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Abstract: Accurate identification of ultrasonic signals can effectively improve the accuracy of a defect
detection and inversion. Current methods, based on machine learning and deep learning have been
able to classify signals with significant differences. However, the ultrasonic internal detection signal
is interspersed with a large number of anomalous signals of an unknown origin and is affected by
the time shift of echo features and noise interference, which leads to the low recognition accuracy
of the ultrasonic internal detection signal, at this stage. To address the above problems, this paper
proposes a two-stage ultrasonic signal recognition method, based on the envelope and local similarity
features (TS-ES). In the first stage, a normal signal classification method, based on the envelope feature
extraction and fusion is proposed to solve the problem of the low ultrasonic signal classification
accuracy under the conditions of the echo feature time shift and noise interference. In the second
stage, an abnormal signal detection method, based on the local similarity feature extraction and
enhancement is proposed to solve the problem of detecting abnormal signals in ultrasound internal
detection data. The experimental results show that the accuracy of the two-stage ultrasonic signal
recognition method, based on the envelope and local similarity features (TS-ES) in this paper is
97.43%, and the abnormal signal detection accuracy and recall rate are as high as 99.7% and 97.81%.

Keywords: ultrasonic testing; signal classification; anomaly detection; envelope curve; dynamic
time warping

1. Introduction

Ultrasonic testing technology (UT) is the most successful nondestructive testing tech-
nique (NDT) for quality assessment and the defect detection of engineering materials [1,2].
Among them, the phased-array ultrasound detection (PAUT) is far more efficient and accu-
rate than the conventional single-probe intra-ultrasound detection techniques by virtue
of the multiple sensors in the array [3]. Due to the complexity of the pipeline environ-
ment, the phased-array ultrasound detector collects ultrasonic internal detection data as
an array of data, containing different numbers of echoes and interspersed with abnormal
signals. In industrial applications, the high-precision identification of ultrasonic internal
detection data can effectively improve the identification and inversion accuracy of defect
detection [4]. At present, many researchers have carried out a lot of research work around
signal classification, It mainly includes machine learning based and deep learning based
approaches.

The machine learning based approach first extracts features from the signal, according
to the designed rules and then classifies the extracted features using machine learning
methods. An unsupervised classification method was proposed in the literature [5], which
uses the natural breakpoint method and ultrasound signal mechanism, by setting an energy
threshold to obtain the peak position of the ultrasound signal echo for classification. The
method has a high accuracy for signals with distinct echo characteristics. In the literature [6],
the ultrasound signal is processed and its time domain, frequency and wavelet domain
features are extracted using the fast Fourier transform and wavelet packet variation, and
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finally the particle swarm optimization support vector machine (PSO-SVM) is used for
classification. The literature [7] uses the adaptive empirical wavelet transform (EWT) to
decompose the ultrasound signal into a series of empirical modal functions and classify its
features using the random forest (RF). The above machine learning methods can achieve
a high accuracy using fewer samples, but the model accuracy overly relies on expert
experience to adjust a large number of feature extraction parameters, resulting in a poor
model stability and generalization ability, so the classification accuracy for the actual
ultrasound internal detection data is low.

In recent years, deep learning methods using neural networks have evolved rapidly
and have been successful in a variety of signal classification tasks. The literature [8]
demonstrates that deep neural networks with the Dropout regularization have a higher
accuracy and stability on ultrasound signal classification tasks, compared to single-hidden
layer neural networks. In the literature [9], an auto-encoder for eliminating ultrasonic
signal noise was designed to reduce the effect of noise on classification accuracy. A one-
dimensional convolutional neural network, based on an improved Softmax function, is
proposed in the literature [4] for the classification of ultrasound signals with a high degree
of similarity. The literature [10] uses a wavelet transform to gradually divide the multiscale
signals by dilation and translation, and reorganize them into a two-dimensional feature
matrix, that automatically completes the feature extraction, using the powerful feature
extraction capability of the convolutional neural networks for two-dimensional data, and
completes the feature classification using support vector machines instead of Softmax
functions.

Deep learning methods, based on neural networks, can automatically extract deep
features of sample data and classify signals by learning class-specific patterns, so deep
learning methods have accuracy advantages over the traditional methods in most cases.
Figure 1 illustrates the typical signals from several sets of ultrasonic internal detection data.
The ultrasonic signals can be classified into normal and abnormal signals, according to
whether the signals have the conditions for wall thickness calculation. Normal ultrasonic
signals have obvious echo characteristics and can calculate the pipe wall thickness, based
on the echo position, while abnormal ultrasonic signals are usually generated by uneven
surfaces, such as welds or defects, which do not have echo characteristics and cannot
calculate the pipe wall thickness. Normal signals can be further classified into two-echo
signals, three-echo signals and four-echo signals, according to the number of echoes.
Figure 1a shows the ideal normal signal collected by the experimental platform. This
signal is free from noise interference, while the signal echo features are obvious and the
arrival time is stable, and the current deep learning method is able to accurately classify the
signal under such conditions. Figure 1b–d show the normal and abnormal signals collected
during the actual internal detection task, respectively. For such real-world signals, current
deep learning methods have a low classification accuracy, which is mainly caused by two
aspects.
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(1) The severe noise interference and the time-shift phenomenon of the echo character-
istics lead to the confusion of different types of normal signals. As shown in Figure 1b, the
echo characteristics of various types of signals appear with different degrees of over-lagging,
while the signals are accompanied by severe noise interference, which makes different
classes of normal signals present an extremely high similarity in the high-dimensional
space, thus affecting the classification accuracy.

(2) Anomalous signals occur for complex and diverse reasons, making it impossible
to exhaust their patterns using sample labeling methods. As shown in Figure 1c,d, the
absorption of ultrasound by the weld, the uneven surface of the defect on the ultrasound
dispersion and other complex reasons caused by ultrasonic internal detection data inter-
spersed with a large number of unknown abnormal signals, even if the same reason for
the abnormal signal will have different patterns. Therefore, current deep learning methods
tend to show a low classification accuracy when faced with unfamiliar anomalous signal
patterns that have never appeared in the training set.

In order to solve the above problems, this paper proposes a two-stage ultrasonic signal
recognition method, based on the envelope and local similarity features (TS-ES). The main
contributions are as follows.

(1) An Akima-based data interpolation method is proposed for extracting the envelope
features that are more correlated with the original signal.

(2) A convolution-based envelope feature fusion method is designed, which can
automatically obtain the best fusion law between the envelope features and the original
signal.

(3) A local similarity feature extraction method, based on dynamic time warping,
is designed, which can still extract significant features without using anomalous signal
samples.

(4) A probability-based similarity feature enhancement method is proposed to further
strengthen the separability of the feature vectors in the embedding space.

2. Introduction of the Overall Approach

This paper proposes a two-stage ultrasonic signal recognition method, based on
the envelope and local similarity features, which consists of two parts: normal signal
classification, based on the envelope feature extraction and fusion, and the abnormal signal
detection, based on the local similarity feature extraction and enhancement. The overall
flow of the algorithm is shown in Figure 2.

Stage 1: Normal signal classification method, based on the envelope feature extraction
and fusion. This stage does not consider the existence of abnormal signals, and only
classifies the signals to be detected into three types of normal signals with different numbers
of echoes. Firstly, the envelope features of the signals are extracted, secondly, the envelope
features are fused with the original signals, and finally, a one-dimensional convolutional
neural network using the Softmax function as the top layer outputs the classes to which the
signals belong and the probabilities of belonging to the classes.

Stage 2: Anomaly detection method, based on local similarity feature extraction and
enhancement. In this stage, the anomaly detection is performed by using models with
different parameters, according to the category to which the first stage belongs. The local
similarity of the signal is first extracted and formed into a feature vector, and then the
similarity feature vector is further enhanced and the anomaly detection is completed using
the class probabilities from the first stage.

Finally, the final class of the signal to be detected is obtained by combining the
classification and detection results of the two stages.
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3. Normal Signal Classification Method, Based on the Envelope Feature Extraction and
Fusion

In order to reduce the effects of the time shift of the normal signal echo features and
strong noise interference, this paper proposes a normal signal classification method, based
on the envelope feature extraction and fusion. Firstly, an Akima-based data interpolation
method is proposed to extract the envelope features that are more correlated with the
original signal, and secondly, a convolution-based envelope feature fusion method is
designed, which automatically obtains the optimal fusion rule between the envelope and
the original signal through network training. Then a one-dimensional convolutional neural
network is used to complete the feature classification. Finally, a Softmax function is used to
obtain the class to which the signal belongs and the corresponding class probability.

3.1. Envelope Feature Extraction

The envelope feature can eliminate the positive and negative amplitude oscillations of
the ultrasound signal while preserving the echo position and intensity characteristics of the
ultrasound signal, reducing the sensitivity of the algorithm to individual values and thus
further reducing the effects of the time shifts and noise interference caused by the normal
signal echo characteristics. Many methods have been developed to obtain the envelope of
the signal, and the most representative technique is the interpolation of the local extrema,
with linear, cubic spline, and Akima interpolation methods [11]. On the one hand, these
methods are prone to downwash, overfilling, and edge effects [12]. On the other hand, the
original data other than the extremal points are not involved in the computation, resulting
in a reduced correlation between the generated envelopes and the original data. To solve
these problems, an Akima-based data interpolation method is proposed in this paper to
extract the envelope features that are more correlated with the original signal. The method
includes two parts: local extremum extraction and the Akima-based data interpolation.
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3.1.1. Local Extreme Point Extraction

The ultrasound signal X is a one-dimensional time-series signal, and X can be ex-
pressed in the following form.

X =
[
x1 x2 x3 · · · xn

]
(1)

The process of the extreme value point extraction is shown in Equations (2)–(5):

MaxI = I(dif(sign(dif(X))) == −2) + 1 (2)

MaxV = Xi, i ∈ MaxI (3)

MinI = I(dif(sign(dif(X))) == 2) + 1 (4)

MinV = Xi, i ∈ MinI (5)

where MaxI, MinI, MaxI, MinV denote the local maximum sampling time, local maximum,
local minimum sampling time and local minimum of the ultrasound signal, respectively. I
denotes the position index, dif denotes the data differential operation and sign is the sign
function.

The extracted local maxima are shown as red dots in Figure 3, and the local minima
are shown as blue dots.
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Figure 3. Results of envelope feature extraction. (a) two echoes signal. (b) three echoes signal. (c) four
echoes signal. The black line in the figure indicates the original ultrasound signal. The red line
indicates the upper envelope derived using the Akima-based data interpolation method proposed
in this paper. The black line indicates the lower envelope derived using the Akima-based data
interpolation method proposed in this paper. The red points indicate the local maxima points. The
black points indicate the local minima points.

3.1.2. Akima-Based Data Interpolation Method

Compared with the cubic spline interpolation method, the data obtained by the Akima
interpolation method is smoother [13]. However, the Akima interpolation method only
uses local extreme points to generate the envelope features. In order to involve the non-
extreme points in the envelope calculation and further enhance the connection between the
envelope and the original signal, this paper proposes an Akima-based data interpolation
method, and the specific algorithm is shown in Equation (6).

X̂i =
θ

2k + 1

i+k

∑
j=i−k

∣∣∣X̃j

∣∣∣+ 1− θ

2k + 1

i+k

∑
j=i−k

∣∣Xj
∣∣ (6)

where X̂ denotes the final envelope data, θ, k are the hyperparameters controlling the data
smoothing and correlation, and the interpolation results are better when the values θ =



Machines 2022, 10, 1111 6 of 16

0.8, k = 2 are actually verified. X̃ is shown in Equation (7), which is the result after the
interpolation using Akima.

X̃ = Akima( Index, Value
)

(7)

The final acquired envelope features are shown as the red and blue lines in Figure 3.
Considering that the raw ultrasound signal may still have irreplaceable features, the
envelope data and the raw ultrasound signal are combined into a three-channel data output
for the next stage of the feature fusion.

3.2. Feature Fusion and Classification

There must be a corresponding rule between the ultrasound signal and its upper and
lower envelopes that can make the most significant features required by the classification
network, but the optimal solution cannot be obtained by artificially specifying such a rule.
In this paper, a convolution-based envelope feature fusion method is designed. The method
fixes the position of the convolution kernel, and a convolution kernel is responsible for only
one feature value in the fused feature vector, so as to find the optimal fusion law between
the envelope and the original signal, and then uses a one-dimensional convolutional neural
network to classify the fused features, as described in detail below.

3.2.1. Feature Fusion Method, Based on the Independent Convolution Kernel

As shown in equation (8), after the feature extraction, the obtained feature matrix
with the 0 filled boundary can be represented as X̂, using n convolution kernels Wi for the
fusion, according to Equation (10).

X̂ =

0 x11 x12 x13 · · · x1n 0
0 x21 x22 x23 · · · x2n 0
0 x31 x32 x33 · · · x3n 0

 (8)

Wi =

wi
11 wi

12 wi
13

wi
21 wi

22 wi
23

wi
31 wi

32 wi
33

 (9)

X̃i =
i+1

∑
t=i−1

2

∑
j=0

Wi
jtX̂jt (10)

where X̃i is the value of the ith sampling moment after the feature fusion, and Wi is the
weight of the convolution kernel corresponding to the i sampling moment. The method
obtains the optimal fusion parameters by gradient descent, and the post-fusion features of
a certain sampling moment can take into account, not only the pre-fusion features of the
current sampling moment, but also the pre-fusion features of the left and right neighboring
moments, which makes the post-fusion features more comprehensive.

3.2.2. Normal Signal Classification

The fused features are classified using a one-dimensional convolutional neural net-
work, and the network structure is shown in Table 1.
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Table 1. Structure of the one-dimensional convolutional neural network.

Layer Type Input Feature Vector
Dimension

Output Feature Vector
Dimension

Convolution-Convolution-Pooling 1 × 114 21 × 57
Convolution-Convolution-Pooling 21 × 57 42 × 28
Convolution-Convolution-Pooling 42 × 28 63 × 14
Convolution-Convolution-Pooling 63 × 14 84 × 3

Fully connected 252 100
Fully connected 100 20
Fully connected 20 3

The network stacks multiple small convolutional kernels instead of large convolutional
kernels, since multiple nonlinear layers increase the network depth to ensure learning more
complex patterns with fewer parameters [14].

As shown in Equation (11), the network output of a single signal is Y =
[
y1 y2 y3

]
,

which is processed using the Softmax function to obtain the normal class (L) and the class
probability (P) of the signal to be detected.

L = MaxIndex(Y) P =
eMax(Y)

∑2
i=0 eYi

(11)

4. Anomalous Signal Detection Method, Based on the Local Similarity Feature
Extraction and Enhancement

The expert system detects abnormal data in ultrasound intra-detection data by observ-
ing whether the signal to be detected has the echo characteristics of normal data. Inspired
by this idea, this paper designs an abnormal signal detection method, based on the local
similarity feature extraction and enhancement. First, a local similarity feature extraction
method, based on the dynamic time regularization is designed to extract features in the
absence of abnormal samples. Then a probability-based similarity feature enhancement
method is proposed, which takes the category probability outputs in the first stage as inputs
to further enhance the separability of the feature vectors in the embedding space. Finally, a
two-layer fully connected neural network is used to complete the anomaly detection of the
signal. Considering the relevance of the anomaly detection, this paper uses models with
different parameters for each of the three categories of normal signals. The details are as
follows.

4.1. Local Similarity Feature Extraction, Based on Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is an algorithm used to measure the similarity between
two sequences, and this sequence comparison method is commonly used for the time series
classification [15]. As shown in Equation (12), X, Y are two time series with dimensions m
and n, respectively. {

X =
[

x1 x2 x3 · · · xm
]

Y =
[

y1 y2 y3 · · · yn
] (12)

D is the distance matrix, where D(i, j) is the distance between xi and yi, i.e.,

D(i, j) = d(xi, yj) =
√
(xi − yj)

2 (13)

W =
[
w1 w2 w3 · · · wk

]
is the all aligned paths of X,Y. wk needs to satisfy the

boundary condition, the continuity condition and the monotonicity condition [16]. The
main idea of DTW is to find an optimal path on the distance matrix D using the dynamic
programming (DP) algorithm that minimizes the cumulative value of the Euclidean distance
on this path. As shown in Equation (14), this minimum distance is the DTW distance.

DTW(X,Y) = Min
[
∑ D(w1) ∑ D(w2) · · · ∑ D(wk)

]
(14)
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Compared to the Euclidean distance (ED), the DTW algorithm allows a one-to-many or
many-to-one mapping of the data points of two sequences, enabling a degree of “warping”
or “stretching” of the time axis, which makes it possible to make meaningful comparisons
between two sequences that are similar in shape but differ locally. So this algorithm is suit-
able for the similarity comparison between ultrasound signals. Furthermore, considering
that the ultrasonic normal signal features are mainly concentrated near the echo position,
if the complete ultrasonic signal is used for matching, the similarity of the feature’s in-
significant position will weaken the difference between different signal feature vectors, so
a DTW-based local similarity feature extraction algorithm is designed in this paper. The
details are described as follows.

4.1.1. Ultrasound Signal Pre-Processing

Different degrees of ultrasound signal amplitude attenuation can lead to large differ-
ences in the similarities between similar signals, and to eliminate this effect, the ultrasound
signal is preprocessed using Equation (15).

x̂i = (xi −
∑n

j=1 xj

n
)

/√√√√ n

∑
t=1

(xt −
∑n

j=1 xj

n
)

2

/n (15)

where x̂ is the pre-processed ultrasound signal and x is the original ultrasound signal.
Following the pre-processing, the amplitude difference between the signals is eliminated
and the shape information of the signals is retained.

4.1.2. Local Similarity Feature Extraction

As shown in Figure 4, the width of the DTW local similarity window is set to size, and
the window moving step is str. XD is the ultrasound signal to be extracted, which can be
expressed as Equation (16), where n is the ultrasound signal dimension.

XD =
[
xd1 xd2 xd3 · · · xdn

]
(16)

Machines 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

feature’s insignificant position will weaken the difference between different signal feature 

vectors, so a DTW-based local similarity feature extraction algorithm is designed in this 

paper. The details are described as follows. 

4.1.1. Ultrasound Signal Pre-Processing 

Different degrees of ultrasound signal amplitude attenuation can lead to large differ-

ences in the similarities between similar signals, and to eliminate this effect, the ultra-

sound signal is preprocessed using Equation (15). 

ˆ ( ) / ( ) /

n n

j jj 1 j 1n 2

i i tt 1

x x
x x x n

n n
 (15) 

where x̂ is the pre-processed ultrasound signal and x  is the original ultrasound sig-

nal. Following the pre-processing, the amplitude difference between the signals is elimi-

nated and the shape information of the signals is retained. 

4.1.2. Local Similarity Feature Extraction 

As shown in Figure 4, the width of the DTW local similarity window is set to size, 

and the window moving step is str. XD is the ultrasound signal to be extracted, which can 

be expressed as Equation (16), where n is the ultrasound signal dimension. 

 

Figure 4. DTW similarity feature extraction. 

1 2 3XD nxd xd xd xd  (16) 

XS is the sample signal data set, which can be expressed as Equation (17), where m is 

the number of samples. 

1 1 1 1

1 2 3 n
2 2 2 2

1 2 3 n
3 3 3 3

1 2 3 n

m m m m

1 2 3 n

xs xs xs xs

xs xs xs xs

xs xs xs xs

xs xs xs xs

XS

XS

XS XS

XS

1

2

3

m

 (17) 

The DTW window extracts the similarity features, step by step, along the horizontal 

axis, and the feature vector F can be expressed as Equation (18), where k is the feature 

dimension, bounded by Equation (19). The feature extraction process can be expressed as 

Equation (20). 

1F 2 3 kf f f f  (18) 

Figure 4. DTW similarity feature extraction.

XS is the sample signal data set, which can be expressed as Equation (17), where m is
the number of samples.

XS =


XS1

XS2

XS3

...
XSm

 =


xs1

1 xs1
2 xs1

3 · · · xs1
n

xs2
1 xs2

2 xs2
3 · · · xs2

n
xs3

1 xs3
2 xs3

3 · · · xs3
n

...
...

...
. . .

...
xsm

1 xsm
2 xsm

3 · · · xsm
n

 (17)



Machines 2022, 10, 1111 9 of 16

The DTW window extracts the similarity features, step by step, along the horizontal
axis, and the feature vector F can be expressed as Equation (18), where k is the feature
dimension, bounded by Equation (19). The feature extraction process can be expressed as
Equation (20).

F =
[

f1 f2 f3 · · · fk
]

(18)

k =
n− size

str
+1 (19)

fi =
∑m

J=1 DTW(XDi, XSJ
i)

m
(20)

XDi ⊆ XD,is the local sub-signal of the ultrasound signal to be extracted and XSJ
i ⊆

XSJ, is the local sub-signal of the Jth sample signal, which can be expressed as Equations
(22) and (23).

Si = (i− 1)× str (21)

XDi = XD[Si → Si + str] = [xdSi · · · xdSi+str] (22)

XSJ
i = XSJ [Si → Si + str] = [xsJ

Si · · · xsJ
Si+str] (23)

In Equation (21), Si is the starting position of the window.

4.2. Probability-Based Similarity Feature Enhancement Method

To further enhance the separability of the local similarity features of the normal
and abnormal signals in the embedding space, this section proposes a probability-based
similarity feature enhancement method by combining the category of the probability
outputs from the first stage normal signal classification method. The enhanced feature
vector is F’, which can be expressed as Equation (24).

F’ = [ f ′1 f ′2 f ′3 · · · f ′k] (24)

where f ′i is the eigenvalue in the enhanced eigenvector, which is calculated by
Equation (25).

f ′i = eλ×(1−P) × fi, i ∈
[
1 · · · k

]
(25)

where λ is the enhancement coefficient, obtained by grid search, P is the category prob-
ability of the output of the signal to be detected after the first stage of the normal signal
classification, and measures the probability that the signal to be detected is a certain normal
signal. Following the processing by Equation (25), the mode of the abnormal signal feature
vector will increase, expressed as a decrease in the degree of similarity, while the normal
signal feature vector is unaffected, further widening the spacing between the two categories
in the embedding space.

4.3. Abnormal Determination and Result Output

Considering that the low dimensionality of the similarity features, using a complex
classifier will cause overfitting, this paper uses a two-layer fully connected neural network
to determine the similarity features and finally determine whether the signal to be detected
is anomalous or not.

Finally, as shown in Figure 2, we first determine whether the data is abnormal data,
if the data is abnormal data, then we directly output the data as abnormal data, if not
abnormal data, then we output the first stage of the normal signal classification results.
Finally, the identification task of the detection data within the ultrasound is completed.

5. Experimental Verification

In this section, several sets of experiments are designed to demonstrate the effective-
ness of the proposed method, and the sample data sets are given in Section 5.1. Section 5.2
demonstrates the effectiveness of the dynamic time regularization (DTW)-based local simi-
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larity feature extraction method proposed in Section 4.1 and the probability-based similarity
feature enhancement method proposed in Section 4.2. Section 5.3 shows the performance
comparison of the proposed method with other methods. Section 5.4 highlights the recogni-
tion power of the proposed method in this paper for unfamiliar anomalous signals. Finally,
the performance of both the normal signal classification priority and anomaly detection
priority approaches, is discussed in Section 5.5.

5.1. Experimental Setup
5.1.1. Description of the Experimental Sample Set

Two datasets are used in this paper, dataset 1 and dataset 2 are collected from two
different oil pipelines in service. The basic information of the pipelines to which the data
sets belong is shown in Table 2.

Table 2. Basic information of the pipeline.

Pipe Length
(km)

Pipe Internal
Diameter (mm)

Pipe Wall
Thickness (mm)

Pipe Steel
Grade

dataset 1 50.8 304.8 5.6/7.1/12.3 L360 X52
dataset 2 71.5 406.4 6.4/7.1 L360 X52

The number of samples of each type in dataset 1 and dataset 2 is shown in Table 3,
where the difference between the samples of the abnormal signals is large. Dataset 1
consists mainly of abnormal signals caused by weld seams, and the signal is similar to
Figure 5. Dataset 2 consists mainly of signal abnormalities caused by defects, and the signal
is similar to Figure 6. Dataset 1 is used to verify the accuracy of the method proposed in this
paper, and dataset 2 is used to verify the recognition of the method for unfamiliar abnormal
signals. Dataset 1 is used to verify the accuracy of the proposed method, and data set 2 is
used to verify the ability of the method to identify unfamiliar anomalous signals.

Table 3. The number of samples in the dataset.

Two Echoes Three Echoes Four Echoes Abnormal Signals

dataset 1 1699 1204 1473 1550
dataset 1 500 500 500 500
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5.1.2. Parameter Settings

The hyperparameters θ, k in the first stage data interpolation method are empirical
values that we have derived, based on testing a large amount of actual data. With the
increase of θ and k, the smoother the output features, the less noise interference, and the
classification accuracy of the normal signal will be improved, but with the further increase
of θ and k, the output feature vector details will be weakened, which eventually leads to
the decrease of the classification accuracy, so we set θ = 0.8, k = 2.

The hyperparameters of the second stage anomaly detection part perform a 3D grid
search and a tri-fold cross-validation on the basis of dataset 1. The three sets of anomaly
detection hyperparameters in the second stage are shown in Table 4.

Table 4. Abnormal detection model parameter setting.

Size Str λ

Two echoes anomaly
detection model 59 6 0.973

Three echoes anomaly
detection model 32 4 1.117

Four echoes anomaly
detection model 30 4 1.027

5.1.3. Comparison Method Introduction

In order to fully verify the feasibility of the method proposed in this paper, four
machine learning and depth methods with a high accuracy for the ultrasound signal
classification in the introduction are used to complete the comparison experiments with
the method in this paper, and the four comparison methods are as follows.

1. The method of the ultrasound signal classification, based on the mechanistic features
and the natural breakpoint method proposed in the literature [5] (MFNB).

2. The literature [6] proposed the classification method using time-frequency features of
ultrasonic signals and PSO-SVM. (PSO-SVM).

3. The literature [10] proposed the use of the wavelet transform to extract features and
then use the two-dimensional convolutional neural network for the classification
(WT-CNN).

4. A one-dimensional convolutional neural network-based classification method pro-
posed in the literature [4] (1-D CNN).

For the convenience of the presentation, this paper subsequently uses TS-ES to denote
the two-stage ultrasound signal identification method, based on the envelope and local
similarity features proposed in this paper.

5.2. Analysis of the Feature Enhancement Results

This part of the experiment is to fully demonstrate the effectiveness of the local
similarity feature extraction method, based on the dynamic time regularization (DTW)



Machines 2022, 10, 1111 12 of 16

proposed in 4.1 and the probability-based similarity feature enhancement method proposed
in 4.2 of this paper. The experiments are as follows. A model is obtained using dataset 1 as
the training set, and various types of similarity feature vectors in dataset 2 are extracted
by the model, and then the feature vectors are augmented using the method proposed in
4.2. Finally, the T-distributed stochastic neighbor embedding (T_SNE) method is used to
visualize and compare the feature vectors of the normal and abnormal signals. The final
results are shown in Figure 7.

Figure 7(a1–c1) shows the distribution of the similarity features without using the
feature enhancement. As shown in the figure, the features are still clearly divided into
two clusters, although more confusion occurs at the same time when the boundaries of the
normal and abnormal features are connected. This indicates that the proposed DTW local
similarity feature extraction method is effective.

Figure 7(a2–c2) shows the distribution of the similarity features using the feature en-
hancement. As shown in the figure, the spacing between the two categories of the constant
and abnormal features becomes larger, the boundaries are clearer, and less confusion occurs.
This indicates that the feature enhancement method proposed in this paper can improve
the separability of the feature vectors in the high-dimensional space.
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5.3. Accuracy Comparison 

Figure 7. Comparison of the feature enhancement results. The blue dots in the image indicate the
normal signal feature vectors, the red dots indicate the abnormal signal feature vectors, and the
yellow areas indicate the feature vector confusion locations. The sample size of both the normal and
abnormal signals in the graph is 500. (a1) The distribution of the local similarity feature vectors in the
embedding space of the two echoes signal and the anomalous signal before the feature enhancement.
(a2) The distribution of the local similarity feature vectors in the embedding space of the two echoes
signal and the anomalous signal after the feature enhancement. (b1) The distribution of the local
similarity feature vectors in the embedding space of the three echoes signal and the anomalous signal
before the feature enhancement. (b2) The distribution of the local similarity feature vectors in the
embedding space of the three echoes signal and the anomalous signal after the feature enhancement.
(c1) The distribution of the local similarity feature vectors in the embedding space of the four echoes
signal and the anomalous signal before the feature enhancement. (c2) The distribution of the local
similarity feature vectors in the embedding space of the four echoes signal and the anomalous signal
after the feature enhancement.
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5.3. Accuracy Comparison

In order to fully verify the classification accuracy of the proposed method in this paper,
three evaluation metrics were used, namely accuracy, precision (P), and recall (R), which
were calculated as follows [17].

Accuracy =
TP + TN

S
(26)

Pi =
TPi

TPi + FPi
, i = 1, 2 · · · r (27)

Ri =
TPi

TPi + FNi
, i = 1, 2 · · · r (28)

where TP, TN represent the true positive rate and the false positive rate. TPi, FPi, FNi rep-
resent the true positive rate, the false positive rate and the false negative rate, respectively,
if category i is a positive sample and the other categories are negative samples. S is the
number of all samples and r represents the number of categories.

The experiments were conducted using dataset 1 for the 5-fold cross-validation of the
above method. The accuracy of the classification results, are shown in Figure 8, the average
precision and the average recall of each category are shown in Figures 9 and 10.

As shown in the figure, the accuracy of the two-stage ultrasonic signal recognition
method, based on the envelope and local similarity features (TS-ES) in this paper, reaches
97.02%, which is 4.07%~10.97% higher than the other methods, while the accuracy and
recall of all kinds of ultrasonic signals are better than the other methods. This indicates that
the TS-ES is capable of the accurate identification of various types of signals while having a
high stability.
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5.4. Analysis of the Abnormal Signal Detection Results

In order to fully validate the model’s ability to recognize unfamiliar anomalous signals,
this section uses dataset 1 to train the model and dataset 2 to test the model. To highlight
the demonstration, the secondary echo signals, tertiary echo signals, and quadratic echo
signals are grouped into negative classes in this section, indicating non-anomalous signals,
and positive classes for anomalous signals. To evaluate the ability of the model to recognize
the unfamiliar anomalous data, five evaluation metrics were used: the receiver operating
characteristic curve (ROC), the area under the curve (AUC) and accuracy (accuracy),
the anomalous signal detection precision (P) and the anomaly detection recall (R) were
evaluated. The comparison of ROC and AUC of the experimental results is shown in
Figure 11, and the precision, anomaly detection accuracy and anomaly detection recall are
shown in Table 5.

Machines 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 10. Recall of each method. 

5.4. Analysis of the Abnormal Signal Detection Results 

In order to fully validate the model’s ability to recognize unfamiliar anomalous sig-

nals, this section uses dataset 1 to train the model and dataset 2 to test the model. To high-

light the demonstration, the secondary echo signals, tertiary echo signals, and quadratic 

echo signals are grouped into negative classes in this section, indicating non-anomalous 

signals, and positive classes for anomalous signals. To evaluate the ability of the model to 

recognize the unfamiliar anomalous data, five evaluation metrics were used: the receiver 

operating characteristic curve (ROC), the area under the curve (AUC) and accuracy (ac-

curacy), the anomalous signal detection precision (P) and the anomaly detection recall (R) 

were evaluated. The comparison of ROC and AUC of the experimental results is shown 

in Figure 11, and the precision, anomaly detection accuracy and anomaly detection recall 

are shown in Table 5. 

      
(a)                              (b) 

Figure 11. ROC and AUC of each method. (a) ROC. (b) AUC. 

Table 5. Comparison of the accuracy, abnormal signal precision and abnormal signal recall. 

 Accuracy Precision Recall 

MFNB 0.8231 0.7001 0.9747 

PSO-SVM 0.7473 0.6546 0.8062 

WT-CNN 0.7517 0.9978 0.3917 

1-DCNN 0.7761 0.7462 0.6839 

TS-ES 0.9899 0.9970 0.9781 

As shown in Figure 11, compared with other methods, the ROC curve of TS-ES is 

closer to the (0, 1) point, while the AUC index of 0.996 is 9.33%–13.96% higher than that 

of the other methods, which indicates that this method has a higher accuracy in identify-

ing the anomalous signals and less misclassification of non-anomalous signals when using 

the same threshold value. According to Table 4, the model accuracy of TS-ES is 98.99%, 

which is 20.26%–32.46% higher than other methods. In terms of the anomalous signal ac-

curacy and recall, the method (WT-CNN) in the literature [9] achieves a 99.78% anomalous 

signal accuracy, but the recall is extremely low, only 39.17%. The method (MFNB) of the 

Figure 11. ROC and AUC of each method. (a) ROC. (b) AUC.

Table 5. Comparison of the accuracy, abnormal signal precision and abnormal signal recall.

Accuracy Precision Recall

MFNB 0.8231 0.7001 0.9747
PSO-SVM 0.7473 0.6546 0.8062
WT-CNN 0.7517 0.9978 0.3917
1-DCNN 0.7761 0.7462 0.6839

TS-ES 0.9899 0.9970 0.9781

As shown in Figure 11, compared with other methods, the ROC curve of TS-ES
is closer to the (0, 1) point, while the AUC index of 0.996 is 9.33%–13.96% higher than
that of the other methods, which indicates that this method has a higher accuracy in
identifying the anomalous signals and less misclassification of non-anomalous signals
when using the same threshold value. According to Table 4, the model accuracy of TS-ES is
98.99%, which is 20.26%–32.46% higher than other methods. In terms of the anomalous
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signal accuracy and recall, the method (WT-CNN) in the literature [9] achieves a 99.78%
anomalous signal accuracy, but the recall is extremely low, only 39.17%. The method
(MFNB) of the literature [4] has a 97.47% anomalous signal recall, but its precision is only
70.01%. The anomalous signal precision and recall of TS-ES in the text are 99.70% and
97.18%, which can meet the practical detection needs.

5.5. Comparison of the Normal Signal Classification Priority and the Abnormal Signal Detection
Priority

The proposed two-stage ultrasound signal recognition method, based on the envelope
and local feature similarity first classifies the normal signals and then detects the abnormal
signals (normal signal classification priority). The corresponding common method is to first
perform the abnormal signal detection and then the normal signal classification (abnormal
signal detection priority). In this section we then perform a five-fold cross-validation of the
two models (normal signal classification priority and abnormal signal detection priority)
separately on dataset 1. In this section, the performance of the two models is evaluated
using four indicators: accuracy, macor precision, macor recall and running time. The
experimental results are shown in Table 6.

Table 6. Performance comparison of the normal signal classification priority model and the abnormal
signal detection priority model.

Accuracy Macor Precision Macor Recall Running Time
(s)

Normal signal
classification priority 0.8231 0.7001 0.9747 238.37

Abnormal signal
detection priority 0.7473 0.6546 0.8062 564.83

As can be seen from Table 6, the accuracy of the normal signal classification priority
model used in this paper is significantly higher than that of the abnormal signal detection
priority. We believe that using the abnormal signal detection priority approach, the model
only needs to learn one pattern of normal signals when performing the anomaly detection,
which greatly improves the focus of the model. For the abnormal signal detection priority,
the model needs to learn three different types of normal signal patterns when performing
the anomaly detection, which distracts the model’s attention and thus degrades the accuracy
of the model.

Moreover, the normal signal classification priority model takes only half the computing
time of the abnormal signal detection priority model. This is because if the normal signal
classification is performed first, then only the local similarity features between the abnormal
signal and a normal signal sample data set need to be computed. In contrast, if the anomaly
detection is performed first, the local similarity features of the anomaly signal and three
normal signal sample data sets need to be computed, which increases the running time of
the algorithm.

6. Conclusions

An ultrasound signal classification and abnormality detection method is designed to
address the problems of time-shifted echo features of normal ultrasound signals with severe
noise interference and the inexhaustible variety of abnormal ultrasound signal patterns.
Firstly, this paper elaborates on the implementation details of the method, classifies the
normal signals by a one-dimensional convolutional neural network with a feature fusion,
and then completes the detection of the abnormal ultrasound signals by using the idea of
similarity comparison. The paper concludes with three sets of experiments to demonstrate
the effectiveness of the proposed method. The experimental results show that the proposed
method is able to accurately classify the ultrasound intra-detection data containing multiple
types of interspersed abnormal signals with an accuracy of 97.02%. At the same time,
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it does not need to learn the characteristic patterns of the abnormal signals, and the
accuracy reaches 98.99% for the abnormal and unfamiliar signals, which has a very high
generalization performance. It provides favorable conditions for further effective analyses
of ultrasound signals.

Author Contributions: Conceptualization, J.L.; methodology, L.W. and S.L.; software, L.W., S.L. and
X.L.; validation, S.L.; data curation, L.W.; investigation, L.W.; writing—original draft, L.W. and X.L.;
writing—review & editing, S.L.; visualization, X.L.; project administration, J.L.; supervision, J.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (U21A20481,
61973071).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.J.; Wen, Z.X.; Pei, H.Q.; Gu, S.N.; Zhang, C.J.; Yue, Z.F. Thermal damage evaluation of nickel-based superalloys based on

ultrasonic nondestructive testing. Appl. Acoust. 2021, 183, 108329. [CrossRef]
2. Yan, Y.; Liu, D.; Gao, B.; Tian, G.Y.; Cai, Z.C. A deep learning-based ultrasonic pattern recognition method for inspecting girth

weld cracking of gas pipeline. IEEE Sens. J. 2020, 20, 7997–8006. [CrossRef]
3. Dupont-Marillia, F.; Jahazi, M.; Lafreniere, S.; Belanger, P. Design and optimisation of a phased array transducer for ultrasonic

inspection of large forged steel ingots. NDT E Int. 2019, 103, 119–129. [CrossRef]
4. Gao, F.; Li, B.; Chen, L.; Shang, Z.; Wei, X.; He, C. A softmax classifier for high-precision classification of ultrasonic similar signals.

Ultrasonics 2021, 112, 106344. [CrossRef] [PubMed]
5. Lu, S.X.; Xu, X.; Zhang, R.J. Small sample defect recognition method based on multi-dimensional selective search. Chin. J. Sci.

Instrum. 2022, 43, 220–228.
6. Wang, X.; Guan, S.; Hua, L.; Wang, B.; He, X. Classification of spot-welded joint strength using ultrasonic signal time-frequency

features and PSO-SVM method. Ultrasonics 2019, 91, 161–169. [CrossRef] [PubMed]
7. Liao, Z.; Zhang, Y.; Li, Z.; He, B.; Lang, X.; Liang, H.; Chen, J. Classification of red blood cell aggregation using empirical wavelet

transform analysis of ultrasonic radiofrequency echo signals. Ultrasonics 2021, 114, 106419. [CrossRef] [PubMed]
8. Munir, N.; Kim, H.J.; Song, S.J.; Kang, S.S. Investigation of deep neural network with drop out for ultrasonic flaw classification in

weldments. J. Mech. Sci. Technol. 2018, 32, 3073–3080. [CrossRef]
9. Munir, N.; Park, J.; Kim, H.J.; Song, S.J.; Kang, S.S. Performance enhancement of convolutional neural network for ultrasonic flaw

classification by adopting autoencoder. NDT E Int. 2020, 111, 102218. [CrossRef]
10. Meng, M.; Chua, Y.J.; Wouterson, E.; Ong, C.P.K. Ultrasonic signal classification and imaging system for composite materials via

deep convolutional neural networks. Neurocomputing 2017, 257, 128–135. [CrossRef]
11. Márquez-Figueroa, S.; Shmaliy, Y.S.; Ibarra-Manzano, O. Optimal extraction of EMG signal envelope and artifacts removal

assuming colored measurement noise. Biomed. Signal Process. Control. 2020, 57, 101679. [CrossRef]
12. Li, H.; Li, L. An improved EMD method with modified envelope algorithm based on C2 piecewise rational cubic spline

interpolation for EMI signal decomposition. Appl. Math. Comput. 2018, 335, 112–123. [CrossRef]
13. Chen, C.; Bei, Y.; Li, Y.; Zhou, W. Effect of interpolation methods on quantifying terrain surface roughness under different data

densities. Geomorphology 2022, 417, 108448. [CrossRef]
14. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Int. Conf. Learn. Represent.

2015, 1–14.
15. Raheja, J.L.; Minhas, M.; Prashanth, D.; Shah, T.; Chaudhary, A. Robust gesture recognition using Kinect: A comparison between

DTW and HMM. Optik 2015, 126, 1098–1104. [CrossRef]
16. Guo, J.; Si, Z.; Liu, Y.; Li, J.; Li, Y.; Xiang, J. Dynamic time warping using graph similarity guided symplectic geometry mode

decomposition to detect bearing faults. Reliab. Eng. Syst. Saf. 2022, 224, 108533. [CrossRef]
17. Zhao, Y.L.; Wu, Y.Q. Research progress of surface defect detection methods based on machine vision. Chin. J. Sci. Instrum. 2022,

43, 198–219.

http://doi.org/10.1016/j.apacoust.2021.108329
http://doi.org/10.1109/JSEN.2020.2982680
http://doi.org/10.1016/j.ndteint.2019.02.007
http://doi.org/10.1016/j.ultras.2020.106344
http://www.ncbi.nlm.nih.gov/pubmed/33422994
http://doi.org/10.1016/j.ultras.2018.08.014
http://www.ncbi.nlm.nih.gov/pubmed/30146324
http://doi.org/10.1016/j.ultras.2021.106419
http://www.ncbi.nlm.nih.gov/pubmed/33740499
http://doi.org/10.1007/s12206-018-0610-1
http://doi.org/10.1016/j.ndteint.2020.102218
http://doi.org/10.1016/j.neucom.2016.11.066
http://doi.org/10.1016/j.bspc.2019.101679
http://doi.org/10.1016/j.amc.2018.04.008
http://doi.org/10.1016/j.geomorph.2022.108448
http://doi.org/10.1016/j.ijleo.2015.02.043
http://doi.org/10.1016/j.ress.2022.108533

	Introduction 
	Introduction of the Overall Approach 
	Normal Signal Classification Method, Based on the Envelope Feature Extraction and Fusion 
	Envelope Feature Extraction 
	Local Extreme Point Extraction 
	Akima-Based Data Interpolation Method 

	Feature Fusion and Classification 
	Feature Fusion Method, Based on the Independent Convolution Kernel 
	Normal Signal Classification 


	Anomalous Signal Detection Method, Based on the Local Similarity Feature Extraction and Enhancement 
	Local Similarity Feature Extraction, Based on Dynamic Time Warping (DTW) 
	Ultrasound Signal Pre-Processing 
	Local Similarity Feature Extraction 

	Probability-Based Similarity Feature Enhancement Method 
	Abnormal Determination and Result Output 

	Experimental Verification 
	Experimental Setup 
	Description of the Experimental Sample Set 
	Parameter Settings 
	Comparison Method Introduction 

	Analysis of the Feature Enhancement Results 
	Accuracy Comparison 
	Analysis of the Abnormal Signal Detection Results 
	Comparison of the Normal Signal Classification Priority and the Abnormal Signal Detection Priority 

	Conclusions 
	References

