has become an urgent problem to be solved. At present, the problems of
low modeling efficiency, serious technical difficulties, and long development cycles exist in the design
and optimization of cab mounts. In this paper, a multi-target regression forests method is introduced
into the design and optimization of the construction machinery installation system, which circumvents
the traditional complex modeling process and establishes a mapping relationship between cab
assembly parameters and the mounts’ stiffness, as well as introduces the system decoupling rate and
vibration isolation rate as the boundary conditions. Furthermore, the MRFs method is compared and
evaluated with MLRP and Multi-SVR prediction results. Finally, a complete, accurate, and efficient
design method for the cab mount system optimization is developed, improving the decoupling rate
and vibration isolation rate of the cab system. This design method can predict the stiffness of the
mounts in multiple directions.

Keywords: MRFs; vibration comfort; optimization; construction machinery

1. Introduction

With the continuous improvement of environmental awareness and related laws and
regulations, whether in the automotive industry or the construction machinery industry,
more and more customers are increasingly concerned about vibration and noise hazards [1],
which has led to the development of product design for sound and vibration comfort (noise,
vibration, and harshness, NVH), issues of great importance [2]. At present, the construction
machinery market is increasingly competitive, and the performance cost of the same class
of models in the conventional aspects is getting closer and closer. Therefore, the new
competition and technology directions are focused on improving the level of vibration
comfort of the whole vehicle.

As the main interaction mechanism of the driver, the vibration performance of the
cab is directly felt. In the process of operation, a cab vibration level that is too high will
lead to a variety of adverse reactions from the driver, such as lack of energy, slow response,
etc. [3,4]. Therefore, cab design should consider not only safety and economy but also
comfort. Cab mounts as the central system of cab vibration isolation, as well as their impact
on the whole vehicle’s vibration comfort performance, is of great importance. In order to
improve the driver’s ride comfort, in addition to considering the main vibration sources
such as work devices, engines, tracks, etc., vibration must be reduced from the source, and
isolating the vibration source of the cab’s vibration has also become a vibration comfort
improvement that can no longer be ignored. By optimizing the design of the cab mounts,
the vibrations transmitted from the frame to the cab can be further reduced [5]. Therefore,
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the performance of the cab mounts directly affects the level of cab vibration response and
plays a vital role in improving cab vibration comfort [6].

The process of cab parameters information acquisition as well as the matching analysis
and optimization of mount systems requires in-depth theoretical research combined with
experimental design and finite element analyses. In this process, the traditional mount
system design and optimization processes also face the following obstacles: on one hand,
the technical difficulties, meaning that in an actual project of construction machinery cab
mount system design and optimization, there are many conflicting requirements and
constraints that need to be met simultaneously; on the other hand, cab mount system
parameters are numerous, and small parameter changes will lead to a significant change
in the performance of the mount system. This brings incredible technical difficulties
to the improvement of the vibration isolation performance of the mounts. In addition,
in the optimization of the cab mount system, it is necessary to carry out decoupling
optimization, vibration isolation optimization, and robustness optimization based on the
vehicle’s coordinate system [7], which requires repeated iterations or repeated tuning with
the help of cab simulation models and mathematical models, which cannot achieve the
purpose of rapid optimization, in particular due to the challenge of meeting the accuracy
requirements of multiple mounts and an optimal matching of stiffness in different directions,
resulting in a long development period for the mount system and low efficiency.

In this paper, data mining technology is introduced based on the design and optimiza-
tion of the mount system. Indicators such as system decoupling and vibration isolation
rates are introduced as boundary conditions for evaluation. In the following, the current
status of the research will be described from two aspects: the design method and the
evaluation method of the mount stiffness of construction machinery cabs.

Today, the methods for predicting the stiffness of construction machinery cab mounts
include traditional finite element calculation methods based on mechanism and data min-
ing methods, in turn based on data drive [8,9]. As a nonlinear material, unlike metals,
rubber mounts do not have a suitable formula for calculating stiffness [10]; with the matu-
rity of the hyper-elasticity theory of rubber materials and the development of computer
technology, finite element software such as ADINA and ABAQUS can be applied to calcu-
late and study rubber mounts. In the 1940s, Strachousky and RicherHarding composed a
damping mechanism composed of rubber and a hydraulic damping device and applied for
a patent [11]. Muller of Germany obtained various structural parameters of rubber mounts
by the finite element analysis method, established an axisymmetric finite element model
of the main rubber spring, and calculated the curve of force and deformation of the main
rubber spring [12]. Foumani used ANSYS to calculate an axisymmetric rubber mainspring
volume flexibility problem. The method for setting the boundary conditions and the final
results of the simulation are given in the paper [13]. Judhaji, in order to analyze the effect
of different vibration modes on ride comfort, built a whole vehicle model for simulation
and improved the ride comfort significantly by changing the mounts’ position relative to
the body [14]. AlaorJ.Vieira Neto analyzed the effects of cab mount system stiffness and
damping on front longitudinal and transverse accelerations, vertical seat displacement,
vertical seat velocity, and vertical seat acceleration using a large number of experiments,
and then designed the parameters of the cab mount system according to the analysis results,
which reduced the displacement and acceleration of the cab to a great extent [15]. Based on
the relevant studies of the above scholars, the use of the finite element method requires an
extensive theoretical study of the suspension rubber’s stiffness and cab system combined
with experimental design for analysis, as this method leads to a time-consuming and
inefficient modeling process and is not conducive to rapid optimization [16]. In contrast to
the traditional finite element method, the data mining method for predicting the mounts’
stiffness can discard the complicated investigation and complex modeling process and
significantly improve the prediction and optimization efficiency. In order to identify the
positive and negative mechanical models of magnetorheological hydraulic mounts, Deng
Zhaoxue of Chongqing University uses the dynamic characteristics of magnetorheological
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mounts as training data and compares the model identification accuracy of two algorithms,
namely the BP neural network and the GA–BP neural network. The results show that
magnetorheological hydraulic mounts’ positive and negative models using the GA–BP
neural network have a faster convergence speed and higher identification accuracy. This
method helps control the magnetorheological mounts. Rheological mounts are applied
to the control of the system [17]. Using loudness, roughness, sharpness, jitter, and speech
intelligibility as input parameters and subjective evaluation scores as output parameters,
Fang Yuan, of Tongji University, established a prediction model for powertrain noise quality
of electric vehicles using a support vector machine algorithm. This optimized the model
using a particle swarm algorithm, and the results showed that the prediction model has
high accuracy with an average error of only 2% [18]. Cao used the advanced hybrid neural
network (AHNN) friction component model to train the model with the data obtained from
the powertrain dynamometer test bench and finally predicted the dynamics parameters
of the gearbox when shifting [19]. Paweł Cichosz used an improved decision tree model
to emulate the driver’s behavior in a racing car simulation, balancing accuracy when the
machine works with logic to when a human is working [20]. MarielaCerrada used a genetic
algorithm and a random forest classifier for gearbox fault detection with a classification
accuracy of more than 97% [21]. Yiqi Lu proposed an EV charging load prediction method
based on the random forest algorithm and individual charging station load data for the
increasing charging demand of EVs, determined the form of current data to be applied in
the algorithm, and verified the accuracy and reliability of the prediction algorithm [22].
This shows that it is feasible to use data mining methods to predict mount stiffness.

At the same time, the stiffness of the predicted mount needs to be evaluated. The
evaluation methods of the cab mounts can be divided into the following two categories:
one of them is the mount system level, and the stiffness of the mounts is constrained by the
decoupling rate as the boundary condition [23]. The decoupling rate of the main vibration
directions is maximized by setting the stiffness of the appropriate mount. The second is the
whole vehicle level, which mainly depends on the vibration isolation performance analysis
of the system [24], where the vibration transmission goes through the frame and into the
cab system, and again the stiffness of the mounts is constrained by the vibration isolation
performance as a boundary condition. The above study proves the feasibility of data mining
technology for mount stiffness prediction. For a nonlinear, continuous numerical variable
such as mount system stiffness, the mapping relationship between powertrain parameters
and mount stiffness can be established by using data mining methods, and engineering
evaluation indices such as decoupling rate and cab mount system vibration isolation rate
are introduced as the boundary conditions of the multiple regression prediction models.
The traditional complex modeling process is circumvented, and the direct prediction of
mount stiffness is achieved for the rapid optimization of the mount system.

After the research mentioned above, relevant scholars conducted certain research
on cab mount stiffness prediction and achieved effective results. However, the following
common problems still exist in the prediction and evaluation of the cab mount stiffness of
construction machinery.

(1) Most previous studies on cab mount stiffness prediction used traditional finite
element methods, leading to increased modeling complexity and reduced prediction and
optimization efficiency. Some scholars use data mining methods based on the data drive,
in which multi-output models are not introduced. The single-output prediction results lead
to low confidence in the predicted stiffness of the mounts due to the correlation between
the isotropic stiffness of each mount.

(2) Previous studies on the use of MRFs for cab mount stiffness prediction have rarely
been reported. The related mount optimization study did not include vibration isolation
rate and decoupling rate indices for further evaluation and analysis of the engineering
significance and reasonableness of the model. Using it as the boundary condition of the
regression model can improve the feasibility of the stiffness of the predicted mount under
engineering practice.
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Based on the above analysis, this paper takes the construction machinery cab mount
systems as the research object, circumvents the traditional complicated modeling process,
proposes to introduce multi-target regression forests (MRFs) in the design and optimization
design of the mount system, and integrates the mount parameters with the MRFs method to
achieve multi-point mount stiffness prediction. In addition, engineering evaluation indices
such as system decoupling rate and vibration isolation rate are used as boundary conditions.
At the same time, two other multi-output regression methods (multi-layer perception
regression, multiple-output support vector machine regression) are compared to find a
relatively satisfactory multi-objective prediction model method. A set of high-confidence
mounting system stiffness prediction models is established to avoid the complex modeling
process. The mapping relationship between cab parameters and mounting stiffness is
established, which solves the problems of technical difficulty, low data mining rate, and
long development period in the development of the mount systems, and is applied to the
optimization of the cab mount systems in engineering.

2. Multi-Target Regression Forests Model
2.1. Introduction of MRFs Model

From the current state of research on the design of the mounts of the cab of construction
machinery, it can be seen that the optimized design of the mounts is mainly focused on the
optimization of the stiffness of the mounts. In dynamics modeling, the mounts are usually
simplified to three mutually perpendicular linear springs, and the mounts individually
provide stiffness in each direction. Due to the correlation of the isotropic stiffness between
the mounts [25], when the mount stiffness is used as a prediction target for model tuning,
it will inevitably affect other models, so it is necessary to consider the correlation between
the targets and establish a multi-output model of mount stiffness. The advantages of
multi-objective regression mainly lie in that a multi-objective regression model is usually
smaller than a model with multiple single objectives. The multi-objective model can better
identify the dependencies between different target variables, and the model prediction
is better.

MRFs are trees that can predict multiple consecutive objectives at the same time.
Internally, it is a binary tree structure that divides the data into two subsets with an
optimization basis at each node, and the optimization basis for multiple objectives is to
replace the sum of the squared errors of a single variable with the sum of the squared errors
of multiple variables, repeating the division process until the stopping condition is satisfied,
and finally generating a decision tree with the median or mean value of the leaf nodes as
the prediction result [26]. The MRFs algorithm can better handle the interaction between
the input features of the mount stiffness prediction model, and the generated results are
highly interpretable. Moreover, the algorithm’s robustness is good when adding noisy
data or feature changes during the MRFs model-building process, which can automatically
detect the interactions between variables and handle the missing values in the element
variables with minimal information loss [27].

Let us suppose the data set D contains N data samples, the data set D is D = {(x(1), y(1)),
. . . , (x(N), y(N))}. The feature set has r dimensions, denoted as xl = (xl

1, . . . , xl
j, . . . , xl

r). For
the input variables and the corresponding output variables, the training set is divided into
two subsets when the jth feature vector and the corresponding fetch s are chosen as the
division variable and the division point, which is defined as:

R1(j, s) =
{

x | x(j) ≤ s
}

(1)

R2(j, s) =
{

x | x(j) > s
}

(2)
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In the above equation: R1(j,s) is the set of features taking values less than or equal to s;
R2(j,s) is the set of features taking values greater than s; the optimal division variables and
the optimal division points are required, i.e., to find:

minj,s

minR1 ∑
xi∈R1(j,s)

d

∑
i=1

(yi − y1)
2 + minR2 ∑

xi∈R2(j,s)

d

∑
i=1

(yi − y2)
2

 (3)

y1 = ave(yi | xi ∈ R1(j, s)) (4)

y2 = ave(yi | xi ∈ R2(j, s)) (5)

In the above equation: yi is the actual value corresponding to the input variable xi;
which must traverse the variable j and find the value of j and s, which makes the minimum
value, that is, the optimal division variable and the optimal division point, divide the region
with the selected optimal division variable and the optimal division point, and derive the
output value.

ˆcm =
1

Nm
∑

x∈Rm(j,s)
yi, m = 1, 2 (6)

The process is repeated, dividing the input set into two subsets each time until the
stopping condition is satisfied. Finally, the input set is divided into M regions, namely R1,
R2, . . . , RM, generating a decision tree.

f (x) =
M

∑
m=1

ˆcm I(x ∈ Rm) (7)

A random forest dealing with regression problems can also be referred to as a regres-
sion forest. A regression forest consists of T regression trees, whose predicted values can
be calculated by Equation (8).

pt =
1
T

T

∑
t=1

f (x)i (8)

In the above equation: pt is the predicted value of the test sample; f (x)i is the predicted
value of the ith tree.

2.2. Method for Predicting Cab Mount Stiffness Based on MRFs

Taking the cab mount system of construction machinery as the object of study, the left
front mounts, right front mounts, left rear mounts, and right rear mounts are arranged.
The arrangement of the corresponding mount system is flat-mounted, and the stiffness
coordinate system of each elastic support is parallel to the cab’s center-of-mass coordinate
system. The locations of the cab and suspension are shown in Figure 1. The factors affecting
the performance of the cab mount system include the inertia parameters of the cab’s center-
of-mass coordinates, the installation coordinates of each mount, the installation angle, and
the stiffness of each elastic spindle [28,29].

In the multi-output regression model of the mounts, the cab mass m, the rotational
inertia Iij (i,j = x, y, z), and the difference in the coordinates of the mounts Cmn (m = a,
b, c, d; n = x, y, z) are used as input parameters, where x, y, and z represent the three
directions, and a, b, c, and d represent the different mounts. As shown in Table 1, the above
19-dimensional parameters are used as the input of the multi-output regression model, and
the output parameters are the stiffnesses of the four mounts in three directions, with a total
of 12 target parameters. The model has a total of 50 sets of data, 80% of which are used
as the training set and 20% of which are used as the test set. Since the selected object is a
flat-mounted mount system, the mounting angle is not used as a feature parameter. The
flow of MRFs-based cab mount stiffness prediction is shown in Figure 2.
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Parameters

Ixx
(kg·m2)

Iyy

(kg·m2)
Izz

(kg·m2)
Ixy

(kg·m2)
Iyz

(kg·m2)
Ixz

(kg·m2)
m

(kg)

538 733 425 0.49 −5.6 15.7 759.23
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Cay
(mm)

Caz
(mm)

Cbx
(mm)

Cby
(mm)

Cbz
(mm)

856.727 −365 −422.651 857.727 334.271 −422.651

Ccx
(mm)

Ccy
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Ccz
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Cdx
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(mm)

Cdz
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3. Prediction and Validation of Cab Mount Stiffness Based on MRFs

As shown in Figure 3, the process of the construction machinery cab mount design
evaluation method is shown. In order to establish a high-quality excavation model, the
quality of the data must meet the requirements of accuracy, interpretability, and credibility,
and the data must be pre-processed. First, for the samples with missing mount-position
coordinates, the mount-position coordinates are deduced according to the torque axis
theory. The data sets with high correlation coefficients are integrated and downscaled
according to the Pearson correlation coefficient calculation method. Finally, the data are
downscaled by applying the principal component analysis method to achieve the purpose
of simplifying the model and preventing the occurrence of overfitting. At the same time, the
MRFs data mining algorithm is introduced in the design of the stiffness of the mount, and
the mount parameters are integrated with the MRFs method. The system decoupling rate,
as well as the vibration isolation rate and other indices, are used as boundary conditions.
The stiffness of the four mounts of the cab in 12 directions is finally output as the target.
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3.1. Data Preprocessing

1. Data Cleaning

Collecting parameters of the cab mount system includes measuring inertia parameters
by the three-line pendulum method, the moment balance method, and the compound
pendulum method [30]. The static stiffness of the mount is measured by the Dynamic
Testing Machine Model UD-3600-1, which may lead to missing or incomplete data during
the simulation or field measurement of the coordinates of the mounts, so the data cleaning
process must verify the missing data and correct the filling. The data set of the mount
system has specific correlation compared with other traditional structure data sets, and the
engineering theory can fill the missing data, in this paper, for the missing coordinates of
the mounts’ sample positions, according to the torque. In this paper, the missing position
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coordinates of the sample mounts are derived from the torque roll axis (TRA) theory, which
means that the elastic center of the mounts should fall on the torque axis. The angle between
the inertia spindle and the torque axis should be slight, as shown in Figure 4.

Machines 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

  
(a) (b) 

Figure 4. (a) Torque shaft top view position; (b) Torque shaft rear view position. 

2. Data Correlation Analysis 
Data correlation analysis refers to the integration of data distributed over multiple 

data stores. Data redundancy and tuple duplication need to be considered in data corre-
lation analysis. Data redundancy can be detected using a correlation analysis, given some 
attributes, to measure the degree to which each attribute contains other attributes. The 
correlation matrix is a square matrix containing Pearson product–moment correlation co-
efficients, which measure the dependencies between pairs of powertrain parameters [31]. 
The correlation coefficient takes values in the range [−1,1]. A value of −1 indicates a perfect 
negative correlation between two features. Conversely, a value of 1 indicates a positive 
correlation. The Pearson correlation coefficient can be considered the product of the co-
variance between the calculated features and the target divided by the standard deviation. 

( )( )

( ) ( )

μ μ σ
σ σ

μ μ

=

= =

 − − 
= =

− −



 

( ) ( )

1

22( ) ( )

1 1

r

n
i i

x y
xyi

n n
x yi i

x y
i i

x y

x y
 (9) 

The correlation matrix between the features of the cab mount system is calculated 
according to the Pearson correlation coefficient calculation theory, as shown in Figure 5. 
The redder the color that the matrix thermal indicates, the more significant the correlation. 
From the figure, it can be concluded that the mass m and the rotational inertia Ixx, Iyy, Izz, Ixy 
are more correlated than other features, which matches with the engineering reality; in 
addition, the right front suspension mass center y direction coordinate Cay and the left 
front suspension mass center y directional coordinates Cay and left front mount y direc-
tional coordinates Cby contain each other to a greater extent, and the correlation coefficient 
reaches −0.945. It is known that the original input parameter features have some redun-
dancy, so it is necessary to reduce the dimensionality of the input data. 

Figure 4. (a) Torque shaft top view position; (b) Torque shaft rear view position.

2. Data Correlation Analysis

Data correlation analysis refers to the integration of data distributed over multiple
data stores. Data redundancy and tuple duplication need to be considered in data cor-
relation analysis. Data redundancy can be detected using a correlation analysis, given
some attributes, to measure the degree to which each attribute contains other attributes.
The correlation matrix is a square matrix containing Pearson product–moment correlation
coefficients, which measure the dependencies between pairs of powertrain parameters [31].
The correlation coefficient takes values in the range [−1,1]. A value of−1 indicates a perfect
negative correlation between two features. Conversely, a value of 1 indicates a positive cor-
relation. The Pearson correlation coefficient can be considered the product of the covariance
between the calculated features and the target divided by the standard deviation.

r =

n
∑

i=1

[(
x(i) − µx

)(
y(i) − µy

)]
√

n
∑

i=1

(
x(i) − µx

)2
√

n
∑

i=1

(
y(i) − µy

)2
=

σxy

σxσy
(9)

The correlation matrix between the features of the cab mount system is calculated
according to the Pearson correlation coefficient calculation theory, as shown in Figure 5.
The redder the color that the matrix thermal indicates, the more significant the correlation.
From the figure, it can be concluded that the mass m and the rotational inertia Ixx, Iyy, Izz,
Ixy are more correlated than other features, which matches with the engineering reality; in
addition, the right front suspension mass center y direction coordinate Cay and the left front
suspension mass center y directional coordinates Cay and left front mount y directional
coordinates Cby contain each other to a greater extent, and the correlation coefficient reaches
−0.945. It is known that the original input parameter features have some redundancy, so it
is necessary to reduce the dimensionality of the input data.
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3. Data Dimensionality Reduction

Data dimensionality reduction refers to ensuring the integrity of the original data
and representing the data set in a more diminutive form. The performance of the mining
model built on the normalized data set will be better. Let us suppose we can filter out some
essential features from all the features so that the subsequent mining process only builds the
model on some of the features. In that case, the model will not have a dimensional disaster,
and thus the performance will be better. The main difference is that feature selection is
intended to remove some “irrelevant features” or “redundant features” and select some
“important features.” The standard feature selection algorithms can be divided into three
types: filter, wrapper, and embedding, while feature extraction can be understood as data
compression, which is the conversion or projection of data into a new feature space. The
commonly used feature extraction techniques are principal components analysis (PCA),
linear discriminant analysis (LDA) as a supervised dimensionality reduction technique to
maximize differentiability, and kernel principal component analysis (KPCA) as a nonlinear
dimensionality reduction technique.

PCA is a very effective unsupervised method for data compression, simplifying
model complexity and avoiding model overfitting while maintaining the most relevant
information [32]. PCA is an orthogonal linear transformation technique that aims to find
the direction in which the maximum variance exists in high-dimensional data, and to
transform the original sample data into a new space whose dimensionality is equal to or
less than that of the original space. The process of principal component analysis is shown
in Table 2.
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Table 2. Principal component analysis process.

Input: sample set D = {x1, x2, . . . , xm}; low dimensional space dimension d′′

Process:

1. All samples are decentered: xi ← xi − 1/m
(

m
∑

i=1
xi

)
2. Calculate the covariance matrix XXT of the samples
3. Eigenvalue decomposition of the covariance matrix XXT

4. Take the largest d′′ eigenvalues corresponding to the eigen components
Output: projection matrix W* = (w1, w2, . . . , w′d)

As the feature dimension of the mount stiffness prediction model is high relative to
the sample size, the model is prone to overfitting. The way to alleviate this “dimensional
disaster” is to reduce the dimensionality of the data, optimize the storage space, improve
computational efficiency, and improve the prediction performance. Therefore, PCA is
applied to transform the problem into solving the eigenvalues and eigenvectors of the
covariance matrix to find n(n < 19) new variables, which are linear combinations of the
original set of features and maximize the information of the powertrain, and these new vari-
ables become “principal components.” First, all the samples are standardized to construct
a 19*19 dimensional covariance matrix. The eigenvectors and eigenvalues of the matrix
are found as the principal components and the magnitude of the principal components,
from which 19 eigenvectors and eigenvalues are obtained. The variance-explained ratio
of the eigenvalues is the ratio of the eigenvalues to the total value. Then, the cumulative
explained variance graph is established, as shown in Figure 6.
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The bars in Figure 6 represent the independent variable of each principal component,
and the dashes represent the cumulative variance rate. The analysis shows that the cu-
mulative explained variance rate of the 10 first principal components has reached 99.9%,
i.e., these 10 “new variables” can capture 99.9% of the variance of the original data set,
so the first 10 principal components are extracted as the new feature set, thus reducing
the feature set to 10 dimensions and achieving the purpose of simplifying the model and
preventing overfitting.
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3.2. MRFs Prediction Results

The performance of MRFs models is usually evaluated by the goodness-of-fit (R2)
and root means square error (RMSE). The better the model performance, the closer the
goodness-of-fit is to 1. On the contrary, the worse the model performance, the closer the
goodness-of-fit is to 0. In some cases, the goodness-of-fit may be harmful, i.e., the model
considers that the predictor variables do not have a regression relationship but are randomly
distributed. The root mean square error can amplify the value of the more significant
prediction deviation and compare the stability of different models. It can capture a part
of the model’s response variance function to reflect that the model performs better. Root
mean square error and goodness-of-fit are commonly used regression model evaluation
indicators, where the root mean square error and goodness-of-fit are expressed as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (10)

R2 = 1−

N
∑

i=1
(ŷi − yi)

2

N
∑

i=1
(yi − yi)

2
(11)

In the above equation: N is the number of samples, yi is the actual value, yi is the
average value, and ŷi is the predicted value.

Model training was performed according to the MRFs algorithm, and 12 stiffnesses
were predicted for the four-point mounts. As shown in Table 3, some samples were taken
for the static stiffness of the cab mounts after optimization by MRFs. The predicted results
of each model are compared with the real values, as shown in Figure 7. As shown in
Table 4, before data cleaning, the RMSE, R2, and data dimension were 9.7681, 0.9924, and
19, respectively, and after data cleaning and dimensionality reduction, the RMSE, R2, and
data dimension were 8.6524, 0.9946, and 10, respectively. The processed data not only
improved the efficiency of model operation but also reduced the root mean square error
and improved the goodness-of-fit.

Table 3. Cab mount static stiffness after optimization by MRFs.

Direction
Right Front

Mount Stiffness
(N/mm)

Left Front
Mount Stiffness

(N/mm)

Right Rear
Mount Stiffness

(N/mm)

Left Rear
Mount Stiffness

(N/mm)

x 702 706 697 694
y 690 700 701 707
z 960 890 999 865

Table 4. MRFs model predicts the RMES and R2 results of the training set.

RMES R2 Dimensionality

Raw data 9.7681 0.9924 19
Preprocessed data 8.6524 0.9946 10
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3.3. Calibration of Evaluation Objectives

The model is evaluated in terms of RMSE and R2, which assess the closeness of
the predicted value to the actual value from a numerical point of view. A cab mount
system with good vibration isolation performance requires a reasonable matching of the
stiffnesses of the four mounts in three directions. In the actual optimization process of
the mount system, the individual mounts’ stiffnesses are matched with the cab vibration
comfort improvement goal. Therefore, the decoupling rate and vibration isolation rate
evaluation indices should be introduced as the boundary conditions of the multi-output
regression model to further evaluate the constraints of the indices on the model from
the engineering application level. The six-DOF model is established by using the view
module in ADAMS [33], which replaces the construction machinery cab assembly with
a rectangular mass model, represents the mounts with bushing units, and calculates the
decoupling and vibration isolation rates [34,35].

1. Decoupling Rate Analysis

Usually, the decoupling degree of the system is expressed by the modal decoupling
rate. At a particular order frequency, if its modal energy accounts for more than 98% of
the total energy, this modal energy is powerful, implying that the mode is dominant at
this frequency. If the decoupling rate of each order modal is 100%, it proves that each
modal is independent of and does not affect the other. The systems on the excavators are
interconnected with each other, so it is required that each order of the system modal must
be separated. Otherwise, the vibration coupling will occur, which increases the difficulty of
isolating the vibration. In the design and development process of the excavator cab mount
system, it is necessary to reasonably match each order of modal frequency and make the
vibration on each degree of freedom independent of each other. That is, the decoupling
degree is high, and in the actual design process, the modal decoupling method is commonly
used [36].

Modal decoupling is also called energy decoupling. From the energy point of view,
the decoupling of the system along the coordinate direction consists in all the work being
performed by the excitation force acting in that direction, which is converted into the
energy of the system in that direction. In other words, the excitation force along a specific
direction only causes the vibration in that direction. The modal decoupling rate is calculated
as follows.

(1) The differential equations for the free vibration of the suspension system are
established to obtain the intrinsic frequency and the principal vibration mode of the system.
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(2) By calculating the kinetic energy assigned to a mode in generalized coordinates,
the kinetic energy assigned in the kth generalized coordinate is expressed as:

Tk =
ω2

i
2

mkl(Ai)k(Ai)t (12)

In the above equation, ωi is the ith-order intrinsic frequency; Ai is the ith-order
principal vibration type of the system; (Ai)k and (Ai)t are the kth element and the lth
element of the system, respectively; mkl is the kth row and lth column element of the bit
system mass matrix.

(3) The percentage of the total kinetic energy assigned to a mode in generalized
coordinates is calculated as follows:

Tp =

6
∑

k=1
mkl(Ai)k(Ai)t

6
∑

l=1

6
∑

k=1
mkl(Ai)k(Ai)t

× 100% (13)

Table 5 shows the cab mount stiffnesses for the original construction machinery. The
magnitude of the natural frequency and decoupling rate of the original cab mounts are also
shown Table 6. Among them, the maximum decoupling rate in the Z direction is 99.85%,
and the minimum decoupling rate in the Rx direction is 48.88%.

Table 5. Original cab mounts’ static stiffness.

Direction
Right Front

Mount Stiffness
(N/mm)

Left Front
Mount Stiffness

(N/mm)

Right Rear
Mount Stiffness

(N/mm)

Left Rear
Mount Stiffness

(N/mm)

x 699 700 706 693
y 699 700 706 693
z 221 226 219 226

Table 6. Original cab mount system natural frequency and decoupling rate.

Modal Order
Number

Natural
Frequency Decoupling Rate (%)

/ (Hz) X Y Z Rx Ry Rz Max

1 1.89 0.00 50.22 0.07 49.71 0.00 0.00 50.22
2 3.61 47.12 0.00 0.08 0.00 52.80 0.01 52.80
3 5.89 0.05 0.05 99.85 0.02 0.03 0.00 99.85
4 12.36 0.58 1.67 0.00 1.10 0.71 95.94 95.94
5 13.94 52.06 0.33 0.00 0.29 46.30 1.03 52.06
6 14.73 0.19 47.73 0.00 48.88 0.17 3.03 48.88

Table 7 shows the magnitude of the natural frequencies and decoupling rates of the
cab mount system after optimization by MRFs. The analysis of the optimized natural
frequencies shows that the MRFs model satisfies the frequency interval of each order
greater than 1 Hz, where the maximum decoupling rate is 99.87% in the Z direction, and
the minimum decoupling rate is 57.47% in the Rx direction.
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Table 7. Natural frequency and decoupling rate of cab mounts after optimization by MRFs.

Modal Order
Number

Natural
Frequency Decoupling Rate (%)

/ (Hz) X Y Z Rx Ry Rz Max

1 5.42 0.01 58.40 0.01 41.57 0.00 0.01 58.40
2 7.52 75.03 0.00 0.02 0.00 24.86 0.08 75.03
3 12.40 0.01 0.91 0.00 0.71 0.15 98.21 98.21
4 14.34 0.18 0.29 99.08 0.24 0.21 0.01 99.87
5 15.35 0.00 40.39 0.53 57.47 0.01 1.60 57.47
6 16.40 24.78 0.00 0.36 0.00 74.77 0.09 74.77

2. Vibration Isolation rate Analysis

The z-directional excitation of the cab mount system is shown in Figure 8. The vibration
isolation rate is widely defined as the acceleration of the main and passive ends of the
mounts to calculate, and the engineering vibration isolation rate can be expressed as:

T = 20 log

(
Aactive
Apassive

)
(14)

where T is the vibration isolation rate, Aactive is the vibration acceleration of the active end,
and Apassive is the vibration acceleration of the passive end.
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Figure 8. Time and frequency domain excitation of: (a) the right front mount system in the z-direction;
(b) the left front mount system in the z-direction; (c) the right rear mount system in the z-direction;
(d) the left rear mount system in the z-direction.
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The vibration isolation rates of the original cab mounts are shown in Figure 9, where
the vibration isolation rates in the right front, left front, right rear, and left rear Z directions
are 3.57 dB, 9.90 dB, 0.36 dB, and 5.48 dB, respectively, and the vibration isolation rates of
the cab mounts optimized by MRFs are shown in Figure 10, where the vibration isolation
rates in the right front, left front, right rear, and left rear Z directions are 5.67 dB, 12.00 dB,
2.45 dB, and 7.58 dB, respectively. Compared with the original cab mount stiffnesses, the
vibration isolation rate is more visibly improved.

Machines 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

Figure 8. Time and frequency domain excitation of: (a) the right front mount system in the z-direc-
tion; (b) the left front mount system in the z-direction; (c) the right rear mount system in the z-
direction; (d) the left rear mount system in the z-direction. 

The vibration isolation rates of the original cab mounts are shown in Figure 9, where 
the vibration isolation rates in the right front, left front, right rear, and left rear Z directions 
are 3.57 dB, 9.90 dB, 0.36 dB, and 5.48 dB, respectively, and the vibration isolation rates of 
the cab mounts optimized by MRFs are shown in Figure 10, where the vibration isolation 
rates in the right front, left front, right rear, and left rear Z directions are 5.67 dB, 12.00 dB, 
2.45 dB, and 7.58 dB, respectively. Compared with the original cab mount stiffnesses, the 
vibration isolation rate is more visibly improved. 

 
(a) (b) 

  
(c) (d) 

Figure 9. Original cab mounts: (a) z-directional vibration isolation rate of the right front mounts; (b) 
z-directional vibration isolation rate of the left front mounts; (c) z-directional vibration isolation rate 
of the right rear mounts; (d) z-directional vibration isolation rate of the left rear mounts. 

Figure 9. Original cab mounts: (a) z-directional vibration isolation rate of the right front mounts;
(b) z-directional vibration isolation rate of the left front mounts; (c) z-directional vibration isolation
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3.4. Comparison of Method Effects

MRFs are multi-output regression algorithms, including multi-layer perception regres-
sion (MLPR) and multi-output support vector machine regression (multi-SVR), etc.

Multi-layer perception regression (MLPR) consists of three parts: the input layer, the
hidden layer, and the output layer. All nodes in the hidden and output layers are neurons
using a nonlinear activation function. In addition, the hidden layer can be composed of
multiple layers of neurons. The units of each layer are fully connected, and the output of
the previous layer is transformed into the input value of the next layer by the activation
function. The operation continues backward until it is counted to the output layer, where
the output value of the hidden layer unit is:

ypj = f j∑
i

wijxpj − θj (15)

In the above equation, wij is the connection weight of the ith node of the input layer and
the jth node of the hidden layer; xpj is the value of the ith input unit of the pth sample; θj is
the threshold of the jth node; and fj is the activation function, which can usually be the Tanh
function, Sigmoid function, and Relu function; the expressions of which are, respectively:

sigmod(x) =
1

1 + e−x (16)



Machines 2022, 10, 1148 17 of 21

Tanh(x) =
ex − e−x

ex + e−x (17)

Relu(x) =
{

x, x > 0
0, x ≤ 0

(18)

In this thesis, the MLPR network consists of three layers (an input layer, a hidden
layer, and an output layer) in nonlinear activation mode. The input layer has 19 nodes
corresponding to the 19 input parameters of the cab, the hidden layer is set up with
17 neurons, and the output layer has 12 neurons corresponding to the stiffness values in a
total of 12 directions for the four mounts. When the network parameters are learned based
on the training data, all the weights and deviations of the associations between the cab
input parameters and the stiffness are updated. When new data are applied, the predicted
values are calculated based on the learned weights and deviations. Table 8 shows the
construction machinery cab mount stiffness after optimization by MLPR. Table 9 shows the
magnitude of the natural frequency and decoupling rate of the construction machinery cab
system after optimization by MLPR. The vibration isolation rate of the cab mount system
after optimization by MLPR is shown in Figure 11. Among them, the maximum decoupling
rate in the Z direction is 99.87%, and the minimum decoupling rate in the Rx direction is
52.03%. The vibration isolation rates in the Z direction for the right front, left front, right
rear, and left rear are 2.07 dB, 8.40 dB, 1.14 dB, and 3.98 dB, respectively.

Table 8. Static stiffness of cab mounts after optimization by MLPR and Multi-SVR.

Method Direction
Right Front

Mounts Stiffness
(N/mm)

Left Front Mounts
Stiffness
(N/mm)

Right Rear
Mounts Stiffness

(N/mm)

Left Rear
Mounts Stiffness

(N/mm)

MLPR
x 702 699 695 690
y 697 693 703 696
z 431 403 397 450

Multi-SVR
x 702 695 700 699
y 693 694 698 690
z 637 605 589 629

Table 9. Natural frequency and decoupling rate of cab mounts after optimization by MLPR and
multi-SVR.

Method
Modal Order

Number
/

Natural
Frequency

(Hz)

Decoupling Rate (%)

X Y Z Rx Ry Rz Max

MLPR

1 3.06 0.05 53.02 0.06 46.83 0.05 0.00 53.02
2 5.63 57.96 0.05 0.03 0.04 41.89 0.02 57.96
3 9.65 0.04 0.09 99.87 0.00 0.00 0.00 99.87
4 12.36 0.12 1.33 0.00 0.92 0.39 97.23 97.23
5 14.63 41.73 0.14 0.01 0.18 57.56 0.39 57.56
6 14.91 0.11 45.37 0.03 52.03 0.10 2.36 52.03

Multi-SVR

1 3.66 0.02 55.16 0.07 44.73 0.01 0.00 55.16
2 6.54 65.25 0.02 0.08 0.01 34.61 0.04 65.25
3 11.67 0.18 0.24 99.54 0.02 0.02 0.00 99.54
4 12.34 0.02 1.26 0.01 0.96 0.27 97.48 97.48
5 15.04 0.03 43.28 0.19 54.23 0.11 2.17 54.23
6 15.26 34.50 0.05 0.12 0.04 64.98 0.31 64.98
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Figure 11. Optimized rear cab mounts by MLPR: (a) z-directional vibration isolation rate of right
front mounts; (b) z-directional vibration isolation rate of left front mounts; (c) z-directional vibration
isolation rate of right rear mounts; (d) z-directional vibration isolation rate of left rear mounts.

The support vector machine regression algorithm is only applicable to single-output
systems. When dealing with suspension stiffness prediction, constructing a series of single-
output support vector machine models is used to build a multi-SVR for mount stiffness.
Support vector machine regression (SVR) is a typical least-squares regression model, which
extends the support vector machine algorithm to the regression problem. The loss value of
the traditional regression algorithm is the difference between the model output value and
the real value. In contrast, the support vector machine regression algorithm allows for the
model output value to have a specific difference value, i.e., the loss calculation only starts
when the difference between the model output value and the real value is less than ε. Thus,
the support vector machine regression problem can be formalized as:

minw,b
1
2
‖w‖2 + C

m

∑
i=1

lε( f (xi)− yi) (19)

In the above equation, w is the normal vector; b is the displacement vector; C is the
regularization parameter; ε denotes the deviation; and lε(z) is the insensitive loss function
of the following form:

lε(z) =
{

0, i f |z|≤ ε

|z|−ε, otherwise
(20)

For the support vector machine model, the kernel range must be set as linear kernel,
polynomial kernel, Gaussian kernel, and Sigmoid kernel, the gamma parameter range must
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be set as (10−4, 103), and the penalty factor responds to the penalty degree of the algorithm
on the sample data, for example, if C is too small, the training error is significant, and if the
penalty factor C is too large, the generalization ability of the model becomes poor, so the C
parameter range must be set as (10−4, 103). The grid search method is used to determine
the best combination of parameters for the model, i.e., the kernel function is Gaussian
kernel, the gamma value is 0.05, and the penalty factor is 0.1. In Table 8 is shown the
construction machinery cab mount stiffness optimized by regression through multi-SVR.
Table 9 shows the magnitude of the cab mount system’s natural frequency and decoupling
rate after optimization by multi-SVR. Figure 12 shows the vibration isolation rate of the cab
mounts after optimization by multi-SVR. Among them, the maximum decoupling rate is
99.54% in the Z direction, and the minimum decoupling rate is 54.23% in the Rx direction.
The right front, left front, right rear, and left rear Z direction vibration isolation rates are
1.95 dB, 8.28 dB, 1.26 dB, and 3.87 dB, respectively.
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The analysis of the natural frequencies of different prediction models shows that the
MLPR and multi-SVR models do not meet the requirement of a modal frequency interval
greater than 1 Hz at each order, and only the MRFs model meets the requirement. The
optimized decoupling rate of the MRFs model is significantly higher than the original
decoupling rate, and the decoupling rate is higher than the MLPR and multi-SVR models
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in each direction of freedom. Analyzing the isolation rates of different prediction models,
it is found that the optimized mount stiffness of the MLPR and multi-SVR models slightly
decreases from the original state by 0–100 Hz due to the increased static stiffness. However,
the optimized mount stiffness of the MRFs model increases more significantly from the
original state by 0–100 Hz.

4. Conclusions

In this paper, data mining technology is introduced into the design of cab mounts of
construction machinery. Avoiding the cost of mount stiffness prediction caused by signifi-
cant data dimensions, the data preprocessing method sample data is optimized based on
data cleaning, data correlation analysis, and date dimensionality reduction. Subsequently,
the MRFs are used to predict the stiffness of the mount in multiple directions. At the
same time, the system decoupling rate and vibration isolation rate engineering indices are
introduced as boundary conditions for evaluation and optimization. The results show that
the optimized stiffness of the cab with MRFs meets the natural frequency of each order
greater than 1 Hz, and the optimized decoupling rate in the Z direction and Rx direction
is improved compared with the original stiffness; compared to the original stiffness, the
optimized vibration isolation rate of the MRFs is significantly improved. In addition, MRFs
are compared with the prediction results of MLPR and multi-SVR, and it is found that the
MLPR and multi-SVR models do not satisfy the modal frequency interval of each order
greater than 1 Hz, and only the MRFs model satisfies the requirements. The decoupling rate
in each degree of freedom direction after optimization of the MRFs model is higher than
that of the multi-SVR and MLPR models; moreover, only the MRFs model improves the
vibration isolation rate significantly compared to the original state after optimization, while
the other models even decrease in some directions. In summary, the advantages of MRFs
for mount system stiffness prediction are highlighted. The drawbacks of traditional finite
element design methods and traditional data mining methods, such as high development
difficulty and low robustness, are solved to provide guidance directions for mount system
stiffness prediction.
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