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Abstract: This paper aims to study the natural heat dissipation capacity of a hydraulic tank during
its miniaturization revolution. A theoretical model of heat dissipation was built up on the basis
of experimental analysis. Then, the natural heat dissipation power was deduced and shown to be
relevant. Influencing factors were analyzed, which were the oil height proportion, design proportion,
volume, material type, and wall thickness. The results showed that the heat dissipation power is
proportional to the height of the oil in the tank. The power increases with the height proportional
coefficient k2, while it first decreases and then increases with the length proportional coefficient k1.
The lengthwise coefficient obviously has a more significant effect. The influence degree of reduction
methods on natural heat dissipation is in the following order: length reduction > equal proportion
reduction > height reduction > width reduction. Additionally, when the thermal conductivity λ

is greater than 10 W/(m·K), the material and wall thickness of the tank slightly influence the heat
dissipation capacity; otherwise, the influence is evident.

Keywords: hydraulic tank; miniaturization; natural heat dissipation; influence factors

1. Introduction

Hydraulic systems are widely used in aerospace [1,2], robotics [3,4], engineering ma-
chinery [5,6], and other fields [7–9]. With the rapid development of science and technology,
all fields have set a higher request for the power-to-weight ratio. The miniaturization and
light weight of hydraulic components and systems can not only reduce the weight of the
equipment and improve its endurance and mobility, but also help to achieve energy conser-
vation and emission reductions [10,11]. A hydraulic tank accounts for a large proportion
of the volume and weight in the hydraulic system. It is one of the components with the
light weight and greatest miniaturization potential in hydraulic systems [12]. Because of
the energy loss of hydraulic system, the temperature of hydraulic oil will rise. The main
sources of energy losses are pumps [13], motors [14–16], and valves. The reduction of the
volume of the hydraulic tank may lead to the deterioration of the natural heat dissipa-
tion capacity of the tank, which will then affect the thermal equilibrium temperature of
the hydraulic system and bring hidden dangers to the good functioning of the hydraulic
system [17,18]. Therefore, with the aim to provide guidelines for the miniaturization and
weight reduction of the hydraulic tank, this paper studies the natural heat dissipation
capacity of the hydraulic tank and its influencing factors.

At present, domestic and foreign scholars’ research on the natural heat dissipation
of hydraulic tanks mainly focuses on the optimization of heat dissipation capacity. For
example, Zhang at al. [19] redesigned the tank from the aspects of the tank capacity, struc-
ture, and technique and improved the natural heat dissipation capacity of the hydraulic
tank. Guo at al. [20] designed a new type of constant-temperature tank based on semi-
conductor refrigeration technology, which can control the temperature at 37 ± 1 ◦C. Lv at
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al. [21] applied fins to the outer wall of the tank, designed four new structural tanks, used
Fluent to simulate the heat dissipation process of the tank, and studied its heat dissipation
efficiency. By simulating the heat transfer performance of the hydraulic tank, Liang at
al. [22] proposed to use phase change silicone material to wrap the side of the tank to
improve the heat transfer performance of the hydraulic tank. Guan at al. [23] designed a
tank with a replaceable heat exchange plate by taking advantage of the high latent heat and
high heat storage density of phase change materials, which optimized the heat dissipation
capacity of the hydraulic tank. Wu at al. [24] studied the thermal balance of the hydraulic
steering system of a tractor, and they pointed out that increasing the volume of the tank
will also result in the increase of the total oil volume and heat dissipation area of the system,
thereby reducing the system temperature rise rate and thermal equilibrium temperature.
In addition, Zhang at al. [25] considered the convective heat transfer between the oil and
the oil tank, the heat conduction between the inner and outer walls of the oil tank, and the
convective heat transfer between the outer wall of the oil tank and the air when calculating
the heat dissipation capacity of the hydraulic tank, and they improved the thermal model
of the hydraulic tank. Lan at al. [26] analyzed the thermal model of an aircraft fuel tank,
then further introduced the gas in the upper part of the tank and abstracted the wall of
the tank as the “Upper wall”, “Lower wall”, and several “Side walls”. They derived the
heat balance equations between the walls and a more complete dynamic thermal model
of the tank.

Aiming at the development demand for the miniaturization of hydraulic tanks, this
paper deduces the calculation formula of the natural heat dissipation power by an anal-
ysis via mathematical modeling and studies the natural head dissipation capacity of the
hydraulic tank and its influencing factors in the process of miniaturization, so as to provide
theoretical guidelines for the miniaturization of hydraulics tank and the weight reduction
of the hydraulic system.

2. Analysis of Heat Dissipation in a Hydraulic Tank

There are various energy losses in the hydraulic system, most of which are absorbed
by the hydraulic oil in the form of heat energy, causing the temperature of the hydraulic oil
to rise [27]. As an important part of the natural heat dissipation of the hydraulic system, the
hydraulic tank has a large volume and a long oil flow path, resulting in an unbalanced oil
temperature distribution at different positions in the oil tank. To analyze the severity of this
unbalanced phenomenon, a thermal balance experiment was carried out with a hydraulic
tank of an injection molding machine. The installation position of the thermocouple is
shown in Figure 1. Thermocouple 1 is installed near the outlet, and Thermocouple 2 is
installed near Inlet 2.
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Figure 1. Heat balance experiment of injection molding machine tank. Figure 1. Heat balance experiment of injection molding machine tank.

The distance between Thermocouples 1 and 2 was 0.826 m, and the test time of the
tank was 4.5 h. By fitting and predicting the test curve, the temperature change curve of the
inlet and outlet when the tank reaches the thermal balance state was obtained, as shown in
Figure 2. The temperature of the inlet and outlet of the tank tended to stabilize after the
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machine ran for 10 h. The thermal balance temperature was about 50 ◦C. The temperature
difference of the inlet and outlet was 0.4 ◦C.
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The temperature difference between the inlet and outlet was small, so each part of the
tank was simplified into different nodes during the theoretical deduction, and the nodes
were connected by heat conductors. The parameters of the nodes and heat conductors
represent the temperature of the medium and the heat transfer mode between the media,
respectively. At the same time, considering that a certain amount of air is usually reserved
at the top of the hydraulic tank, therefore, the mathematical modeling of the hydraulic tank
was divided into the “Oil contact part” and the “Air contact part” according to the different
contact media of its inner wall, as shown in Figure 3.
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Based on the above assumptions, the natural heat dissipation process of the tank is:
convective heat transfer between oil and inner wall, heat conductive between the inner wall
and the outer wall, convective heat transfer between the outer wall and the air, convective
heat transfer between the oil and air in the tank, and convective heat transfer between the
air and the inner wall in the tank. In Figure 3, Tw,in represents the inner wall temperature
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of hydraulic tank, Tw,out represents the outer wall temperature of the tank, Tg represents
the gas temperature in the hydraulic tank, Tl represents the oil temperature, and Tair is the
gas temperature outside the hydraulic tank.

3. Deduction of Mathematical Model for Natural Heat Dissipation in a Hydraulic Tank

The natural heat dissipation process of the hydraulic tank is complicated, and the
following assumptions were made for the convenience of mathematical modeling analysis:

1. The temperature of the hydraulic oil, gas, and each wall is a lumped parameter.
2. The radiation heat transfer of the hydraulic tank was not considered.
3. We only considered the horizontal attitude of the hydraulic tank, regardless of its

special conditions.

3.1. Heat Dissipation on the Oil–Tank Wall Contact Area

The contact area between the oil and the inner wall of the tank is:

Aoilw = 2(a + b)h + ab (1)

where a is the length of the hydraulic tank (m); b is the width of the hydraulic tank (m); h is
the height of the oil in the hydraulic tank (m).

The power of the convective heat transfer between the oil and the tank inner wall is:

P1 = K1(Tl − Tw,in)Aoilw (2)

where K1 is the heat transfer coefficient between the oil and the inner wall (W/(m2·K)).
The power of heat conduction in the tank wall is:

P2 = λ
Tw,in − Tw,out

δ
Aoilw (3)

where λ is the thermal conductivity of the material of the hydraulic tank (W/(m·K)); δ is
the wall thickness of the hydraulic tank (m).

The power of convective heat transfer between the tank outer wall and the ambient
air is:

P3 = K2(Tw,out − Tair)Aoilw (4)

where K2 is the convection heat transfer coefficient between the air and the outer wall
(W/(m2·K)).

The natural heat dissipation in the hydraulic tank can be approximated as a steady con-
duction process. The flux of heat through each medium is identical. Therefore, P1 = P2 = P3,
then the power of the heat dissipation of the “Oil contact part” can be deduced:

Poil =
(Tl − Tair)[2(a + b)h + ab]

1
K1

+ δ
λ + 1

K2

(5)

3.2. Heat Dissipation on the Oil–Air Contact Area

The contact area between the oil and air in the tank is:

Al,g = ab (6)

The contact area between the air in the tank and the inner wall is:

Aairw = 2(a + b)(H − h) + ab (7)

where H is the height of the hydraulic tank (m).
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The power of convection heat transfer between the oil and the ambient air is:

P4 = K3
(
Tl − Tg

)
Aairw (8)

where K3 is the convective heat transfer coefficient of the air and oil in the tank (W/(m2·K)).
The power of the convective heat transfer between the tank inner wall and the ambient

air is:
P5 = K4

(
Tg − Tw,in

)
Aairw (9)

where K4 is the convective heat transfer coefficient between the air and the inner wall of
the tank (W/(m2·K)).

The power of the heat conduction of the tank inner wall and outer wall is:

P6 = λ
Tw,in − Tw,out

δ
Aairw (10)

The power of the convective heat transfer between the tank outer wall and the ambient
air is:

P7 = K2(Tw,out − Tair)Aairw (11)

The analysis of the “Oil contact part” and “Air contact part” is identical, so the power
of the heat dissipation of the “Air contact part” is:

Pair =
(Tl − Tair)[2(a + b)(H − h) + ab]

2(a+b)(H−h)+ab
K3ab + 1

K4
+ δ

λ + 1
K2

(12)

3.3. Natural Heat Dissipation Capacity of Hydraulic Tank

The total capacity of natural heat dissipation in a hydraulic tank is composed of the
heat dissipation power in the “Oil contact part” and in the “Air contact part”, namely the
sum of Equations (5) and (12):

P = Poil + Pair =
(Tl − Tair)[2(a + b)h + ab]

1
K1

+ δ
λ + 1

K2

+
(Tl − Tair)[2(a + b)(H − h) + ab]

2(a+b)(H−h)+ab
K3ab + 1

K4
+ δ

λ + 1
K2

(13)

4. Discussion

From Equation (13), the heat dissipation capacity closely depends on the oil height
proportion, the geometrical design proportion, the volume, the material type, and the
wall thickness of the hydraulic tank. These factors were analyzed in detail based on the
data in Table 1.

Table 1. Calculation parameters.

Parameter Value Parameter Value

Tl 65 ◦C K1 500 W/(m2·K)
Tair 20 ◦C K2 12 W/(m2·K)
V 500 L K3 7 W/(m2·K)
δ 6 mm K4 7 W/(m2·K)

4.1. Influence of the Oil Height

When the hydraulic system is working, the oil height in the tank is constantly changing
due to the asymmetry of the hydraulic cylinder with the rod cavity and the rodless cavity.
The influence of the oil height ratio (k3) on the natural heat dissipation of the tank was
analyzed by changing the oil height, and the universality was verified by changing the
design proportion of the tank, as shown in Figure 4. The design proportion in this paper
refers to the ratio of the length, height, and width of a rectangular tank, which ranges from
1:1:1 to 3:2:1.
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It can be seen from Figure 4 that the natural heat dissipation power of the tank is
proportional to the liquid level height. That is, the higher the liquid level is, the greater
the heat dissipation power is. This also shows that the capacity of the heat conduction of
the oil is greater than that of the air. In addition, the value of the natural heat dissipation
power is different when the design proportion of the tank is different. Their relationships
will be further elucidated in the next section.

4.2. Influence of the Geometrical Design Proportion

The width (b) of the tank was selected as the dimensional benchmark. Then, other
dimensions can be expressed as: a = k1b, H = k2b, h = k3H = k2k3H = 0.8 k2b (k3 is usually
0.8), where k1 is the length proportion coefficient of the hydraulic tank and k2 is the height
proportion coefficient of the hydraulic tank. Then, Formula (13) becomes:

P =
(Tl − Tair)× (1.6k1k2 + 1.6k2 + k1)b2

1
K1

+ δ
λ + 1

K2

+
(Tl − Tair)× (0.4k1k2 + 0.4k2 + k1)b2

0.4k1k2+0.4k2+k1
K3k1

+ 1
K4

+ δ
λ + 1

K2

(14)

The relationship between the natural heat dissipation power of the hydraulic tank
and the design proportion of the tank is shown in Figure 5. It shows that, in the range
of the design ratios of the length, height, and width from 1:1:1 to 3:2:1, when the design
ratio is 3:2:1, the maximum heat dissipation power is 1689.5 W. When the design ratio
is 1.1:1:1, the minimum heat dissipation power is 1496.4 W. In addition, if the length
proportional coefficient k1 is constant, the power increases with the increase of the height
ratio coefficient k2. The maximum power increases by 3.0% compared with the minimum
power. If k2 is constant, the power decreases first and then increases with the increase of k1.
The maximum power increases by 9.4% compared with the minimum power. Therefore,
the length proportional coefficient k1 of the hydraulic tank has a more obvious influence on
the natural heat dissipation capacity of the tank.
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The length of the tank affects the flow path of the oil in the tank. The longer the
flow path is, the more conducive to the realization of degassing and impurity removal
function [28]. The comparison of the tank parameters for the design ratios of 3:1:1 and 3:2:1
is shown in Table 2. It shows that the tank with a heat dissipation power of 3:2:1 is only
3.0% higher than that of the tank with a design ratio of 3:1:1, but the length of the tank is
reduced by 20.7%. Therefore, considering the flow path of the oil in the tank, the hydraulic
tank with the design ratio of 3:1:1 is better. Therefore, it was used in the calculation and
analysis below.

Table 2. Comparison of tank parameters under different design ratios.

Design Ratios 3:1:1 3:2:1 Change

P/W 1639.9 1689.5 +3.0%
a/mm 1651 1310 −20.7%

4.3. Influence of Volume Reduction Method of Hydraulic Tank

The miniaturization of the hydraulic tank has different reduction methods. They are
the length reduction, width reduction, height reduction, and proportional reduction. The
width is the smaller of a and b. In reality, the convection coefficient will not only change with
the geometric changes, but also with the external environment, such as the temperature,
wind speed, etc. However, this article assumes them to be constant for simplicity. The
volume of the hydraulic tank was reduced by N-times by different reduction methods, and
the natural heat dissipation power of the hydraulic tank was obtained as shown in Figure 6.

It can be seen that different reduction methods have different effects on the power.
The descending order is length reduction > equal proportion reduction > height reduction
> width reduction. The differences between the length reduction and width reduction in
Figure 6 are based on that the starting dimensional ratio of 3:1:1. Therefore, in the process of
the miniaturization of the hydraulic tank, the size in the width direction should be reduced
first to ensure the natural heat dissipation capacity of the tank. In addition, if the model
started with a 1:1:1 ratio, there should not be any difference when reducing the volume by
a or b in the generic case.
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4.4. Influence of Material and Wall Thickness of Hydraulic Tank

The traditional hydraulic tank is generally made of metal materials with a large
volume and high weight. Under the development trend of weight reduction, non-metallic
hydraulic tanks have gradually attracted attention. Different materials have different
thermal conductivities, which thereby affects the natural heat dissipation capacity of the
hydraulic tank. The influence of the thermal conductivity on the heat dissipation capacity
of the tank is shown in Figure 7.

It can be seen from Figure 7 that, when the thermal conductivity λ is less than
1 W/(m·K), the heat dissipation power increases exponentially. When λ is 1~10 W/(m·K),
the power increases slowly. When λ is greater than 10 W/(m·K), the power tends to be
flat. Thus, if λ is greater than 10 W/(m·K), material substitution has little effect on the
heat dissipation capacity of the tank. If λ is less than 10 W/(m·K), the material with a
greater thermal conductivity should be selected to improve the heat dissipation capacity of
the tank.

In addition to the influence of the material (that is, the thermal conductivity λ), the
wall thickness δ of the tank also affects the heat dissipation power. With regard to the setup
of the hydraulic tank material shown in Table 3, among them, Q235 and aluminum alloy
(5052) are common metal materials for hydraulic tanks, and cross-linked polyethylene and
nylon are the common non-metal materials. Furthermore, the two materials with a thermal
conductivity of 1 W/(m·K) and 10 W/(m·K) are user-defined materials.

Table 3. Hydraulic tank material and its thermal conductivity.

Materials Properties Materials Name Thermal Conductivity
(W/(m·K))

Metal
Q235 50

Aluminum Alloy (5052) [29] 235

Non-Metal
Cross-Linked Polyethylene [30] 0.4

Nylon [31] 0.7

User-Defined
λ = 1 1
λ = 10 10
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The relationship between the heat dissipation power and wall thickness of the above
six materials is shown in Figure 8. It can be observed from Figure 8 that the power of the
hydraulic tank decreases with the increase of the wall thickness with the same material.
However, the influence of the tank wall thickness on the power varies greatly with different
materials. For example, when the material is Q235, aluminum alloy, or λ = 10, the wall
thickness of the tank has little effect on the heat dissipation power; when the material is
cross-linked polyethylene, nylon, or λ = 1, the wall thickness of the tank has a great impact
on the power.

According to Figures 7 and 8, when λ is greater than 10 W/(m·K), the material type
and wall thickness have little effect on the heat dissipation capacity of the hydraulic tank.
When λ is less than 10 W/(m·K), the material type and wall thickness have a great influence
on the heat dissipation capacity of the hydraulic tank.
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5. Conclusions

In this paper, a mathematical model of hydraulic tank dissipation was established to
deduce the natural heat dissipation. On this basis, the influence of the oil height ratio, tank
design ratio, tank volume reduction mode, material, and wall thickness on the natural heat
dissipation capacity was analyzed. The results showed:

1. The heat dissipation power of the hydraulic tank is proportional to the oil height.
That is, the higher the oil height ratio is, the greater the natural heat dissipation power
is. This means the capacity of the heat conduction capacity of oil is greater than that
of the air.

2. When the length ratio coefficient k1 is constant, the natural heat dissipation power of
the hydraulic tank increases with the height ratio coefficient k2. When k2 is constant,
the power decreases first and then increases with the k1. Compared with k2, the length
ratio coefficient k1 of the hydraulic tank has a greater impact on the natural heat
dissipation capacity.

3. The order of the effect of the reduction method on the natural heat dissipation power
of the hydraulic oil tank is length reduction > equal proportion reduction > height
reduction > width reduction.

4. Moreover, when the thermal conductivity λ of the material is greater than 10 W/(m·K),
the material and wall thickness of hydraulic tank have little effect on the heat dissi-
pation capacity of the hydraulic tank. When λ is less than 10 W/(m·K), the effect is
great. Therefore, for metal tanks, replacing materials with those with better thermal
conductivity cannot effectively improve the heat dissipation capacity of the tank.
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