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Abstract: With the increasing dynamic nature of customer demand, production, product, and manu-
facturing design changes have become more frequent. Moreover, inadequate validation during the
manufacturing design phase may result in additional issues, such as process redesign and layout
reallocation, during the operation phase. Therefore, systems that can pre-validate and allow accurate
and reliable analysis in the manufacturing design phase, as well as apply and optimize variations
in production lines in real time, are required. Previously, digital twin (DT) has been studied a lot in
product design and facility prognostics and management fields. Research on the system framework
leading to DT utilization and optimization and analysis through DT in complex manufacturing
systems with continuous processes such as production lines is insufficient. In this study, a system
based on a DT and simulation results is developed; this system can reflect, analyze, and optimize
dynamic changes in the design of processes and production lines in real time. First, the framework
and application of the proposed system are designed. Subsequently, optimization methodologies
based on heuristics and reinforcement learning (RL) are developed. Finally, the effectiveness and
applicability of the proposed system are verified by implementing an actual DT application at a real
manufacturing site.

Keywords: digital twin; digital twin application; design analysis and optimization; reinforce-
ment learning

1. Introduction

The most used keywords in the approaching “Industry 4.0” and the upcoming manu-
facturing paradigm are “real time” and “variability” [1–4]. The manufacturing industry is
now facing dynamic market changes, including unpredictable product demands, shorter
product lifecycles, and increased demands for customized products, and is committed to
the introduction of smart manufacturing systems and factories to respond flexibly and
intelligently [5–7]. As a smart factory is defined as “a fully integrated, collaborative manu-
facturing system that can respond in real time to satisfy the dynamic needs and conditions
of factories, supply chains, and customers,” significant effort is being dedicated to plan-
ning and research and development for advanced manufacturing operations and service
improvements [8–10].

In previous studies, manufacturing simulations have been used as tools to analyze and
monitor complex processes and product life cycles in manufacturing systems [11–13]. These
simulations focus on representing the configuration of a manufacturing system, various
manufacturing activities, processes, and logistics as models in a virtual environment that
can be used to allocate manufacturing resources, evaluate scheduling alternatives, predict
performance, and benchmark from the shop floor level to the supply chain level [14,15].
For complex manufacturing systems, simulation models, including models that consider
details down to the component level, can be integrated with various engineering fields to
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analyze, optimize, and verify manufacturing systems [13]. However, smart manufacturing
systems and factories developed to respond flexibly to customer needs and market fluc-
tuations can be difficult to analyze and monitor based on simple simulations. With the
rapid development in technology and variation in customer needs, products have become
diversified, and product and design changes have become frequent; owing to this, the
frequency of production line relocation and reconfiguration has increased [16,17]. In order
to analyze those fluctuating manufacturing systems accurately and reliably, simulation
models need to be modified according to changes in manufacturing system design and
production lines. However, after configuring the simulation model, it is difficult to change
and reconstruct the model. Data obtained at a manufacturing site is often lost in the process
of being refined and transferred, and it is difficult to immediately reflect and express the
data in a virtual environment for a simulation model [11], so it is difficult to solve the
problem by reflecting various abnormal situations or changes at a manufacturing site in
real time.

Notably, digital twins (DT) are attracting considerable attention for addressing these
problems in simulations. A DT can completely utilize the data collected from manufac-
turing sites through communication networks, such as the industrial Internet of Things
(IIoT) and various sensors, and synchronize the data in real time [5,18]. This can minimize
the bullwhip effect caused by changes in plans or in the design of production lines [19].
Thus, the need to introduce the DT technology is increasing [19–22]; this technology can
anticipate problems in advance by reflecting the design changes in manufacturing systems
and configuration changes in production lines in real time, thereby solving problems oc-
curring during operation, reviewing and verifying the designs and plans, and monitoring
and analyzing operating situations [5,11,17,18]. In addition, optimization systems that
can analyze and evaluate the design of a manufacturing system more quantitatively and
realistically based on various simulation results through a DT, rather than through the
existing theory and engineer experience-based design, are also of particular interest [21,22].
Although many studies about DT have been conducted on a single object, such as product
design and facility management, studies on the application or utilization of DT at a more
complex system level such as production lines and manufacturing systems are insuffi-
cient [5,11,13,17,20]. Moreover, there is a lack of research on the system framework that
expands to optimization and analysis systems of production lines through such DT [18,20].

In this study, a DT-based analysis system that enabled the evaluation of the design,
variation, and planning of processes and work configurations in real time are suggested.
A system framework for the DT-based analysis and optimization system are developed.
In addition, optimization methodologies that derived the optimal production line design
and layout composition through heuristics or reinforcement learning (RL) algorithms were
combined with the proposed DT system. The operational procedures and logic for operating
the DT-based system combined with those optimization methodologies are described in
detail, and finally, a DT application that can be applied to manufacturing sites is developed
and verified.

2. Literature Review of Digital Twin

A DT is a virtual object or system created in a virtual environment, and it imitates and
demonstrates the same technological and functional properties as its actual twin. A DT can
also be defined as an advanced virtual model that represents and reflects the heterogeneous
elements, functional units, and information objects of a physical asset [23–26]. In the
manufacturing field, a DT can be defined as an advanced virtual factory that represents the
heterogeneous configuration and functional units of a physical manufacturing asset and
synchronizes the information object [8].
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The concept of a DT was first mentioned by Michael Grieves in 2003 and was first
proposed in 2011 in his book Virtually Perfect: Driving Innovative and Lean Products through
Product Lifecycle Management [23,27]. According to Grieves, a DT allows the creation of
digital replicas that can imitate physical assets, processes, and systems to monitor or predict
the entire lifecycle of an actual object [27,28]. A DT enables interactions by continuously
updating the status, performance, and maintenance of a physical system throughout its life
cycle through connections with dynamic real-world environments [29]. Moreover, deriving
new analysis results based on these interactions and accumulating historical and real-time
data are also possible. Thus, a DT plays an important role in “Industry 4.0” because it
enables the combination of information technology and operation technology to create new
value by linking the preparatory production stage with the actual production [24].

A simulation, or the simulation technology, is the most fundamental and important
DT technology that allows virtual objects to interact bidirectionally with physical objects in
real time [30,31]. Unlike conventional simulations, DT simulations enable rapid decision
making and interoperation by utilizing data collected and recorded from physical objects
through IoT sensors and communication networks in real time [31,32]; moreover, such
simulations demonstrate the following characteristics [11,19,33–37]:

• Automatic model creation with predefined configurational and functional units.
• Reflection of production site information on the model via convergence with the

information and communication technologies (ICT) and information synchronization.
• Advanced processing using an optimization algorithm or plan generation based on

horizontal coordination with engineering applications.
• Repeated derivation of indicators for dynamic prediction and diagnosis, reflecting

various situations.

In the manufacturing field, for manufacturing system design, simulation technol-
ogy is restricted to a standard tool for supporting designers to solve specific engineering
problems [20]. Although simulation models are useful for supporting the designing man-
ufacturing system, building a unified model that can respond in real time to immediate
changes in manufacturing systems is challenging. DT is highlighted as a practical enabling
technology in the manufacturing system design and control, and DT can be modified and
validated in a timely manner to avoid abnormal situations that happen in the manufactur-
ing system operating and development processes [20,21]. While traditional simulations
focus on identifying and verifying requirements and eliminating problems, simulations
with DTs can further identify and eliminate unforeseen events [38]. DT makes synchroniza-
tion between physical objects and virtual objects and promotes faster action and response
to reduced lead time [39]. With the dynamic and comprehensive data synchronization,
DT significantly improves the accuracy of a forecast and can be utilized for monitoring,
production planning, and process control [40].

Technological Evolution Level of A Digital Twin

Traditionally, a DT has been defined as having the following three functions [24,41,42]:
(1) developing a simulation model and visualizing virtual objects based on predefined
data collected from physical objects; (2) monitoring a system in real time by synchronizing,
collecting, and processing data; and (3) analyzing, predicting, and optimizing in real time
based on the collected data and simulation results. However, this traditional DT definition
cannot provide an overall optimal solution because it focuses only on a single system,
whereas every system in the real world is organic and complex [41,42]. The Institute for
Information and Communication Technology Planning and Evaluation in Korea focuses on
multiple systems and their interactions, which cannot be considered in the traditional DT
definition, and defines its level of technological evolution according to five stages. Here,
each level of the DT is defined and has characteristics as described in Table 1 [42].
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Table 1. Characteristics of a five level DT.

Level of DT Description

Level 1 Mirroring: duplicating a physical object into a DT

Level 2 Monitoring: monitoring and controlling the physical object based
on the analysis of the DT

Level 3 Modeling and Simulation: optimizing the physical object based
on the simulation results of the DT

Level 4
Federation: configuring federated DTs, optimizing complex

physical objects, and interoperating federated DTs
and complex objects

Level 5
Autonomous: autonomously recognizing and solving problems

in federated DTs and optimizing physical objects based on
federated DT solutions

In the first three levels, for instance, a single physical system is imitated, configured as
a virtual system, synchronized, and optimized based on the simulation results. However,
at the fourth level, that is, the federation level, each single DT interconnects and interworks
with other DTs such that more complex decision making can be performed, and more
precise results can be derived. A DT at the autonomous level can autonomously configure,
analyze, make decisions, and exercise control up to level 4.

3. Digital Twin-Based Analysis and Optimization System for Design and Planning

The DT-based analysis and optimization system proposed in this paper aims to support
decision making when designing manufacturing systems or production lines or when
improving existing ones. In the manufacturing operation phase, problems such as layout
changes and process reallocations occur frequently when the preliminary verification
of production lines in the manufacturing design phase is inadequate. In addition, the
distribution of resources, such as facility availability, worker placement, and logistics
capacity, required to prepare for abnormal situations that may occur during operations is
often decided arbitrarily based on non-quantitative factors such as the designer’s personal
judgment and propensity. Therefore, a methodology using the proposed DT-based analysis
and optimization system that can reflect the dynamic changes in the design of processes
and lines in real time and is more realistic, predictable, and quantitative rather than
being theoretical or experimental is needed. Furthermore, this system may derive optimal
alternatives, allowing engineers to design or select optimal line constructions through
comparative analysis from various perspectives.

3.1. Framework of the Digital Twin-Based Analysis and Optimization System

Figure 1 presents the framework of the proposed DT-based analysis and optimization
system. The framework consists of (1) an information layer and (2) a DT application layer.
The information layer is located at the bottom of the framework and holds manufacturing
design and resource information. Notably, manufacturing design information is stored
in legacy systems such as manufacturing execution systems (MES) or enterprise resource
planning (ERP), which contain design scenarios of the production process configuration
and its sequence, such as manufacturing bill-of-material (M-BOM), and production line
configuration and layout composition scenarios, such as computer-aided design images.
Manufacturing resource information is a database of information on manufacturing re-
sources acquired by the legacy system, and it contains information on objects, such as
products, facilities, logistics, work, and time, that compose processes and line designs.
The DT application layer is located at the top of the framework and includes functional
modules for the analysis and optimization of the design and planning of production lines.
The description of each component is as follows:
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• Interface module: This module contains a database that stores the design scenario and
manufacturing resource information transmitted from the information layer. The data
are transmitted to the DT simulation and optimization modules, simulation result data
are stored and operated, and design optimization result data are stored.

• DT simulation module: This module forms the core component of the proposed
DT-based system and includes (1) a DT library that generates simulation models by
objectifying facilities, processes, and operational logic and (2) a DT base model that
automatically creates, synchronizes, and utilizes DT models. The simulation engine
enables the visualization of DT simulations generated by the DT library and DT base
model and utilizes the results from the simulation. The designed processes and lines
can be analyzed, verified, and further utilized for optimization.

• Optimization module: This module includes two types of algorithms: (1) one for
optimizing the process, work configuration, and sequence, and (2) another for opti-
mizing the line configuration and layout design. The simulation results obtained by
the DT simulation module are inputted into the optimization module to execute the
algorithms and derive optimal results.
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3.2. Digital Twin Application

Figure 2 presents a sequence diagram of the operational procedure of the proposed
application. In practical scenarios, an engineer can request scenario data from legacy
systems to validate or optimize existing manufacturing design scenarios or new scenar-
ios. Legacy systems such as the MES or ERP then send the requested design scenario
and its resource information to the database of the interface module. Following this, the
interface module sends the manufacturing design scenario and resource information
to the DT simulation module, which initiates the validation and optimization proce-
dures as requested by the engineer. At this point, the engineer can set appropriate
values for various key performance indicators (KPIs) and their weights. Thereafter,
a simulation model is automatically generated through the DT base model and DT
library by synchronizing the received data. A manufacturing simulation is executed,
and the simulation results are derived and transferred to the interface module. The
optimization procedure is initiated from the optimization module using the simula-
tion results of the original design scenario. The optimization module tests the initial
or current state, which is represented and determined using the simulation of every
scenario. The optimization algorithms for the process or production line create a new
manufacturing design scenario and return to the interface module. This validation
and optimization procedure is executed until the best design scenario is derived. The
engineer can then quickly and quantitatively make decisions through comparative
analysis from various perspectives.
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3.3. Digital Twin-Based Optimization

So far, several studies have been conducted to optimize various types of production
systems using optimization methodologies, such as heuristic or metaheuristic algo-
rithms. However, several limitations or difficulties may be encountered in the operation
of optimization methodologies when expressing the dynamic characteristics of com-
plex production systems because production procedures are expressed in the form of
mathematical models. To address these problems, reinforcement learning (RL), which
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can solve complex problems with short calculation times, is effectively applied. RL
is a machine learning approach intended to determine a policy defined as a series of
actions, wherein one or multiple agents explore an environment, recognize the current
state, and maximize the accumulation of rewards. The application of RL also requires a
learning environment, which has previously been represented as a mathematical model.
Such mathematical models, however, present limitations when representing manufac-
turing systems with changing line configurations in real time, thereby increasing the
complexity [43]. Expressing the learning environment with a simulation model for line
composition and variation enables detailed expression of complex manufacturing sys-
tems. However, the existing simulation modeling method also has limitations in modifying
the model in real time and reflecting it as a learning environment in a situation where the line
configuration changes in real time. Proposed DT-based simulations synchronize information
in real time based on the DT base model and automatically generate simulation models
so that can representing line configurations and fluctuations in real time may improve the
learning performance quickly and accurately.

3.3.1. Heuristic-Based Optimization Algorithms for the Process and Sequence

A heuristic methodology, multi-objective genetic algorithm (GA), was applied for
the optimization of the process and sequence. The purpose of this optimization was to
solve the combination and sequencing problem, wherein n tasks were allocated to m
workstations. In particular, a GA, a heuristic methodology, is a population-based search
methodology. A GA simulates biological processes that allow consecutive generations
in a population to adapt to their environment. The adaptation process is primarily
implemented through genetic inheritance from parents to children and through the
survival of the fittest [44]. The algorithm proposed in this paper optimizes processes by
grouping and allocating them to each workstation. The input data for this algorithm
comprise a set of work numbers and work times, and the output data comprise the
objective function values (V). Note that the objective function determines V, which
represents the overall assessment index considering the following KPIs: tact time (TT),
line of balance (LOB), working rate (RWo), waiting rate (RWa), and blocking rate (RB).
The scenario with the highest V value is selected as the optimal scenario. The user can
adjust the weights of each KPI to determine the basis on which optimization is to be
conducted, such that the user can compare and choose optimization results from various
perspectives. The equation for the objective function is as follows, where λ represents
the weights of KPIs:

V = λTT ∗ TT + λLOB ∗ LOB + λRWo ∗ RWo + λRWa ∗ RWa + λRB ∗ RB,(
λTT + λLOB + λRWo + λRWa + λRB = 1, 0 ≤ λ ≤ 1

) (1)

Algorithm 1 presents the pseudocode of the DT-based multi-objective GA used for
process configuration and sequence design. First, the user sets parameters such as the
initial population (ninit), child population (nchild), number of termination iterations (it),
constraints (Con), maximum cycle time (CTmax), and mutation rate (Rm). In this algorithm,
the population refers to the process design scenario that can be created. In the first iteration,
the initial populations are denoted as a set ninit and are simulated using the DT simulation
model. Here, the DT simulation quantitatively computes the KPIs and determines the
objective function value (V) for each scenario using the calculated KPIs and set weights.
From the second iteration until termination, child populations are created by selecting and
crossing over the parents from the initial population. The generated child populations are
also simulated, and the objective function value (V) is derived. As generations evolve, the
optimal scenario is derived by selecting parents with higher objective function values (V)
and by generating child populations.
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Algorithm 1: Heuristic-based optimization algorithm DT-based multi-objective genetic algorithm

Input: work number, work time
Output: objective function value (V)
Initialization: set {parameters} 3 {number of initial populations (ninit), number of child
populations (nchild), number of termination iteration (it), constraints (Con), max cycle time (CTmax),
mutation rate (Rm)}
Body:

loop until i < it
if i = 1 then

for n = 1 to ninit do
generate population P(n) by considering Con and CTmax
execute the DT simulation and derive V of P(n)

end for
i = i + 1
goto loop

else if i = 2 then
for n = 1 to nchild do

select parents ∈ P
generate child C(n) form the selected parents with crossover and Rm
execute the DT simulation and derive V of C(n)

end for
i = i + 1
goto loop

else
for n = 1 to nchild do

P = P ∩ C
implement fast non-dominated sorting crowding distance method on P
select parents ∈ P
generate child C(n) form the selected parents with crossover and Rm
execute the DT simulation and derive V of C(n)

end for
i = i + 1
goto loop

end if
end loop

3.3.2. Reinforcement Learning-Based Optimization Algorithm for the Line and Layout

Furthermore, the Q-learning algorithm was used to optimize the line configuration
and layout design. Note that the assignment state of the workstations is defined as a state
(S) of the algorithm. Action (A) can be selected considering the current state: (1) adding a
new workstation in parallel, (2) adding a new workstation in series, and (3) moving the
workstation to another space. The objective function value considering the KPIs, similar to
that in the heuristic-based algorithm, is defined as a reward (R). The reward for each state
is calculated through a DT simulation. The equation for the objective function is as follows,
where λ represents the weights of KPIs:

R = λTT ∗ TT + λLOB ∗ LOB + λRWo ∗ RWo + λRWa ∗ RWa + λRB ∗ RB + λUS ∗US,(
λTT + λLOB + λRWo + λRWa + λRB + λUS = 1, 0 ≤ λ ≤ 1

) (2)

The Q-function is presented in Equation (3); this parameterized Q-function is widely
used in Q-learning. α denotes the learning rate that determines the learning speed, and
γ represents a discount factor that manages the trade-off between the importance of
immediate and future rewards [45,46].

Q(St, At)← Q(St, At) + α ∗
(

Rt+1 + γ ∗maxAt+1 Q(St+1, At+1)−Q(St, At)
)

(3)
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Algorithm 2 presents the pseudocode of the DT-based Q-learning algorithm for line
configuration and layout design. First, by examining the current state (St), a possible action
list is derived. Next, DT simulation models (St and At) are generated. After the simulation,
the next state (St+1) and next action (At+1) can be observed, and the next reward (Rt+1)
can be obtained. From these repeated simulations and observations, the Q-value can be
calculated and updated, and the transition can be stored in the Q-table. In this case, learning
is repeated until a termination condition is obtained.

Algorithm 2: RL-based optimization algorithm DT-based Q-learning algorithm

Input: workstation assignment state (S), policy, action (A)
Output: Q-value (Q), objective function value (R)
Initialization: set {parameters} 3 {number of episode (EP), index of ending rule (E), learning rate
(α), discount factor (γ)} and initialize Q-table
Body:

EP = 1
loop until EP < E

for t = 1 to T do
check St
generate list of At using policy
for i = 1 to I do

execute the DT simulation and derive R of (St, Ai)
generate list of (St+1, Ai+1) using policy
for j = 1 to J do

execute the DT simulation and derive R of (St+1, Aj)
end for

end for
calculate and update Q

Q(St, At)← Q(St, At) + α ∗
(

Rt+1 + γ ∗maxAt+1 Q(St+1, At+1)−Q(St, At)
)

store transition (St, At, Rt, St+1) in Q-table
if Q(St, At) = Q(St−1, At−1) then

exit for
else

t = t + 1
end if

end for
EP = EP + 1

end loop

4. Industrial Case Study
4.1. Digital Twin Application Development Environment

The DT application was implemented as depicted in Figure 3, and the development
environment information for each component is summarized in Table 2. The interface
module was mounted in an application based on Microsoft Office Excel, and it was inter-
faced with the DT simulation module and optimization module within the application
through the Excel data format. Figure 3 1© presents resource and work information for
a production line configuration. Figure 3 2© presents the constraint information required
when configuring production lines, and Figure 3 3© depicts the production line configura-
tion scenario. Figure 3 4© illustrates a menu that can control and operate this application.
Finally, Figure 3 5© depicts a user interface, wherein the user of the application can input
variables or weights of the optimization algorithms. Figure 4 presents the DT simulation
module and created simulation model. Note that the DT simulation module uses Siemens
Plant Simulation as the simulation engine. Figure 4 1© presents the objectified DT library
used for generating simulation models that contains facilities, processes, and operational
logic; the generated simulation models are represented and visualized on the screen, as
presented in Figure 4 2©. In our analysis, the optimization algorithms for the optimization
module were programmed in Python.
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Table 2. Information on the development environment for DT application.

Component Item Contents

Interface module Development environment
Programming language

Microsoft Office Excel
Visual Basic for Applications

DT simulation module Development environment
Programming language

Siemens Plant Simulation 16.1
SimTalk 2.0

Optimization module Development environment
Programming language

PyCharm 2022.1.2
Python 3.10.7

4.2. Implementation of the Digital Twin-Based Analysis and Optimization System

Note that the target production line in the implementation is a worker-centered assem-
bly line that produces the bodies of refrigerators. The line is divided into two layers:
production is first performed on the second floor and then moved to the first floor.
Ten workstations and two facilities are located on the second floor, and eleven workstations
and four facilities are located on the first floor; the layout is shown in Figure 5. Each
workstation has one worker and several tasks, and the distribution of tasks differs from
one workstation to another. Information pertaining to the tasks and the task distribution
for each workstation are summarized in Table 3. Using the two algorithms outlined in
Section 3.3, two experimental implementations were performed: (1) a heuristic-based opti-
mization of the process and sequence design and (2) an RL-based optimization of the line
and layout design.
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4.2.1. Experiment 1: Process Configuration and Sequence Optimization

In Experiment 1, the process configuration and sequence were optimized using the
heuristic-based algorithm explained in Section 3.3.1. Table 4 presents the optimization
results for various KPIs, and Table 5 presents a comparison of the as-is and best scenarios.
As shown in Table 4, the optimization results for different KPIs can be compared. The opti-
mization result based on TT was selected as the best scenario. In this case, the performance
improved by 8.01%, 7.37%, 17.37%, 7.09%, and 10.83% in terms of the throughput, TT, LOB,
working rate, and waiting rate, respectively; however, the blocking rate decreased by 3.74%.
In addition, as presented in Table 5, three workstations were not assigned tasks, but the
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overall cycle time was evenly distributed, indicating that the LOB had improved. Thus,
optimization reduces the resources required to plan the process by evenly distributing the
workload, consequently improving the overall performance.

Table 3. Process and sequence information of the as-is scenario.

First Floor Second Floor

WS 1

Code
Work

Number
Work

Time (s)
Cycle

Time (s)
WS 1

Code
Work

Number
Work

Time (s)
Cycle

Time (s)

WS01 1 6.000 19.774 WS11 21 8.000 8.000

2 3.500 WS12 22 17.676 17.676

3 3.500 WS13 23 3.000 11.773

4 2.000 24 2.000
5 4.774 25 6.773

WS02 6 9.000 11.000 WS14 26 11.000 20.546

7 2.000 27 9.546

WS03 8 7.000 7.000 WS15 28 1.000 15.773

WS04 9 8.999 8.999 29 14.773

WS05 10 4.000 9.225 WS16 30 6.000 14.870

11 5.225 31 8.870

WS06 12 1.000 9.500 WS17 32 10.000 20.773

13 2.500 33 10.773

14 6.000 WS18 34 5.000 5.000

WS07 15 7.000 10.000 WS19 35 3.000 6.000

16 3.000 36 3.000

WS08 17 10.000 10.000 WS20 37 3.000 12.000

WS09 18 14.000 14.000 38 6.000

WS10 19 7.000 16.451 39 3.000

20 9.451 WS21 40 5.419 18.257

41 12.838
1 Workstation.

4.2.2. Experiment 2: Line Configuration and Layout Optimization

In Experiment 2, the line configuration and layout were optimized using the RL-
based algorithm explained in Section 3.3.2. After the process and sequence optimization,
as in Experiment 1, the manufacturing resources were compressed, and the number of
workstations was decreased, which resulted in the availability of the space originally
occupied by the workstations. This space could be used to add another workstation or to
add the same workstations in series or parallel to improve the total performance of the line.
Figures 6 and 7 present the layout images before and after optimization, respectively, and
Table 6 compares these two scenarios. In the scenario before optimization, WS07, WS08,
WS09, WS20, and WS21 were not occupied, but in the optimized scenario, WS02 was added
in parallel, and WS19 and WS20 were moved to have more logistic times. The detailed
results are presented in Table 7. In both scenarios, the throughput and TT were slightly
reduced compared to the as-is scenario; however, the LOB, working rate, and waiting
rate demonstrated performance improvements of more than 10%. When comparing the
process-optimized and layout-optimized scenarios, although the performance appeared
almost similar in terms of the throughput and TT, the LOB, working rate, and waiting rate
were 1.08%, 1.59%, and 0.14% higher, respectively.
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Table 4. Results of Experiment 1.

KPI As-Is
scenario

Tact Time
Optimal
Scenario

LOB 1

Optimal
Scenario

Working Rate
Optimal
Scenario

Best
Scenario

(Improvement)

Throughput (ea) 1098 1186 1132 1120 1186
(+8.01%)

Tact time (s) 25.77 23.87 25.00 25.27 23.87
(+7.37%)

Line of balance (%) 61.12 78.49 83.32 26.37 78.49
(+17.37%)

Working rate (%) 36.18 43.27 54.86 82.21 43.27
(+7.09%)

Waiting rate (%) 37.38 26.55 28.07 55.68 26.55
(+10.83%)

Blocking rate (%) 26.44 30.18 17.06 14.93 30.18
(−3.74%)

1 Line of balance.

Table 5. Comparison of the as-is scenario and best scenario.

As-Is Scenario Best Scenario

WS 1 Code Work Number Cycle Time (s) WS 1 Code Work Number Cycle Time (s)

WS01 1, 2, 3, 4, 5 19.774 WS01 5, 17 14.774

WS02 6, 7 11.000 WS02 4, 6, 15 18.000

WS03 8 7.000 WS03 3, 9, 11 17.724

WS04 9 8.999 WS04 2, 7, 8, 12, 16 16.500

WS05 10, 11 9.225 WS05 14, 19 13.000

WS06 12, 13, 14 9.500 WS06 10, 18 18.000

WS07 15, 16 10.000 WS07 1, 13 8.500

WS08 17 10.000 WS08 - -

WS09 18 14.000 WS09 - -

WS10 19, 20 16.451 WS10 20 9.451

WS11 21 8.000 WS11 21 8.000

WS12 22 17.676 WS12 22 17.676

WS13 23, 24, 25 11.773 WS13 24, 33, 38 18.773

WS14 26, 27 20.546 WS14 23, 28, 36, 39 10.000

WS15 28, 29 15.773 WS15 29 14.773

WS16 30, 31 14.870 WS16 26, 35, 37 17.000

WS17 32, 33 20.773 WS17 25, 27 16.319

WS18 34 5.000 WS18 30, 41 18.838

WS19 35, 36 6.000 WS19 31, 32 18.870

WS20 37, 38, 39 12.000 WS20 34, 40 10.419

WS21 40, 41 18.257 WS21 - -

1 Workstation.

Table 6. Comparison of the layouts before and after optimization.

Before Optimization After Optimization

WS 1 Code Work Number Cycle Time (s) WS 1 Code Work Number Cycle Time (s)

WS01 3, 4, 5, 12, 15 18.274 WS01 3, 4, 5, 12, 15 18.274

WS02 7, 9, 10, 13, 16 20.499 WS02_1 7, 9, 10, 13, 16 20.499

WS03 17, 19 17.000 WS02_2 7, 9, 10, 13, 16 20.499
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Table 6. Cont.

Before Optimization After Optimization

WS 1 Code Work Number Cycle Time (s) WS 1 Code Work Number Cycle Time (s)

WS04 2, 6, 14 18.500 WS03 17, 19 17.000

WS05 1, 18 20.000 WS04 2, 6, 14 18.500

WS06 8, 11 12.225 WS05 1, 18 20.000

WS07 - - WS06 8, 11 12.225

WS08 - - - - -

WS09 - - - - -

WS10 20 9.451 WS10 20 9.451

WS11 21 8.000 WS11 21 8.000

WS12 22 17.676 WS12 22 17.676

WS13 23, 28, 31, 34, 35 20.870 WS13 23, 28, 31, 34, 35 20.870

WS14 29, 36, 37 20.773 WS14 29, 36, 37 20.773

WS15 25, 26 17.773 WS15 25, 26 17.773

WS16 24, 30, 39, 40 16.419 WS16 24, 30, 39, 40 16.419

WS17 32, 38 16.000 WS17 32, 38 16.000

WS18 41 12.838 - - -

WS19 27, 33 20.319 - - -

WS20 - - WS18 41 12.838

WS21 - - WS19 27, 33 20.319
1 Workstation.
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Table 7. Results of Experiment 2.

KPI As-Is
Scenario

Before Optimization
(Improvement)

After Optimization
(Improvement)

Throughput (ea) 1098 1094
(−0.36%)

1093
(−0.46%)

Tact time (s) 25.77 26.30
(−2.06%)

26.33
(−2.17%)

Line of balance (%) 61.12 79.84
(+18.72%)

80.92
(+19.80%)

Working rate (%) 36.18 47.45
(+11.27%)

49.04
(+12.86%)

Waiting rate (%) 37.38 26.33
(+11.05%)

26.19
(+11.19%)

Blocking rate (%) 26.44 26.21
(+0.23%)

24.77
(+1.67%)

Space utilization (%) 100.00 76.19
(+23.81%)

80.95
(+19.05%)

5. Conclusions

In recent years, several manufacturing companies have made significant efforts to
produce customized products. Specifically, as customer demand becomes more dynamic,
production and products become more diverse, and product changes and manufacturing
design changes also become more frequent. In such cases, insufficient verification in the
manufacturing design phase leads to problems such as process redesign and layout changes,
which lead to reduced production efficiencies. Therefore, systems that can pre-validate and
allow accurate and reliable analysis in the manufacturing design phase are needed; these
systems must also be capable of optimizing the variations in production lines in real time.
Thus, DT technology has been attracting attention as a qualified system. However, DT
has been studied a lot in product design and facility prognostics and management fields.
Research on the system framework for utilizing DT and optimizing and analyzing through
DT in complex manufacturing systems with continuous processes such as production lines
is insufficient.
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In this paper, we proposed a DT-based analysis and optimization system that supports
the real-time analysis of manufacturing designs and variations in processes and work
configurations. The proposed system also supports the optimization of manufacturing
scenarios and derives optimal alternatives that allow engineers to make decisions more
quickly and quantitatively. The framework and operational procedures for this system are
outlined, and algorithms for optimization and actual DT applications are designed and
implemented. Finally, by applying the DT application to a manufacturing company, as an
industrial case study, the usability and effectiveness of the system are verified through sim-
ulation, analysis, evaluation, and optimization of the designed production line. This study
suggests an approach to objectively optimize and analyze based on the data and model,
in contrast to existing manufacturing design methodologies that rely on the engineer’s
knowledge and experience, and reflects and corrects abnormalities during operation. This
study also suggests a DT-combined methodology for modeling a learning environment for
RL that enable faster and more accurate improvements in the performance of RL.

For the future work of this study, extending proposed framework and system to
an advanced DT, integrated with manufacturing operational data, will create diagnostic,
analytical, predictive, and optimization systems and will reflect various situations occurring
in the manufacturing field in real time.
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