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Abstract: In this study, machinability tests were carried out on a corrosion-resistant superalloy sub-
jected to shallow (SCT) and deep cryogenic treatment (DCT) via electrical discharge machining (EDM),
and the effect of the cryogenic treatment types applied to the material on the EDM processing perfor-
mance was investigated. Experimental parameters, including pulse-on time (300, 400 and 500 µs),
peak current (A) (6 and 10 A) and material types (untreated and treated with SCT and DCT), were
used to construct the full factorial experimental design. The resulting average surface roughness (Ra)
and material removal rate (MRR) results were optimized using the Taguchi L18 method. According
to the Taguchi-based gray relational analysis, the optimal parameters for both Ra and MRR were
determined as cryogenic treatment, pulse-on time and peak current, respectively. The response
table obtained using the Taguchi method showed the most effective factors as A1BlC3 for Ra and
A2B2C1 for MRR values. According to the ANOVA results for determining parameters affecting
performance, peak current was the most effective factor for average surface roughness and MRR, at
74.79% and 86.43%, respectively. When examined in terms of Taguchi-gray relational degrees, the
optimal parameters for both Ra and MRR were observed in the experiment performed with the SCT
sample at a peak current of 6 A and 300 µs pulse-on time.

Keywords: electrical discharge machining; cryogenic treatment; Taguchi method; gray relational
analysis; ANOVA

1. Introduction

Cryogenic treatment is a type of heat treatment applied at low temperatures that is
used to improve the mechanical and physical properties of materials. Cryogenic treatment
is applied to a wide range of materials, such as iron, non-ferrous alloys, ceramics, plastics,
carbides and tool steels, as well as to cutting tools [1,2]. During cryogenic treatment, the
samples are gradually brought to a cryogenic temperature, kept at that specified temper-
ature for a certain period of time, and then brought back gradually to room temperature
in order to prevent microfractures from forming in the microstructure of the material.
Cryogenic treatment is usually carried out at temperatures between −80 ◦C and −196 ◦C.
Shallow cryogenic treatment is performed between −80 ◦C and −140 ◦C, and deep cryo-
genic treatment between −140 ◦C and −196 ◦C [3]. The use of deep or shallow cryogenic
treatment depends on the type of material to be treated. Cryogenic treatment applied to
different materials improves their hardness, toughness, electrical conductivity and abrasion
resistance properties [4–6].

Cryogenic treatments applied to materials as heat treatment can be divided into
two types. The first is cryogenic treatment for enhancing the mechanical and physical
properties of materials, usually applied to improve the tribological properties of tool
steels and alloys [5,7,8]. The second type is cryogenic treatment applied to increase the
wear resistance, toughness and other properties of cutting tools used in manufacturing [9–11].
The effects of cryogenic cooling and cryogenic treatment on processing performance have
been observed extensively in traditional manufacturing methods, such as turning, milling
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and drilling [12,13]. However, the effects of cryogenic treatment on non-traditional manu-
facturing methods, such as electrical discharge machining (EDM), have not been as widely
investigated as they have been on conventional manufacturing methods.

Electrical discharge machining is an unusual manufacturing method used to machine
geometrically complex and rigid materials. This method is classified as a thermal machin-
ability method because it uses electricity as energy. The machining performance has no
effect on the stiffness, toughness and strength of the material to be machined. On the
other hand, the melting temperature and thermal conductivity of the material affect the
machinability performance [14,15]. With EDM, chip removal is achieved by melting and
evaporating the workpiece [16]. In this technology, electrical sparks are used for material
abrasion, so there are no mechanical stresses or tipping and vibration problems during
processing as the electrode and workpiece do not touch each other [17]. The high tempera-
tures which occur during the processing of superalloys by conventional methods impair
product quality and increase tool wear, which destroys cutting tools [1,2]. In the processing
of difficult-to-process materials, non-traditional methods can be used to increase product
quality and reduce production costs.

The Taguchi Method is a systematic statistical approach used to determine the effects
and optimal levels of control factors by performing a small number of experiments, making
it an efficient method which is preferred in experimental studies. The Taguchi method
deals only with single-response optimization problems. Therefore, the traditional Taguchi
method cannot optimize a multi-objective optimization problem. The Taguchi method and
gray relational analysis (GIA) are combined to optimize multipurpose problems [18,19].
Gray correlation analysis is one of the multi-factor decision-making methods. Through
gray relational analysis, a gray correlation degree is obtained to evaluate the multiple
performance properties. As a result, the optimization of complex multi-performance
features can be turned into optimization of a single gray relational class. Gray relational
analysis is applied in different industrial fields under topics such as gray modeling, gray
estimation and gray decision making [20]. Gray relational analysis utilizes black if it does
not have knowledge and white if it has full knowledge. The gray system shows the level
of information between black and white. Some information is known in the gray system,
but some parts are unknown. Relations between factors in the white system are the closest,
while in the gray system, the relations between the factors are not certain [21].

The literature studies on the machinability of cryogenically treated materials and
electrodes in EDM have been examined and summarized. Rahul and Datta examined
the processing performance of cryogenically treated Inconel 825 super alloy using differ-
ent machining parameters on the EDM machine. The test parameters were determined
as peak current, pulse-on time and duty factor. The effects of experimental parameters,
such as the processing performance output on surface morphology, were examined. As
a result of the study, it was found that the intensity of microcracks formed on the sur-
face of the cryogenically treated Inconel 825 super alloy was lower [22]. Kumar et al.
examined the effects of a cryogenically treated electrode material on abrasion. In the ex-
periments, the processing parameters were determined as treated and untreated electrode
material (copper-tungsten), peak current, pulse-on time, pulse-off time and flushing pres-
sure. The researchers used the Taguchi L18 (21 × 37) experimental design to statistically
determine the effect of the specified processing parameters on abrasion. As a result of their
experimental studies, they determined that the wear rate of the cryogenically treated elec-
trode material was improved [23]. Jaspreet et al. investigated the processing performance
of three different mold steels that were cryogenically untreated and cryogenically treated
using EDM. They determined the test (processing) parameters as current, on time, duty
factor, voltage and polarity, and the output parameters as surface roughness, electrode
wear amount and material wear amount. As a result of the study, they determined that
the cryogenic process reduces tool wear and improves the surface quality of the workpiece
after machining [24]. Abdulkareem et al. applied cryogenic treatment to copper material
that was used as electrodes, and then examined the processing performance of the titanium
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alloy in different machining parameters. They determined test parameters, such as current,
pulse-on time, pause-off time and gap voltage. As a result of their work, they were found
that the wear rate of the electrode improved by 27% [25].

When the literature studies are examined, it is seen that the optimization performed
using the processing parameters makes the EDM method more stable. In addition, although
the studies provide information on the relationship between various input and output
parameters for the processing of materials with EDM, they do not provide much informa-
tion about the underlying mechanisms. This study investigated the effect of shallow and
deep cryogenic treatment on the corrosion machinability performance of a superalloy using
EDM. The order of the machinability experiments carried out with EDM was established
according to the Taguchi method L18 orthogonal array. In order to determine the most
effective parameters, the signal/noise (S/N) ratios obtained by the Taguchi method were
used. The effects of factors on machining performance were determined by ANOVA. The re-
lationship between the predicted values and the experimental results was also examined by
regression analysis, and gray relationship analysis was used to determine the relationship
between average surface roughness (Ra) and material removal rate (MRR).

2. Material and Methods
2.1. Electrical Discharge Machining

In the experimental study, a King ZNC-K-3200 Electrical discharge machine was
used. Electrical discharge machining is a manufacturing method whereby electric dis-
charge sparks are used to produce a workpiece in an accurate shape and size. An arith-
metic standard formula is used to calculate the MRR and tool (electrode) wear rate. The
MRR is calculated by the difference of the weight of the workpiece before and after
machining carried out per minute. The formula for calculation of the MMR is given as
Equation (1) [26,27].

MRR =


(

W−W f

)
t

 (1)

MRR—Material removal rate (g/min)
Wi—Initial (before machining) weight of workpiece (g)
W f —Final (after machining) weight of workpiece (g)
t—Period of trial (min)

2.2. Material and Electrode Selection

The corrosion-resistant superalloy used in the experiments is a material with superior
resistance to various chemical environments, such as copper chloride, chlorine, acetic acid,
sea water and formic acid [1–3]. In the experimental work, a corrosion-resistant superalloy
with a diameter of 20 mm and a length of 10 mm was used. Electrolytic copper with a
density of 8.9 g/cm3 and a diameter of 18 mm was used as the electrode. The chemical
composition of the corrosion-resistant superalloy (ASTM B 275) is shown in Table 1.

Table 1. Chemical composition (%) of corrosion-resistant superalloy.

Ni Cr Mo Fe W

58% 22% 13% 4% 3%

Superalloy samples were gradually cooled down over 6 h to −80 ◦C in the shallow
cryogenic treatment (SCT) group and to −145 ◦C in the deep cryogenic treatment (DCT)
group. The samples were left at these temperatures for 24 h and were then gradually
warmed up to room temperature over 6 h. The cryogenically untreated samples (UT)
were used as a reference. The cryogenic treatment applied to the samples is schematically
illustrated in Figure 1.
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Figure 1. Cryogenic treatment schedule.

Hardness measurements of the cryogenically treated samples were made using a
Duroline-M microhardness tester and electrical conductivity measurements were taken on
an Alpha-A High Performance Frequency Analyzer.

2.3. Scanning Electron Microscopy, Average Surface Roughness and Weight Measurement

Measurements of formed on the cutting tool (electrode) were examined by using
an FEI Quanta FEG 250 scanning electron microscope (SEM). For measuring the average
surface roughness, a Taylor Hobson (Taylsurf Pgi 830) measuring instrument was used.
The average surface roughness measurements were performed at room temperature and
conducted in three repetitions. For measurement of the average surface roughness formed
on the workpiece during machining, the cut-off was taken as 0.8 mm and the sampling
length as 5.6 mm. The weight loss measurements of the test samples were made with the
Radwag precision scale (0.001 g accuracy).

2.4. Taguchi Method

The Taguchi design of experiments (DOE) test method is widely used in academic
and industrial fields to determine the most effective parameters according to the data
obtained [9]. The test design in this study was realized by the Taguchi method, and the
parameters affecting the average MRR and average surface roughness were determined in
order of significance.

Through developing technology, many industrial innovations have been introduced.
Using these innovations, optimum parameters must be determined in order to develop
a product. Optimization methods have been developed in the manufacturing sector to
determine the impact values of the parameters used during product processing. One of
these methods is the Taguchi method.

Experimental design is a powerful statistical method for determining the unknown
properties of cutting parameters in the experimental process and for analyzing and mod-
eling the interactions between variables [2,28]. In the industrial sector, the time required
for design and production in product development can be reduced by using the Taguchi
method and, accordingly, the profit ratio of the business can be increased by lowering
the costs [22]. In addition, the Taguchi method allows the control of variables that are
uncontrollable and cannot be accounted for in traditional experimental design. In order to
measure the performance characteristics of the control factor levels against these factors,
the Taguchi method converts the objective function values to a signal/noise (S/N) ratio.
The S/N ratio is defined as the desired signal ratio for the undesired random noise value
which indicates the quality characteristics of the experimental data [28,29].
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Each combination of control factors for average surface roughness (Ra) and MRR
was measured in the test design. The S/N ratios were used in the optimization of the
control factors. In the method used for the calculation of S/N ratios, depending on the
characteristic type, the objective functions are given as “the nominal is best” (Equation (2)),
“the largest is best” (Equation (3)) and “the smallest is best” (Equation (4)) [30].

The nominal is best:
S
N

= 10 log

 −y
s2

y

 (2)

The smallest is best:
S
N

= 10 log
1
n

n

∑
i=1

y2
i (3)

The largest is best:
S
N

= 10 log
1
n

n

∑
i=1

1
y2

i
(4)

The main objective of this study was to use the Taguchi method to minimize the
average surface roughness and to maximize the MRR. For this, “the smallest is best”
equation for average surface roughness (Equation (3)) and “the largest is best” equation
(Equation (4)) for MRR were used.

2.5. Factors and Levels

The parameters used in the experimental study (peak current, materials, pulse-on time)
and their levels are shown in Table 2. According to these levels, the most suitable Taguchi
orthogonal experimental design (L18) was chosen (Table 3).

Table 2. Test factors and levels.

Factors Symbols Units Level 1 Level 2 Level 3

1 Peak current (A) A A 6 10 -
2 Materials B - UT SCT DCT
3 Pulse-on time C µs 300 400 500
4 Pulse-off time D µs 10
5 Wash pressure E Kg/cm2 30

Table 3. Taguchi orthogonal array design L18.

No Factor A Factor B Factor C

1 2 1 2
2 2 3 1
3 1 3 2
4 1 2 2
5 2 1 1
6 1 1 1
7 1 2 1
8 1 2 3
9 2 1 3
10 2 3 3
11 1 1 2
12 2 2 2
13 2 3 2
14 1 3 3
15 1 1 3
16 2 2 1
17 1 3 1
18 2 2 3



Machines 2022, 10, 1131 6 of 20

3. Results and Discussion
3.1. Experimental Results

To investigate the effect of cryogenic treatment on the samples, hardness measurement
tests and electrical conductivity measurements were performed on the materials before
and after the cryogenic treatment. The average hardness measurements of the materials are
shown in Table 4 and the electric conductivity measurements in Figure 2.

Table 4. Average hardness values of the samples.

Materials Hardness Units

Untreated 36
HRCShallow cryogenic treatment 38

Deep cryogenic treatment 39
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(deep cryogenically treated) samples.

The cryogenic treatment slightly increased the hardness of the samples. The increase
in hardness with deep cryogenic treatment depends on the crystallographic and microstruc-
tural changes and the fine distribution of microcarbons [29,30]. Figure 2 shows that the
highest conductivity value was for the shallow cryogenically treated material, followed by
the deep cryogenically treated and untreated material, respectively. This means that the
thermal vibrations of the atoms were weakened with the cooling of the metal materials, so
the electrical resistance decreased, and the electrical conductivity increased [31].

In the EDM tests, an electrolytic copper electrode with a diameter of 18 mm and a
density of 8.9 g/cm3 was used (Table 5). For the experimental study, after consulting the
literature, electrical discharge machining was performed with the selected parameters
(three different pulse-on times, two peak currents, and fixed pulse-off time and chip depth).
The obtained average surface roughness and MRR results were evaluated and are shown
in Table 6. The average surface roughness variations of the UT, SCT and DCT samples at
peak current (A) values of 6 and 10 A are shown in Figure 3.

Figure 3 shows that the minimum average surface roughness value was 4.50 µm in
the SCT sample at 6 A peak current and 300 µs pulse-on time. The highest average surface
roughness value (7.36 µm) was obtained for the factor levels A2B2C1. For MRR, the highest
amount of chip removal (2.569 g) was at factor levels A2B3C1, while the lowest amount
of chip removal was found to be at A2B2C2. The highest machining time (50 min) was
at factor levels A1B1C1, whereas the lowest machining time (18 min) was at A2B2C2. As
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the amount of current increased, the average surface roughness generally increased, but
when the amount of current decreased, the average surface roughness improved. In this
case, it can be said that increased peak current reduced the amount of wear, increased the
average surface roughness value, but did not greatly affect the MRR. These results are in
line with those in the literature. Torres et al. also found that in the processing of titanium
diboride material with EDM, the current intensity was effective on the MRR and average
surface roughness, but as a result of the melting and evaporation of the material due to the
increased heat and current, the MRR increased considerably [32].

Table 5. Properties of the electrode material.

Properties Values

1 Melting point (◦C) 1083
2 Elastic modulus, € (N/mm2) 1.23 × 105
3 Poisson’s ratio 0.26
4 Density (g/cm3) 8.90

Table 6. Parameters used in experimental work and experimental results.

Order Materials Depth (mm) Peak Current
(A)

Pulse-Off Time
(µs)

Pulse-On Time
(µs)

Total Processing
Time (min) Ra (µm) MMR (g)

1 UT

1

10

10

400 22 6.81 2.355
2 DCT 10 300 21 7.35 2.569
3 DCT 6 400 47 5.53 2.116
4 SCT 6 400 46 5.44 2.073
5 UT 10 300 20 6.9 2.272
6 UT 6 300 49 5.64 2.220
7 SCT 6 300 47 4.5 2.147
8 SCT 6 500 47 5.29 2.085
9 UT 10 500 21 6.32 2.265

10 DCT 10 500 23 6.46 2.458
11 UT 6 400 45 5.22 1.950
12 SCT 10 400 18 7.35 1.936
13 DCT 10 400 21 6.22 2.335
14 DCT 6 500 49 5.06 2.464
15 UT 6 500 50 4.61 2.167
16 SCT 10 300 19 7.36 2.222
17 DCT 6 300 47 5.91 2.163
18 SCT 10 500 21 6.28 2.451
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The 3D profilometer, 2D microscopic, dark-field and phase-contrast images used in
the analysis of the UT, SCT and DCT sample surfaces are shown in Figure 4. More green
parts can be seen in the UT specimens. On the DCT samples, the red regions were observed
to increase. In the DCT samples, a large difference in elevation is shown. Dark-field
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microscopy describes methods in both electron and light microscopy which exclude the
unscattered beams from the image. This image provides a simulated dark-field view of
the measured sample, as would be obtained by a dark-field microscope. As a result, the
field around the specimen is generally dark. In Figure 4, black and white appeared to
be more prominent in the DCT sample. This showed that the surface was rougher. The
phase-contrast view provides a false color representation of the measured sample. Each
color corresponds to a different height. As can be seen from these images, the average
surface roughness of the SCT sample was lower.

Machines 2022, 10, x FOR PEER REVIEW 8 of 23 
 

 

amount of current decreased, the average surface roughness improved. In this case, it can 
be said that increased peak current reduced the amount of wear, increased the average 
surface roughness value, but did not greatly affect the MRR. These results are in line with 
those in the literature. Torres et al. also found that in the processing of titanium diboride 
material with EDM, the current intensity was effective on the MRR and average surface 
roughness, but as a result of the melting and evaporation of the material due to the in-
creased heat and current, the MRR increased considerably [32]. 

The 3D profilometer, 2D microscopic, dark-field and phase-contrast images used in 
the analysis of the UT, SCT and DCT sample surfaces are shown in Figure 4. More green 
parts can be seen in the UT specimens. On the DCT samples, the red regions were ob-
served to increase. In the DCT samples, a large difference in elevation is shown. Dark-
field microscopy describes methods in both electron and light microscopy which exclude 
the unscattered beams from the image. This image provides a simulated dark-field view 
of the measured sample, as would be obtained by a dark-field microscope. As a result, the 
field around the specimen is generally dark. In Figure 4, black and white appeared to be 
more prominent in the DCT sample. This showed that the surface was rougher. The phase-
contrast view provides a false color representation of the measured sample. Each color 
corresponds to a different height. As can be seen from these images, the average surface 
roughness of the SCT sample was lower. 

 
Figure 4. Surface images of the samples: (a) UT (500 μs-6 A), (b) SCT (300 μs-6 A), (c) DCT (500 μs-
6 A).  

3.2. Microstructure Analysis 
The energy discharged during the EDM process causes very high temperatures to be 

generated at the spark point. This causes part of the sample surface to evaporate and 

Figure 4. Surface images of the samples: (a) UT (500 µs-6 A), (b) SCT (300 µs-6 A), (c) DCT (500 µs-6 A).

3.2. Microstructure Analysis

The energy discharged during the EDM process causes very high temperatures to
be generated at the spark point. This causes part of the sample surface to evaporate and
dissipate. In the process of completing each discharge current, craters, microcracks and
spherical particles formed on crater edges can develop in various sizes on the surfaces being
processed [33]. The SEM images of the UT, SCT and DCT samples from the experiments
resulting in the lowest average surface roughness are shown in Figure 5. Crater formation,
adhesions, micropores and copper particles of the electrode material were formed on
the surfaces of the UT, SCT and DCT specimens. The higher the current, the higher the
discharge energy produced. As a result, damage on the surface of the workpiece caused
by a larger crater can be observed [34]. The surfaces were eroded by the smelting process.
Moreover, microcracks were more pronounced in the UT specimens. These microcracks are
more likely to occur under high energy conditions due to the thermal stress effect on the
newly formed layer [32]. Microcracks were seen to decrease in the SCT samples. This is
also reflected in average surface roughness values.
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The SEM mapping analysis and the elements in the material obtained from the UT
samples used in the experiment are shown in Figure 6. The schematic view and SEM
images of processing the materials with the lowest average surface roughness are shown in
Figure 7. During the first electron discharge of the electrode, the melted material flowed
over the sample surface, forming a thin layer [34]. Since the minimum average surface
roughness in UT, SCT and DCT samples was found at a peak current of 6 A, the width of
the thin layers formed on their surfaces appears to be similar in dimension.

Machines 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

 

 

 

Figure 6. EDX and imaging mapping analysis, UT-500 μs-6 A. Figure 6. EDX and imaging mapping analysis, UT-500 µs-6 A.



Machines 2022, 10, 1131 10 of 20Machines 2022, 10, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 7. Cross-section microstructure images of samples: (a) UT (1-3), (b) SCT (2-1), (c) DCT (3-3) 
and (d) fixture. 

The highest average surface roughness of the UT, SCT and DCT samples was formed 
at the 10 A peak current. The SEM images of these surfaces are shown in Figure 8. More 
adhesion particles can be seen on the surface of the UT sample in comparison with those 
formed on the SCT and DCT samples. More micropits were formed in the UT sample than 
in the SCT and DCT samples. Craters were formed in the DCT specimens, while the ad-
hesion particles are few in number. It can be said that these differences in the samples 
were influenced by the cryogenic treatment. 

Figure 7. Cross-section microstructure images of samples: (a) UT (1-3), (b) SCT (2-1), (c) DCT (3-3)
and (d) fixture.

The highest average surface roughness of the UT, SCT and DCT samples was formed
at the 10 A peak current. The SEM images of these surfaces are shown in Figure 8. More
adhesion particles can be seen on the surface of the UT sample in comparison with those
formed on the SCT and DCT samples. More micropits were formed in the UT sample
than in the SCT and DCT samples. Craters were formed in the DCT specimens, while the
adhesion particles are few in number. It can be said that these differences in the samples
were influenced by the cryogenic treatment.
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The SEM images of the materials with the highest average surface roughness are
shown in Figure 9. During the first electron discharge of the electrode, particles melted
from the material surface flow to the sample surface, forming a thin layer. The highest
average surface roughness in the UT, SCT and DCT samples was generated at a peak
current of 10 A. The width of the thin layers formed on the surface is almost the same in all
samples. More spherical particles seemed to adhere in the UT and DCT samples.
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3.3. Analysis of the Signal-to-Noise (S/N) Ratio

The interactions of the MRR and Ra results with the control factors were measured
by carrying out the experimental design. Signal/noise (S/N) ratios were used in the
optimization of the control factors. Table 7 shows estimates of the Ra and MRR and the
S/N ratios. Estimated values were calculated with the module (fit model) using the program
Minitab Normally, both MRR and electrode wear loss are calculated for the abrasion of
materials, and the amount of wear is determined with respect to time. As a result of the
experiments, the weight of the electrode materials was seen to increase. In this weight
increase, chip particles melted from the material surface adhered to the surface of the
electrode where it formed a thin film layer.

Table 7. Input and output parameters of Hastelloy C22 alloy according to L18 orthogonal array.

No Peak Current
(A)

Materials Pulse-On Time
(µs)

Ra (µm) S/N
for Ra

MRR
(g/min)

S/N for
MRR

Predicted
Ra (µm)

S/N for
Predicted
Ra (µm)

Predicted
MRR

(g/min)

S/N for
Predicted

MRR
(g/min)

Input Output Parameters

1 10 UT 400 6.81 −16.662 0.107 19.412 6.70 −16.525 0.103 −19.729
2 10 DCT 300 7.35 −17.325 0.117 18.636 7.38 −17.355 0.120 −18.416
3 6 DCT 400 5.53 −14.854 0.045 26.935 5.36 −14.578 0.048 −26.315
4 6 SCT 400 5.44 −14.712 0.045 26.935 5.51 −14.816 0.037 −28.443
5 10 UT 300 6.9 −16.777 0.114 18.861 7.19 −17.131 0.121 −18.344
6 6 UT 300 5.64 −15.025 0.045 26.935 5.35 −14.570 0.038 −28.404
7 6 SCT 300 4.5 −13.064 0.046 26.744 4.81 −13.646 0.056 −25.036
8 6 SCT 500 5.29 −14.469 0.043 27.330 4.91 −13.823 0.0401 −27.937
9 10 UT 500 6.32 −16.014 0.108 19.331 6.14 −15.760 0.104 −19.592
10 10 DCT 500 6.46 −16.204 0.102 19.828 6.26 −15.934 0.102 −19.802
11 6 UT 400 5.22 −14.353 0.043 27.330 5.33 −14.528 0.046 −26.595
12 10 SCT 400 7.35 −17.325 0.108 19.331 7.28 −17.246 0.115 −18.778
13 10 DCT 400 6.22 −15.875 0.102 19.828 6.39 −16.112 0.098 −20.122
14 6 DCT 500 5.06 −14.083 0.05 26.020 5.26 −14.414 0.049 −26.090
15 6 UT 500 4.61 −13.274 0.043 27.330 4.79 −13.608 0.046 −26.725
16 10 SCT 300 7.36 −17.337 0.17 15.391 7.05 −16.960 0.160 −15.917
17 6 DCT 300 5.91 −15.431 0.046 26.744 5.88 −15.393 0.043 −27.330
18 10 SCT 500 6.28 −15.959 0.117 18.636 6.66 −16.466 0.119 −18.430

The most effective parameters in terms of processing time were obtained in the UT
samples with 300 µs pulse-on time and 10 A peak current, and in the SCT samples with
500 µs pulse-on time and 10 A peak current, while the most effective parameters in the
DCT samples were with 300 µs pulse-on time and 10 A peak current. The difference in the
pulse-on time for the SCT samples indicated the effect of shallow cryogenic treatment.
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When the results were analyzed via the Taguchi method, the effects of the control
factors were seen. The S/N and significance response tables for MRR and average surface
roughness are shown graphically in Table 8.

Table 8. S/N and significance response tables for average surface roughness and MRR.

Average Surface Roughness Ra (µm) Response Table for Ra Means

Level Peak Current Materials Pulse-On time (µs) Level Peak Current Materials Pulse-On time (µs)

1 −14.36 −15.35 −15.83 1 5.244 5.917 6.277
2 −16.61 −15.48 −15.63 2 6.783 6.037 6.095
3 - −15.63 −15.00 3 - 6.088 5.670

Range 2.25 0.28 0.83 Range 1.539 0.172 0.607
Rank 1 3 2 Rank 1 3 2

MRR (g/min) Response Table for MRR Means

Level Peak Current Materials Pulse-on time (µs) Level Peak Current Materials Pulse-on time (µs)

1 −26.92 −23.20 −22.22 1 0.04511 0.07667 0.08967
2 −18.81 −22.40 −23.30 2 0.11611 0.08817 0.07500
3 - −23.00 −23.08 3 - 0.07700 0.07717

Range 8.120 0.81 1.080 Range 0.07100 0.01150 0.01467
Rank 1 3 2 Rank 1 3 2

When Table 8 was examined, the most effective parameters observed for the average
surface roughness and MRR were A1B1C3 and A2B2C1, respectively.

The main effect plots for mean surface roughness and MRR are shown in Figure 10,
and the plot of actual values and predicted values is shown in Figure 11. In the main effect
plot for average surface roughness, the smallest values are the best. However, in the main
effect plot for MRR, the highest values are the best. Accordingly, the optimum values for
the average surface roughness were obtained at the A1B1C3 factor levels and the effective
values for MRR at the A2B2C1 factor levels.
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3.4. ANOVA Analyses

Analysis of variance (ANOVA) is a statistical method used to determine the individ-
ual interactions of all control factors in an experimental design. In this study, ANOVA
was used to analyze the effects of pulse-on time, materials and peak current on average
surface roughness and MRR. This analysis was carried out at a 5% significance level and a
95% confidence level. In ANOVA, the significance of the control factors is determined by
comparing the F values of each control factor [34–36].

The ANOVA results for the average surface roughness and MRR are shown in Table 9.
Peak current was revealed to be the most effective factor for average surface roughness
and MRR at 74.79% and 86.43%, respectively. The increase in the amount of peak current
affected the wear loss in the positive direction. However, the average surface roughness
value was affected negatively.

Table 9. ANOVA results for average surface roughness and MMR.

Average Surface Roughness

Source DF Seq SS Contribution % Adj SS Adj MS F-Value p-Value

Peak current (A) 1 10.6568 74.79 1.13603 1.13603 6.14 0.038
Pulse-on time (µs) 1 1.1041 7.75 0.02373 0.02373 0.13 0.730
Materials 2 0.0931 0.65 0.67839 0.33919 1.83 0.221
Peak current * Pulse-on time 1 0.1776 1.25 0.17763 0.17763 0.96 0.356
Peak current * Materials 2 0.4152 2.91 0.41521 0.20761 1.12 0.372
Pulse-on time * Materials 2 0.3218 2.26 0.32182 0.16091 0.87 0.455
Error 8 1.4798 10.39 1.47975 0.18497
Total 17 14.2484 100.00

R-sq 89.61% R-sq (adj) 77.93%

Material Removal Rate

Source DF Seq SS Contribution % Adj SS Adj MS F-Value p-Value

Peak current (A) 1 0.022684 86.43 0.002578 0.002578 17.62 0.003
Pulse-on time (µs) 1 0.000469 1.79 0.000231 0.000231 1.58 0.245
Materials 2 0.000514 1.96 0.000027 0.000013 0.09 0.914
Peak current * Pulse-on time 1 0.000444 1.69 0.000444 0.000444 3.04 0.120
Peak current * Materials 2 0.000603 2.30 0.000603 0.000302 2.06 0.190
Pulse-on time * Materials 2 0.000361 1.38 0.000361 0.000181 1.24 0.341
Error 8 0.001170 4.46 0.001170 0.000146
Total 17 0.026246 100.00

R-sq 95.54% R-sq (adj) 90.52%

Seq SS: Sequential sum of squares; Adj. SS: adjusted sum of squares; Adj. MS: adjusted mean squares; F: statistical
test; P: statistical value. *: multiplication sign
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3.5. Regression Analysis of Average Surface Roughness and MRR

Regression analyses are performed for the modeling and analysis of different vari-
ables with a relationship between one dependent variable and one or more independent
variables [35]. Linear regression models are relatively simple and provide an easy-to-
interpret mathematical formula that can produce predictions. In this study, the equations
for estimation of the average surface roughness and MRR were calculated using regression
analysis. Equation estimates were made as linear models. Estimated linear equations for
the output parameters are shown in Table 10.

Table 10. Equations for the estimation of average surface roughness and MRR.

Average Surface Roughness

Linear

UT Ra (µm) = 4.052 + 0.3847 Peak current − 0.00303 Pulse-on times
SCT Ra (µm) = 4.172 + 0.3847 Peak current − 0.00303 Pulse-on times
DCT Ra (µm) = 4.224 + 0.3847 Peak current − 0.00303 Pulse-on times

Quadratic

UT Ra (µm) = 0.67 + 0.623 Peak current + 0.0106 Ton − 0.000012 Pulse-on timesˆ2 − 0.000608 Peak current * Pulse-on times

SCT Ra (µm) = −1.33 + 0.723 Peak current + 0.0139 Pulse-on times − 0.000012 Pulse-on timesˆ2 − 0.000608 Peak Current * Pulse-on times

DCT Ra (µm) = 1.66 + 0.538 Peak current + 0.0103 Ton − 0.000012 Pulse-on timesˆ2
− 0.000608 Peak current * Pulse-on times

Material Removal Rate

Linear

UT MRR(g/min) = −0.0403 + 0.01775 Peak current − 0.000063 Pulse-on times
SCT MRR(g/min) = −0.0288 + 0.01775 Peak current − 0.000063 Pulse-on times
DCT MRR(g/min) = −0.0400 + 0.01775 Peak current − 0.000063 Pulse-on times

Quadratic

UT MRR(g/min) = −0.016 + 0.02867 Peak current − 0.000450 Pulse-on time + 0.000001 Pulse-on timesˆ2 − 0.000030 Peak current * Pulse-on times

SCT MRR(g/min) = 0.002 + 0.03392 Peak Current − 0.000570 Pulse-on times + 0.000001 Pulse-on timesˆ2 − 0.000030 Peak current * Pulse-on times

DCT MRR(g/min) = −0.000 + 0.02717 Peak Current − 0.000458 Pulse-on time + 0.000001 Pulse-on timesˆ2 − 0.000030 Peak current * Pulse-on times

3.6. Interval Estimation for Ra and MRR

It was necessary to evaluate whether the system had realized the optimization accu-
rately enough. For this purpose, the following equations were used in the specification of
the confidence interval (CI) for estimated Ra and MRR.

Optimal results were obtained using the Taguchi method. The estimated optimum
values (Ra and MRR) were calculated using Equations (5) and (6), respectively.

RaP = TRa + (A1 − TRa) + (B1 − TRa) + (C3 − TRa) (5)

MRRP = TMRR + (A2 − TMRR) + (B2 − TMRR) + (C1 − TMRR) (6)

where TRa and TMRR state the average of all values (Ra and MRR) obtained from the
experiments. Estimated values were compared with those of the verification experiments
to determine the confidence interval (CI). The CI for average surface roughness was
calculated using Equations (7) and (8). Estimated values should fall within the confidence
interval [36]. Table 11 explains the symbols used in the CI equations: ne f f is the effective
number of replications; Ve is error Variance; N is the total number of experiments; and
Tdo f is the total main factor degrees of freedom; Fα, 1, fe is the F ratio at a 95% confidence;
a is the significance level; fe is the degrees of freedom of error [37].

CI =

√√√√Fα;1; fe xVex

(
1

ne f f
+

1
r

)
(7)
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Table 11. Confidence interval (CI) formulae symbols [1].

No. Symbol Description

1 Fα;1; fe F ratio at a 95% (at F table)
2 α Significance level
3 fe Degrees of freedom of error
4 Ve Error variance
5 r Number of replications for confirmation experiment
6 ne f f Effective number of replications
7 N Total number of experiments
8 Tdo f Total main factor degrees of freedom

ne f f formula:

ne f f =
N

1 + [Tdo f ]
(8)

The optimal average surface roughness with the CI at 95% was estimated as in Equation (9).

[(TRa or TMRR)]− [CI] < (Ra or MRR) exp < [(TRa or TMRR)] + [CI] (9)

5.0781 < RaExp < 6.9479 (10)

0.0544 < MRRExp < 0.1068 (11)

Quadratic regression analysis was then applied to determine whether the predicted
values of the experimental results were within the CI. This test was performed to deter-
mine the relationship between the predicted values using the Taguchi method and the
experimental results. When the results were evaluated, it was found that the estimated
values were within the CI limit (95%) in the regression analysis (Figure 11).

3.7. Grey Relational Analysis

Gray correlation analysis, which is one of the multi-factorial decision-making meth-
ods, forms gray correlation levels in order to evaluate performance characteristics. The
calculation steps of the gray relational analysis method using Equation (10) are as follows.

Step 1: Order of reference (Ra and MRR) values.

x0 = (x0(1), x0(2), x0(3), . . . . . . x0(n)) (12)

Step 2: Normalization of the data obtained from the test results.

One of the most commonly used methods in normalization is linear data preprocessing.
In considering the normalization of the factor series, one of the criteria (“higher the better”,
“lower the better”, “nominal the better” or “best effective”) reflects the characteristic of the
series. If the value of the points on the peak is low, it is a desirable feature. The points that
receive low values in linear normalization are those close to “1”. Higher value points will
have values close to “0”.

The “higher the better” normalization is given in Equation (11).

xi(k) =
x0

i (k)−minx0
i (k)

maxx0
i (k)− x0

i (k)
(13)

x0
i (k), i series k. value in the range, xi(k) after normalization i. series k. value in the range,

min x0
i (k) is the minimum value in the i series, max x0

i (k) is the maximum value in the
i series.

The “lower the better” normalization is given in Equation (12).

xi(k) =
max0

i (k)− x0
i (k)

maxx0
i (k)−minx0

i (k)
(14)
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The “nominal the better” normalization is given in Equation (13).

xi(k) = 1−
∣∣x0

i (k)− x0
∣∣

(maxx0
i (k)− x0)

(15)

Here, x0 represents the desired (best) effective value.

Step 3: The m series to be compared with the series xi are defined in Equation (14).

xi =
(
(xi(1), xi(2), xi(3), . . . . . . xi(n)

)
i = 1, 2, . . . . . . , m (16)

Step 4: k, Show k. in the row on the n length. ε(x0(k), xi(k)), k. is the gray relational
coefficient at the point. Equations are calculated according to Equations (15)–(18).

ε
(
x0(k), xj(k)

)
=

∆min + ξ∆max

∆oi(k) + ξ∆max
(17)

∆oi(k) =
∣∣x0(k)− xj(k)

∣∣ (18)

∆min(k) = minjmink
∣∣x0(k)− xj(k)

∣∣ (19)

∆max = maxjmaxk
∣∣x0(k)− xj(k)

∣∣ (20)

Ve ξε(0, 1) is a coefficient between 0 and 1.
J = 1, 2, . . . m; k = 1, 2, . . . . . . n. ξ function, set the difference between ∆oi and ∆max.
Studies show that the value of ξ does not affect the ordering after the gray relational degree.

Step 5: Finally, the gray relational degree is calculated by Equation (19).

γ(x0,xi) =
1
2

n

∑
k=1

ε
(

x0(k), xj(k)
)

(21)

γ(x0, xi) is a measure of the geometric similarity between the xi series in the gray
system and the x0 reference series. The size of the gray associative level is an indication
that there is a strong relationship between xi and x0. If the two series are the same, the gray
relational level is 1. The gray relational degree indicates how similar the comparison series
is to the reference series. If each criterion weight is given, the criterion gray correlation
coefficient is multiplied by the weight value for the importance of the criterion and the gray
correlation coefficient is found. This is calculated according to Equation (20).

γ(x0,xi) =
1
n

n

∑
k=1

ε
(
x0(k), xj(k), (wi(k))

)
(22)

In the decision-making problem, one of the reference series, the largest, the smallest,
and the most effective values for which the criteria are desired is selected. The specified
options will be a pointer to the level of catching criteria with the gray relational level. For
example, if the highest series of gray correlational grades is chosen, it will be the best
decision-making alternative [20].

In EDM, it is desirable that the average surface roughness value of the work surface is
low, and that the average material removal rate is high. In this method, while the reference
series are being formed, the average surface roughness is best chosen as the lowest. For
MRR, it is constructed according to the larger best equality. In calculating the normalization
process for the average surface roughness value and material removal rate, Equation (21)
and Equation (22) was used, respectively.

xi(1) =
(maxx0

i (1)− x0
i (1))

(maxx0
i (1)−minx0

i (1))
=

7.36− 6.81
7.36− 4.5

= 0.192 (23)
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xi(1) =
x0

i (1)−minx0
i (1)

maxx0
i (1)−minx0

i (1)
=

0.107− 0.043
0.170− 0.043

= 0.503 (24)

The results of normalization are subtracted from the reference series and the distance
matrix required for the coefficient matrix is found. For the calculation of the coefficient
matrix, the mean value x = 0.5 is taken. In order to calculate the average surface roughness
and MRR coefficient matrix, Equation (23) and Equation (24) are used.

∆oi(k) =
∣∣x0(k)− xj(k)

∣∣ = |1− 0.192| = 0.808 (25)

ε
(

x0(k), xj(k)
)
=

∆min + ξ∆max

∆oi(k) + ξ∆max
=

0 + 0.5
0.808 + 0.5

= 0.382

∆oi(k) =
∣∣x0(k)− xj(k)

∣∣ = |1− 0.502| = 0.498 (26)

ε
(

x0(k), xj(k)
)
=

∆min + ξ∆max

∆oi(k) + ξ∆max
=

0 + 0.5
0.498 + 0.5

= 0.501

The Microsoft Excel program 2019 was used to calculate the normalization of the
results obtained from the experiments. The normalization and coefficient matrix values
for average surface roughness and MRR are shown in Table 12. After finding the average
surface roughness and MRR coefficient matrices, the average of the values found gives a
gray relational degree. The highest value in the calculated range is defined as the effective
value [20,37–40]. The effective value for this study was in the parameters used in the
seventh experiment (Table 13).

The gray relational degree graph for maximum MRR and minimum average surface
roughness values is shown in Figure 12. The top point in the graph shows the effective
value to be obtained for both output parameters. The highest MRR was obtained in the SCT
samples and was reached at the lower peak current of 6 A. This result can be attributed to
the increased electrical conductivity of the sample due to the shallow cryogenic treatment,
because the electrical conductivity of the sample affected the EDM performance [14].

Table 12. Normalization and coefficient matrix values for average surface roughness and MRR.

Normalization Coefficient Matrix

Exp No. Ra MRR Exp No. Ra MRR

1 0.192 0.503 1 0.382 0.501
2 0.003 0.580 2 0.334 0.543
3 0.639 0.013 3 0.581 0.336
4 0.671 0.014 4 0.603 0.336
5 0.160 0.555 5 0.373 0.529
6 0.601 0.016 6 0.556 0.337
7 1.000 0.019 7 1.000 0.338
8 0.723 0.001 8 0.644 0.333
9 0.363 0.511 9 0.440 0.505

10 0.314 0.466 10 0.421 0.484
11 0.748 0.000 11 0.665 0.333
12 0.003 0.507 12 0.334 0.504
13 0.398 0.459 13 0.453 0.480
14 0.804 0.055 14 0.718 0.346
15 0.961 0.000 15 0.928 0.333
16 0.000 1.000 16 0.333 1.000
17 0.506 0.021 17 0.503 0.338
18 0.377 0.582 18 0.445 0.544
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Table 13. Gray associative grades and ordering for average surface roughness and MRR.

Exp No. Peak Current Materials Pulse-On Time (µs) Ra (µm) MRR (g) Gray Degree Ranking

1 10 UT 400 6.81 0.1070 0.442 15
2 10 DCT 300 7.35 0.1160 0.439 16
3 6 DCT 400 5.53 0.0450 0.459 11
4 6 SCT 400 5.44 0.0450 0.470 9
5 10 UT 300 6.90 0.1130 0.451 13
6 6 UT 300 5.64 0.0450 0.447 14
7 6 SCT 300 4.50 0.0450 0.669 1
8 6 SCT 500 5.29 0.0430 0.489 7
9 10 UT 500 6.32 0.1080 0.473 8
10 10 DCT 500 6.46 0.1020 0.453 12
11 6 UT 400 5.22 0.0430 0.499 5
12 10 SCT 400 7.35 0.1076 0.419 18
13 10 DCT 400 6.22 0.1015 0.467 10
14 6 DCT 500 5.06 0.0500 0.532 4
15 6 UT 500 4.61 0.0430 0.631 3
16 10 SCT 300 7.36 0.1700 0.667 2
17 6 DCT 300 5.91 0.0460 0.421 17
18 10 SCT 500 6.28 0.1170 0.495 6
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4. Conclusions

The conclusions reached from the results of the study on the effects of shallow and
deep cryogenic treatment applied to corrosion-resistant superalloys are given below.

• The applied cryogenic treatment increased the hardness of the corrosion-resistant superalloy.
• The highest electrical conductivity value was in the SCT, followed by the DCT and UT

materials, respectively.
• The minimum average surface roughness value was 4.50 µm in the SCT sample at

6 A peak current and 300 µs pulse-on time.
• The maximum average surface roughness value was 7.36 µm in the SCT sample at

10 A peak current and 300 µs pulse-on time.
• The highest MRR was 2.569 g in the DCT sample at 10 A peak current and

300 µs pulse-on time.
• The minimum processing time was 18 min for the SCT sample at 10 A peak current

and 400 µs pulse-on time.
• The increase in the amount of current affected the wear loss in a positive way, while

the average surface roughness value was affected in the negative direction.
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• Average surface roughness improved when the flow rate was decreased.
• A thin layer from the workpiece adhered to the surface of the electrode.
• Cryogenic treatment reduced the particles adhering to the sample surface.
• Cryogenic treatment reduced micropores and cracks on the sample surface.
• The most effective factors for average surface roughness and MRR via the Taguchi

method were A1B1C3 and A2B2C1, respectively.
• Peak current was the most effective factor for average surface roughness and MRR,

at 74.79% and 86.43%, respectively.
• When examined in terms of Taguchi-gray relational degrees, the most effective parame-

ters for both average surface roughness and MRR were the SCT sample, 6 A peak current
and 300 µs pulse-on time.
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