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Abstract: The pin-in-the-slot joint is a common element in machines, and the dynamics of joints
with clearances is an actively investigated topic. Important applications of such a joint can be found
in Geneva mechanisms, robotized gear selectors, centrifugal vibration absorbers (CPVA) and other
important mechanical devices. The paper will review the main analytical steps required to obtain
the equations characterizing the different force contact models. Furthermore, a numerical test bench
where such models are introduced for modeling the clearances between the pin and slot is proposed.
In this regard, the present study will offer a comparison and discussion of the numerical results
obtained with the different force contact models herein reviewed.

Keywords: slotted joints; contact dynamics; CPVA; curvature analysis

1. Introduction

Reuleaux distinguished between lower and higher kinematic pairs. The first category
includes pairs with surface contact between kinematic elements. The second category
contains the remaining ones, i.e., all those with line or point contacts. The cited classification
is based on an ideal geometry of kinematic elements. In fact, no clearance was assumed
between the contacting surfaces of kinematic elements. This assumption is mainly adopted
for rigid body kinematic and dynamic analyses. However, the presence of clearances cannot
be avoided in actual manufacturing and is a cause of impact forces. There is a broad class
of machines, such as robotized gear selectors [1], vibrating conveyers, vibratory diggers,
centrifugal vibration absorbers (CPVA) [2–6], etc., where a reliable analysis requires an
approach to kinematic pairs modeling consistent with the presence of clearances and elastic
couplings between bodies. The clearance allows a tiny vibration displacement governed by
the geometry and compliance of both kinematic elements’ surface boundaries. The forces
between the colliding bodies are characterized by high values acting for a short time interval,
much less than the system-free vibration natural period of oscillation. The impact pulsating
forces, triggered during the indentation of surfaces, may generate phenomena having a
negative effect on system operation. These negative effects are amplified by the increase
in operation speed. In the early sixties of the nineteenth century, the modeling of elastic
couplings between machine links was pioneered by Kobrinskiy and Babitsky [7]. They
recognized that clearances play a fundamental role in machine dynamics and introduced a
joint with a one-dimensional clearances model based on the impact of pendula masses.

Many investigations (e.g., [8–11]) on impact loads caused by the presence of joint
clearances are on record. Due to their high number and the differences in the theoretical
approaches, this review does not have the ambition of being exhaustive.

Strictly related to the problem of impact dynamics is the topic of contact force models
(e.g., [10,12–14]), impact with friction (e.g., [15]) and elastodynamic contact (e.g., [16]).
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Thoughtful reviews on the contact force models are already available (e.g., Gilardi and
Sharf [17], Schwab et al. [18], Haddadi and Hashtrudi-Zaad [19], Zhang and Sharf [13,20],
Pereira et al. [21], Machado et al. [22],) as well as dedicated important monographies (e.g.,
Goldsmith [23], Johnson [24], Flores and Lankarani [25]). In particular, Chapter 3 of this last
reference offers an interesting quantitative comparison of different viscous contact force
models. Flores and Lankarani [25] addressed the following critics of the linear Kelvin–Voigt
contact force model:

• the damping component force has a discontinuity at the beginning of the contact;
• although at the end of restitution phase there is a null indentation, the contact force is

negative due to a nonzero relative contact velocity;
• the damping coefficient is constant for the entire impact time interval.

One of the distinctive features of the present review work is the summary and discus-
sion of the main physical conditions imposed and an outline of the analytical steps that
establish the contact force models. In other words, each contact force equation is reported
after an outline of its theoretical bases. In an effort to maintain the original nomenclature of
the investigations reviewed, it is possible that there is an overlap of meaning for different
notations. The authors apologize to the readers for any inconvenience. However, the
Nomenclature section should solve any ambiguity. Moreover, the reader could skip the
analytical details and directly use the model equations herein marked.

The purposes of this paper are:

1. To propose a novel polynomial fitting of implicit elastic contact force models.
2. To offer a summary of the analytical derivations leading to some viscous force contact

models available in the literature.
3. To investigate the difference in the different elastic contact force models in a multibody

dynamics simulation.

The paper is organized as follows:

• In Section 2, the cylindrical elastic models have been summarized in their original
formulation. Then, polynomial fits that explicitly link force and elastic indentation
have been summarized in tables for different compliances.

• In Section 3, for different viscous analytical models, the main analytical steps that
brought to their deduction have been reported.

• In Section 4, the multibody dynamics simulations of a scotch–yoke linkage with a
curved pin in the slot have been discussed. In particular, for each simulation, a
different elastic contact model was assumed and tested.

• Finally, Section 5 contains the conclusions.

2. Cylindrical Elastic Contact Models

An extended review of elastic contact force models has been presented by
Skrinjar et al. [26] and Lankarani and Flores.

This section is focused on elastic contact force models that establish a polynomial
relationship between the normal force and elastic indentation of cylindrical surfaces along
a line contact. Table 1 lists some classic formulas as originally reported. A main drawback
of such formulas is the often implicit relationship between force and indentation.

Thus, the contact stiffness parameter K is not immediately available, and simulation
times increase. To avoid such inconveniences, in this paper, the various force-indentation
relationships have been expressed as fitted polynomial equations, and the corresponding
stiffness K is numerically reported.

In computer simulation, the value of δ is available and related to the amount of
interference between cylindrical shapes. Conversely, the value of Fn corresponding to a
prescribed δ must be computed. The use of implicit relationships between δ and Fn, such as
those listed in Table 1, requires an iterative computational scheme and increases computing
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times. To speed-up the computation, a simplified polynomial version of each model has
been deduced. In particular, the Hertz-type elastic contact force model is assumed

Fn = Kδn (1)

the values of K and n have been computed fitting the values of Fn and δ obtained from the
implicit relationship reported in Tables 2–9 for different values of ∆R and materials (Steel
and Aluminum).

Our numerical tests show that the time to evaluate the polynomial is two orders of
magnitude less than the one required for the iterative solution.

Koshy et al. [27] studied, as well as experimental tests, the influence of the use of
different contact force models with dissipative damping on the dynamic response of a
slider-crank with dry revolute clearance joints.

A general theory for the computation of tangential and torsional compliance during
the contact of two isotropic bodies has been proposed by Mindlin [28].

Hertz’s theory of impact between bodies of circular shape (e.g., [29]) considers the
indentation governed by the following differential equation:

mr δ̈ + Fn = 0 (2)

where mr =
M1+M2
M1 M2

and

Fn = Kδ
3
2 (3)

is the compliance force.
Equation (2) can be integrated into the form

1
2

(
δ̇2 − v2

i

)
= −2

5
mrKδ

5
2 (4)

where vi is the value of δ̇ at the beginning of impact. A numerical solution of (4) was
discussed by Deresiewicz [30].

Table 1. Cylindrical contact-force models.

Contact Force Model Formula Notes

Radzimovsky [31] δ =
W

πE∗

[
2
3
+ ln

(
4Ri

b

)
+ ln

(4Rj

b

)]

Goldsmith [23] δ = W
(

hi + hj

)

ln


 Lm

FnR
(

hi + hj

)


+ 1


 m = 1

Dubowsky-Freudenstein [32–34] δ = π

( hi + hj

2a

)
ln




(
Ri − Rj

)
8a3

FnRiRjπ
(

hi + hj

)


+ 1


Fn

Lankarani-Nikravesh [35] δ =

(
3Fn

4E∗R0.5

) 1
n

ESDU-78035 [36] δ = W
(

hi + hj

)

ln




4L
(

Ri − Rj

)

Fn

(
hi + hj

)


+ 1
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Table 1. Cont.

Contact Force Model Formula Notes

Johnson [24] δ =
W

πE∗

[
ln
(

4πE∗∆R
W

)
− 1
]

Pereira et al. [37,38] Fn =
(a∆R + b)LE∗

∆R
δn

Pereira et al. [37] (internal contact)

a = 0.49 b= 0.10 n = Y∆R−0.005

with

Y =

{
1.56[ln(1000∆R)]−0.192 if ∆R ∈ [0.005, 0.750] mm
0.0028∆R + 1.1083 if ∆R ∈ [0.750, 10.0] mm

Pereira et al. [38]

a =

{
0.965 for internal contact
0.39 for external contact

b =

{
0.0965 for internal contact
0.85 for external contact

n =

{
Y∆R−0.005 for internal contact
1.094 for external contact

with

Y =

{
1.51[ln(1000∆R)]−0.151 if ∆R ∈ [0.005, 0.34954] mm
0.0151∆R + 1.151 if ∆R ∈ [0.34954, 10.0] mm

Table 2. Polynomial version of Radzimovsky’s [31] contact force model (Steel).

∆R
mm

K
N/mmn n Max Error %

0.50 1.04·105 1.162 6.1
5.00 6.24·104 1.118 4.1
10.0 5.55·104 1.109 3.8
30.0 4.72·10 4 1.097 3.2
60.0 4.32·104 1.091 3.0
80.0 4.17·104 1.089 2.9

Table 3. Polynomial version of Radzimovsky’s [31] contact force model (Aluminum).

∆R
mm

K
N/mmn n Max Error %

0.50 41.308·103 1.195 14.6
5.00 22.979·103 1.135 9.0
10.0 20.228·103 1.123 8.0
30.0 16.993·10 3 1.108 6.7
60.0 15.434·103 1.100 6.1
80.0 14.867·103 1.098 5.8
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Table 4. Polynomial version of Johnson’s [24] force model (Steel).

∆R
mm

K
N/mmn n Max Error %

0.50 1.42·105 1.192 7.4
5.00 7.53·104 1.133 4.8
10.0 6.54·104 1.122 4.3
30.0 5.44·10 4 1.107 3.7
60.0 4.91·104 1.100 3.4
80.0 4.72·104 1.097 3.2

Table 5. Polynomial version of Johnson’s [24] force model (Aluminum).

∆R
mm

K
N/mmn n Max Error %

0.50 60.628·103 1.242 18.9
5.00 28.324·103 1.155 10.9
10.0 24.286·103 1.140 9.5
30.0 19.782·10 3 1.121 7.8
60.0 17.703·103 1.111 7.0
80.0 16.962·103 1.083 6.7

Table 6. Polynomial version of Goldsmith’s [23] contact force model (Steel).

∆R
mm

K
N/mmn n Max Error %

0.50 2.86·104 1.066 2.0
5.00 2.39·104 1.057 1.6
10.0 2.27·104 1.055 1.5
30.0 2.09·10 4 1.051 1.4
60.0 1.94·104 1.048 1.3
80.0 1.84·104 1.046 1.2

Table 7. Polynomial version of Goldsmith’s [23] contact force model (Aluminum).

∆R
mm

K
N/mmn n Max Error %

0.50 10.032·103 1.071 3.7
5.00 8.354·103 1.061 2.9
10.0 7.933·103 1.058 2.8
30.0 7.273·10 3 1.054 2.5
60.0 6.752·103 1.050 2.3
80.0 6.394·103 1.048 2.1

Table 8. Polynomial version of the EDSU-78035 [36] contact force model (Steel).

∆R
mm

K
N/mmn n Max Error %

0.50 2.84·103 1.165 12.2
5.00 1.77·103 1.119 8.0
10.0 1.59·103 1.110 7.2
30.0 1.36·10 3 1.098 6.1
60.0 1.25·103 1.092 5.6
80.0 1.21·103 1.090 5.4
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Table 9. Polynomial version of the EDSU-78035 [36] contact force model (Aluminum).

∆R
mm

K
N/mmn n Max Error %

0.50 10.868·103 1.165 23.6
5.00 6.395·103 1.119 14.4
10.0 5.691·103 1.110 12.8
30.0 4.849·10 3 1.098 10.7
60.0 4.437·103 1.092 9.6
80.0 4.286·103 1.090 9.3

3. Viscous Contact Models

The damping factors due to the material hysteresis have great importance in dynamic
simulations.

Zhang and Sharf [13] and Flores and Lankarani [25] (See p. 44 of [25]) compiled tables
where, for different models, the equations of constitutive laws and the corresponding
damping factors have been summarized.

The effects of clearances on machine dynamics is a topic of great interest, and many
contributions are on record. The monograph authored by Flores et al. [10,39,40] presents
methodologies aimed at the simulation of multibody dynamics systems, taking into account
joint clearances.

3.1. Dubowsky and Freudenstein (1971)

Dubowsky and Freudenstein [32–34] developed a systematic and unified analysis of
the dynamics of general planar mechanisms with clearances. Figure 1 represents their
impact-pair model governed by the following differential equations:

• Non-contact period |Xr| ≤ r

Ẍr =
M1F2(t)−M2F1(t)

M1M2
(5a)

Ẍm =
M1F2(t) + M2F1(t)

M1M2
(5b)

• Contact period |Xr| ≥ r

Ẍr = −
M1 + M2

M1M2
g(Xr) +

F2(t)
M2
− F1(t)

M1
(6a)

Ẍm =
M2 −M1

M1M2
g(Xr) +

F2(t)
M2

+
F1(t)
M1

(6b)

The contact compliance force Fn was computed by means of the following Hertz
contact formula:

Fn =

4
(

R1R2

R1 − R2

) 1
2

3(h1 + h2)
δ

3
2 (7)

where the indentation, for the internal-pin configuration, follows from

δ = π

(
h1 + h2

2a

)[
ln
(

(R1 − R2)8a3

FnR1R2π(h1 + h2)

)
+ 1
]

Fn (8)

where a is half the length of the pin.
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Figure 1. Dubowsky and Freudenstein elastic coupling model. F1, F2: Forces; M1, M2: Masses; X1,
X2: Displacements; r: clearance [33].

3.2. Hunt and Crossley (1975)

Hunt and Crossley [41] start by expressing the variation of the kinetic energy of a mass
impacting against a stationary body as follows:

∆E =
1
2

mr

(
v2

o − v2
i

)

=
1
2

mrv2
i

[
1−

(
1− αv2

i

)]
(9)

where m is the mass of the moving body, and (The equation is valid for a Maxwell material
and low values of vi. See also [24], p. 368 or [23], plots on p. 259 and discussion on p. 265.
The constant α is determined experimentally and has the dimensions of an inverse speed.
Hunt and Crossley estimate a value within [0.08, 0.32] s/m)

α =
1− e

vi
(10)

where e is the coefficient of restitution, and vi is the initial effective mass-relative speeds.
Since α < 1, with acceptable accuracy

∆E = αmrv3
i (11)

Consequently, the force versus displacement plot must show a hysteresis loop, as
shown in Figure 2.

Deformation

Fo
rc

e

Figure 2. Hunt and Crossley: Indentation force hysteresis loop [41], where the area of such a loop
represents the energy loss.
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Moreover, they were well aware that the differential equation of the idealized Kelvin–
Voigt model

mr δ̈ + cδ̇ + Kδ = 0 (12)

could not reliably reproduce the overall nonlinear pattern of the impact. Thus, they
proposed an improvement substituting (12) with

mr δ̈ + (λδn)δ̇ + Kδn = 0 (13)

Moreover, they observed that for a small dissipation of energy

1
2

mrv2
i ≈

∫ δm

0
Kδndδ (14)

or

vi =

√
2K

mr(n + 1)
δ

n+1
2

m (15)

where δm is the maximum indentation value.
Similarly, for an intermediate position of the impact phase, one has

1
2

mrv2 ≈ 1
2

mrv2
i −

∫ δ

0
Kδndδ (16)

or

v =

√
2K

mr(n + 1)

√
δn+1

m − δn+1 (17)

Furthermore, assuming that the linear area of the hysteresis loop is shared sufficiently
equally between the inward and outward indentation phases, one has

E =
∮

cvdδ ≈ 2
∫ δm

0
cvdδ (18)

or

∆E = 2

√
2K

mr(n + 1)

∫ δm

0
c
√

δn+1
m − δn+1dδ (19)

To integrate (19), a damping coefficient of the form

c = λδn (20)

is assumed, and the following expression is deduced

λ =
3
2

αK (21)

Thus, one may conclude that (12), representing the free-damped half cycle of vibration
of the vibroimpact, can be more realistically modified as follows

mr δ̈ + Kδn
(

1 +
3
2

αδ̇

)
= 0 (22)

One of the merits of Hunt and Crossley is the recognition that a linear elastic spring
cannot accurately represent the physics of the energy transfer process during the impact.
Flores and Lankarani (see Section 3.1 of [25]) clearly show, with convincing arguments, the
limits of the linear Kelvin–Voigt model.
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In conclusion, the contact force equation proposed is the following

Fn = Kδ
3
2

(
1 +

3
2
(1− e)

δ̇(−)
δ̇

)
(23)

Moreover, Hunt and Crossley, well aware of the theoretical limitations of the coefficient
of restitution concept, recommended its use in an engineering context provided verifications
and extensions for new materials and impacting surfaces properties were available. It is well
known that small changes in impact conditions have a strong influence on the coefficient of
restitution. Several studies (e.g.,Tatara and Moriwaki [42], Thornton [43], Seifried et al. [44],
Minamoto and Kawamura) [45]) address the theoretical and experimental coefficient of
restitution evaluation for the impact of bodies of different materials.

3.3. Herbert and McWhannel (1975)

Herbert and McWhannel [46] followed an approach similar to the one of Hunt and
Crossley and deduced

α =
6(1− e)

vi[(2e− 1)2 + 3]
(24)

In particular, they proposed the following formula for the contact force:

Fn = Kδ
3
2

(
1 +

6(1− e)
[(2e− 1)2 + 3]δ̇(−)

δ̇

)
(25)

For the coefficient of restitution e, Herbert and McWhannel recommended the follow-
ing empirical equation:

e = 1− 0.026
(

δ̇(−)
) 1

3 (26)

with the velocity expressed in mm/s.

3.4. Lee and Wang (1983)

Lee [47] observed that, due to their inherent kinematic limitations, Geneva mechanisms
are subjected to shock loading. Moreover, pin-slot compliances, elastic deflections and
imbalances interact to contribute to the dynamic load between the pin and slot. The design
procedure proposed aims to minimize shock loading and contact stresses. In particular, the
Hertz formula contacts a plane surface to estimate the pin-slot contact stress.

The physical model proposed by Lee and Wang [48,49] is the same as the one from
Dubowsky and Freudenstein [33] (see Figure 1). For the modeling of damping, the differ-
ences regard the introduction of two new functions. The first one is apt to be evaluated
by means of empirical or published experimental data. The second one is based on a
heuristic choice of the damping force consistent with the boundary conditions imposed by
the force-deformation hysteresis loop. The first damping function takes the form

D1 = ζ1T1 (27)

where ζ1 and T1 represent the damping factor and an indentation function, respectively.
The simplest choice of T1 is linear:

T1 = δ (28)

From the fitting of experimental data, it is possible to express the coefficient of restitu-
tion e as a linear polynomial

e .
= α0 − α1vi (29)

where α0 and α1 are the polynomial coefficients and vi. By definition

e = −vo

vi
(30)
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The differential equation governing the indentation during the contact phase between
the body surfaces can be written in the form

mr δ̈ + (ζ1δ)δ̇ + Kδ = P(t) (31)

and its solution is obtained as polynomial approximation

δ(t) .
= vit−

ζ1vi + K
6mr

vit3

+
(4ζ1vi + K)(ζ1vi + K)vi

120m2
r

t5 + . . . (32)

Since the relative velocity at the end of the outward contact phase (t = te) is

vo = δ̇(te) = vi−
ζ1vi + K

2mr
vit2

e

+
(4ζ1vi + K)(ζ1vi + K)vi

24m2
r

t4
e + . . . (33)

The substitution of (33) into (30) yields the coefficient of restitution

e = −1 +
Kt2

e
2mr

+

(
1− 5Kt2

e
12mr

)
ζ1t2

e
2mr

vi −
ζ2

1t4
e

6m2
r

v2
i + . . . (34)

Comparing (29) with (34), we obtain

α0 = −1 +
Kt2

e
2mr

(35)

To estimate te, Lee and Wang set (This choice is consistent with the usual polynomial
fitting of coefficient of restitution e = 1− α1vi.) α0 = 1 in (27) and obtained

t2
e = 4

mr

K
(36)

thus
ζ1 =

2mr(
5Kt2

e
12mr

− 1
)

t2
e

α1 ≈
3
4

α1K (37)

The algebraic structure of the result matches with the one deduced by Hunt and
Crossley [41] by means of an energy balance. The first damping coefficient is

ζ1
.
=

(
3
4

α1K
)

δ (38)

In conclusion, the first contact force formula proposed by Lee and Wang is

fn = Kδ

(
1 +

3
4

α1δ̇

)
(39)

The derivation of the second damping function follows the same guidelines as the
first damping function. In particular, such a function is expressed as

D2 = ζ2T2 (40)
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where ζ2 is a damping factor, and

T2 =
δ + |δ|

2δ
exp

{
[(δ− ε)− |δ− ε|] q

ε

}
(41)

is the transition function, with ε being the width of the impact transition zone (see Figure 3)
and q a parameter specifying the curve path within the transition zone. Typical values of q
are 2, 3 and 4.
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Parameter value ε can be arbitrarily chosen, but the conditions
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Figure 3. Transition function T2 [48].

Parameter value ε can be arbitrarily chosen, but the conditions

0 ≤ ε ≤ δm (42)

ζ2T2(δ)δ̇ + Keδ ≥ 0 (43)

that ensure the sum of damping and spring forces to be positive must be fulfilled.
With a procedure similar to the one adopted for the first damping factor [50], one

obtains

ζ2 = 2mrω

√√√√ (ln e)2

(ln e)2 + π2
(44)

where ω is the system’s natural frequency.
It has been observed that the simulations based on the second damping function are

more stable and have a hysteresis loop wider than the one predicted with the first damping
function.

In conclusion, the second contact force model proposed by Lee and Wang is summa-
rized by the following formula:

fn = Keδ + ζ2T2δ̇ (45)

where T2 and ζ2 are computed from (41) and (44), respectively.

3.5. Khulief and Shabana (1985)

The approach of Khulief and Shabana [51–53] is aimed to be implemented within a
multibody dynamic environment and the nomenclature is thus adapted for the purpose.
Their analysis is based on the assumption that the energy dissipated during the impact is
much less than the elastic strain energy involved. Therefore, the coefficient of restitution is
e ≈ 1. The bodies are assimilated to point masses or with a relative translation motion.

As shown in Figure 4, the collision process is divided into:
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• the compression phase, during which the relative velocity
.
δij is gradually reduced to

zero and elastic energy is stored;
• the restitution phase, which begins at the release of the stored elastic energy and

finishes when the bodies separate.

Compression phase Restitution phase

Figure 4. Central collision between two circular-shaped masses: representation of the compression
and restitution phase [14,25].

The force between bodies i and j is analytically represented by the Kelvin–Voigt model

Fij =
(
Kδij + cδ̇ij

)
LGij (46)

where

LGij =

{
1 during impact
0 after separation

(47)

is a logical function. The following nomenclature is introduced: δ̂ij is the maximum value
of indentation; ui and ũi are the velocities of body i at the beginning of the compression
phase and at the end of the restitution phase, respectively; uij is the body velocity when

δ̇ij = 0 (end of compression phase); δ̇ij = uj − ui is the relative velocity at the beginning of
compression phase.

The energy conservation principle yields:

1
2

miu2
i +

1
2

mju2
j =

1
2
(
mi + mj

)
u2

ij +
∫ δ̂ij

0
Kδijdδij

︸ ︷︷ ︸
Maximum strain energy

(48)

where
uij = ui + ∆ui (49a)

uij = uj + ∆uj (49b)

Using the momentum conservation principle, one has

mi∆ui + mj∆uj = 0 (50)

or, taking into account (49),

uij =

[
mj

mi + mj

]
uj +

mi
mj

ui (51)
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The substitution of (51) into (48), with the hypothesis of a constant contact stiffness K,
gives [52]:

1
2

Kδ2
ij =

1
2

(
mimj

mi + mj

)
δ̇

2
ij (52)

where
δ̇ij = ui − uj (53)

Equation (52) allows a relationship between the contact stiffness upper bound K

K =
mimj

mi + mj

(
δ̇ij

δ̂ij

)2

(54)

and the impacting bodies’ kinematics.
To obtain an expression for the damping coefficient, the kinetic energy loss ∆E and

the coefficient of restitution must be taken into account.
The combination of the following three equations:

∆E =
1
2

mi

(
u2

i − ũ2
i

)
− 1

2
mj

(
u2

j + ũ2
j

)
Energy balance (55)

e = − ũi − ũj

ui − uj
Coefficient of restitution (56)

mi(ui − ũi) + mj
(
uj − ũj

)
= 0 Momentum conservation (57)

gives

∆E =
1
2

[
(1− e)mimj

mi + mj

]
δ̇

2
ij (58)

This energy loss is dissipated by the damping force expressed as Dδ̇ij. Therefore, it is

∆E =
∮

Dδ̇ijdδij (59)

where
∮

denotes the integration around the force-displacement hysteresis loop.

1
2

miu2
i +

1
2

mju2
j

︸ ︷︷ ︸
Kinetic energy at start

=
1
2

miu2
i +

1
2

mju2
j +

∫ δij

0
Kdδij

︸ ︷︷ ︸
Energy at intermediate time

(60)

with
ui = ui + ∆ui (61a)

uj = uj + ∆uj (61b)

From the previous one follows:

δ̇ij = δ̇ij + ∆ui − ∆uj (62)

Combining the momentum conservation equation

mi∆ui + mj∆uj = 0 (63)

with (60) and (61), taking into account (54), one obtains:

∫ δij

0
Kδijdδij =

1
2

(
mimj

mi + mj

)[
δ̇

2
ij − δ̇

2
ij

]
(64)
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or

Kδ2
ij =

(
mimj

mi + mj

)[
δ̇

2
ij − δ̇

2
ij

]
(65)

Consequently, from (65) follows

δ̇ij =

√√√√δ̇
2
ij −

[
K
(
mi + mj

)

mimj

]
δ2

ij (66)

Finally, the substitution of (66) into (59) and the choice of a damping function of
the form (The function satisfies the boundary conditions at both the contact start and
separation).

D = µδij (67)

yelds (It is assumed the area of the hysteresis loop is equally shared between compression
and restitution phase.

∆E = 2
∫ δ̂ij

0
µδij

√
δ̇

2
ij − β

2
δ2

ijdδij (68)

After we let

β
2
=

K
(
mi + mj

)

mimj
=

(
δ̇ij

δ̂ij

)2

(69)

Equation (68) can be rewritten in the form

∆E = −2
3

µβ







(

δ̇ij

β

)2

− δ̂2
ij




3
2

−
(

δ̇ij

β

)3




(70)

Equating (70) and (58), one obtains

µ =
3
4




K
(
1− e2)δ̇

2
ij[

δ̇
2
ij −

(
δ̇

2
ij − β

2
δ̂2

ij

) 3
2
]




(71)

and the force-approach law, according to Khulief and Shabana [51–53], is expressed in the
form

Fn = Kδij +
(
µδij

)
δ̇ij (72)

where µ is computed from (71).

3.6. Lankarani and Nikravesh (1988)

Lankarani and Nikravesh [8,9,35] recognized the limits and inconsistencies of the
Kelvin–Voigt model and proposed a contact force expressed by the following equation

Fn = Kδn + Dδ̇ (73)

for the entire period of contact. They assumed that the energy dissipated during the impact
is small compared to the maximum absorbed elastic energy. Moreover, within the contact
time interval, they distinguished a compression and a restitution phase. With reference to
Figure 5, let t(−), t(m) and t(+) denote the initial time of compression, the time of maximum
indentation and the final time of restitution, respectively.
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Figure 5. Indentation δ versus time for a Hertz-type contact force model [35].

Lankarani and Nikravesh start by writing the equations expressing:

• the energy loss ∆E computed as a difference between the bodies’ kinetic energies at
the beginning and at the end of the impact:

∆E = T(−) − T(+)

=
mi
2

[(
v(−)i

)2
−
(

v(+)
i

)2
]
+

mj

2

[(
v(−)j

)2
−
(

v(+)
j

)2
]

(74)

• the conservation of linear momentum:

mi

[
v(−)i − v(+)

i

]
+ mj

[
v(−)j − v(+)

j

]
= 0 (75)

• the coefficient of restitution:

e = −
v(+)

i − v(+)
j

v(−)i − v(−)j

(76)

The combination of (74)–(76) gives:

∆E =
1
2

mimj

mi + mj

[
δ̇(−)

]2(
1− e2

)
(77)

where
δ̇(−) = v(−)i − v(−)j (78)

Furthermore, considering the time interval
[
t(−), t(m)

]
between the beginning and end

of the compression phase, one can write:

• the energy balance equation

T(−) =T(m) + U(m)

1
2

mi

[
v(−)i

]2
+

1
2

mj

[
v(−)j

]2
=

1
2
(
mi + mj

)[
v(m)

ij

]
+ U(m) (79)

• the linear momentum conservation equation

miv
(−)
i + mjv

(−)
j =

(
mi + mj

)
v(m)

ij (80)

The combination of (79) and (80) yields

U(m) =
1
2

(
mimj

mi + mj

)[
δ̇(−)

]2
(81)
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Such energy can also be evaluated by means of the integral

U(m) =
∫ δm

0
Kδndδ =

K
n + 1

δn+1
m (82)

The comparison of (81) and (82) gives

[
δ̇(−)

]2
= 2

(
mi + mj

)
K

mimj(n + 1)
δn+1

m (83)

This relationship shows how the maximum indentation δm is influenced by the contact
stiffness K and the difference in mass velocities at t(−).

Repeating the previous reasoning for a generic time interval
[
t(−), t

]
, with t(−) ≤ t ≤

t(m), one obtains

δ̇2 =
[
δ̇(−)

]2
− 2

mi + mj

mimj

Kδn+1

n + 1
(84)

With (84), the energy dissipated by the damping force is computed by means of
the integral (It is assumed the area of the hysteresis loop is equally shared between the
compression and restitution phase.):

∆T =
∮

Dδ̇dδ =
∮

µδn δ̇dδ = 2
∫ δm

0
µδn δ̇dδ (85)

or, taking into account (83) and (84),

∆E =
2µ

3K
mimj

mi + mj

[
δ̇(−)

]3
(86)

The comparison of (77) and (86) yields

µ =
3K
(
1− e2)

4δ̇(−)
(87)

and the contact force is finally expressed by the following formula:

Fn = Kδn

[
1 +

3
(
1− e2)

4
δ̇

δ̇(−)

]
(88)

3.7. Tsuji et al. (1992)

Tsuji et al. [54] assumed the indentation during the contact governed by the following
differential equation:

mr δ̈ + cδ̇ + Kδ
3
2 = 0 (89)

The damping coefficient equation

c = χδ
1
4
√

mrK (90)

has been found heuristically. Parameter χ is an empirical constant related to the coefficient
of restitution, as shown in Figure 6.
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Figure 6. The relationship between χ and the coefficient of restitution e [54].

3.8. Lankarani and Nikravesh (1994)

Lankarani and Nikravesh [55] extended their analysis to the case where, after the
impact between two spheres, a permanent indentation δp due to local plasticity is observed
(see Figure 7). Such a circumstance is realistic during the collision of metallic bodies with
an initial relative velocity larger than 10−5Vs, where Vs is the elastic wave propagation
speed in the colliding bodies.

(a) (b)

Loading Unloading

Energy loss

Figure 7. Contact force model with permanent indentation. (a) contact force versus time, (b) indenta-
tion versus time [55].

The contact force changes according to the following equation:

Fn =





Kδn compression phase

Fm

(
δ− δp

δm − δp

)n
restitution phase

(91)

As it will be shown, parameters δm, Fm and δp are computed by means of (94), (95)
and (97), respectively.

To determine δm and Fm, we use the equation of motion of the two spheres in contact

mr δ̈ + Kδn = 0 (92)

when integrated with the initial conditions δ(−) = 0, δ̇(−) = v(−)i − v(−)j , yields:

1
2

mr

[
δ̇2 − δ̇(−)2

]
= K

δn+1

n + 1
(93)

At the instant of maximum compression δ̇ = 0 and δ = δm. Thus, from (93), one
obtains the maximum indentation:

δm =

[
n + 1

2K
mr δ̇(−)2

] 1
n+1

(94)
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and maximum contact force
Fm = Kδn

m (95)

The comparison of the dissipated energy, computed by means of the integration of the
contact force, is

∆T =
∫ δm

0
Kδn dδ +

∫ δp

δm
Fm

[
δ− δp

δm − δp

]n
dδ =

Fmδp

n + 1
(96)

and (77) yields the permanent indentation

δp =
(n + 1)mr δ̇(−)

2

2Fm

(
1− e2

)
(97)

In conclusion, the contact force is expressed by (91), where δm, Fm and δp are expressed
by (94), (95) and (97), respectively.

Lankarani and Shivaswamy [56,57] conducted experiments impacting a hardened
steel indentor against aluminum and steel plates. The hysteresis loop in the plot of contact-
force versus indentation has been experimentally obtained and compared with simulation
results.

Rhee and Akay [58] describe the motion of a four-bar rocker described by three sets of
equations:

• the sliding mode, when the pin and journal are in contact;
• free-flight mode, when the pin motion is governed by its own inertia and acting forces;
• impact mode, when the pin and journal begin contact.

3.9. Marhefka and Orin (1999)

Marhefka and Orin [59] obtained the same result as Hunt and Crossley but by means of
different analytical reasoning. They started assuming the relative motion between masses
at contact governed by the differential equation

mr δ̈ + λδn δ̇ + Kδn = 0 (98)

or
δ̈ = Λδn δ̇ + K̃δn (99)

where K̃ = − K
mr

and Λ = − λ

mr
.

Introducing the new variable v = δ̇, (99) can be rewritten in the form

dv
dδ

=
(Λv + K̃)δn

v
, (100)

or ∫ vdv
(Λv + K̃)

=
∫

δndδ (101)

The integration of (101), with initial conditions δ(0) = 0, v(0) = vi, gives:

Λv− K̃ ln
∣∣∣K̃ + Λv

∣∣∣ = 1
n + 1

Λ2δn+1 + Λvi − K̃ ln
∣∣∣K̃ + Λvi

∣∣∣ (102)

or

Λv− K̃ ln
∣∣∣∣1 +

Λ
K̃

v
∣∣∣∣

=
1

n + 1
Λ2δn+1 + Λvi − K̃ ln

∣∣∣∣1 +
Λ
K̃

vi

∣∣∣∣
(103)
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Since the values of αvi,
Λv
K̃

and
Λvi

K̃
are� 1, (103) can be expanded in Taylor series

such that

ln |1 + ε| = ε− ε2

2
+

ε3

3
+ . . . (104)

For (See also Equation (10)) δ = 0, v = −evi = −(1− αvi)vi, solving the Taylor
expansion for Λ yields:

Λ ≈ 3αK̃(2− αvi)

2
(
2− 3αvi + 3α2v2

i − α3v3
i
) (105)

The result of Hunt and Crossley, as expressed in Equation (21), can also be deduced

from (105) assuming negligible αvi. After substitution of Λ =
3
2

αK̃, from the integration of

(103), one obtains the deformation of δ related to velocity δ̇ as follows

δ =

(−2mr(n + 1)
9Kα2

) 1
n+1
(

3α(v− vi) + 2 ln
∣∣∣∣
2 + 3αvi
2 + 3αv

∣∣∣∣
) 1

n+1
(106)

In conclusion, the following contact force equation was proposed:

Fn = Kδ
3
2

(
1 +

3α(2− αvi)

2
(
2− 3αvi + 3α2v2

i − α3v3
i
)
)

δ̇ (107)

to be simplified into

Fn = Kδ
3
2

(
1 +

3α(2− αvi)

2(2− 3αvi)

)
δ̇ (108)

neglecting the powers of αvi equal to or greater than two.

3.10. Ghontier et al. (2004)

For Ghontier et al. [60] the differential equation governing the contact is

mr δ̈ + Kδn(1 + αδ̇
)
= 0 (109)

where
α =

K
λ

(110)

To avoid tensile forces, the following inequality is required

1 + αδ̇ ≥ 0 ∀δ̇ (111)

After the integration of (109), one obtains

∫ vo

vi

δ̇

1 + αδ̇
dδ̇ +

K
mr

∫ δo

δi

δn dδ = 0 (112)

where δi = δo = 0 are the initial and final penetration depths, respectively.
The algebraic development of (112), taking into account the definition of kinematic

coefficient of restitution (30), yields:

αvi − ln(1 + αvi) + eαvi + ln(1− eαvi) = 0 (113)

After we introduce the new variable

d = αvie (114)
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Equation (113) can be expressed in the following form

1 +
d
e

1− d
= exp

[
d
(

1 +
1
c

)]
(115)

which is more amenable for the solution with respect to d.
In conclusion, the force contact formula proposed by Ghontier et al. is

Fn = Kδn(1 + αδ̇
)

(116)

where, given e and vi, the damping factor α is obtained from (114), after the solution of (115)
with respect to d. In the numerical solution of (115), one should observe that:

• d < 1, a good initial guess is d = 1− e2;
• the solution must be consistent with (110);

• the solution dHC corresponding to the model of Hunt and Crossley is dHC =
3
4

e(1− e).

3.11. Flores et al. (2011–2016)

Flores et al. [14,25] closely followed the work of Lankarani and Nikravesh [35]. One
of the novelties of their work is distinguishing between the energy ∆Ec, dissipated in the
compression phase, and ∆Er, dissipated in the restitution phase :

T(−) = T(m) + U(m) + ∆Ec (117)

For this purpose, they assumed that, during masses contact, the system dynamics are
governed by the differential equation

mr δ̈ + cδ̇ + Kδ = 0 (118)

This, neglecting damping, allowed the expression of the velocity of deformation
during the two phases, respectively, as follows:

δ̇ = δ̇(−)
√

1−
(

δ

δm

)2

δ̇ = δ̇(+)

√
1−

(
δ

δm

)2
(119)

where δm =
δ̇(−)

ω
and ω =

√
K
mr

.

Moreover, they established the mathematical relationship

(
δ

δm

)2
+

(
δ̇

δ̇(−)

)2

= 1 (120)

Since

∆Ec =
∫ δm

0
λδ

3
2 δ̇(−)

√
1−

(
δ

δm

)2
dδ

∆Er =
∫ δm

0
λδ

3
2 |δ̇(+)|

√
1−

(
δ

δm

)2
dδ

(121)
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with λ parameter to be determined, the total dissipated energy is computed as follows:

∆E =∆Ec + ∆Er

= χ
(

δ̇(−) +
∣∣∣δ̇(+)

∣∣∣
) ∫ δm

0
δ

3
2

√
1−

(
δ

δm

)2
dδ (122)

A numerical evaluation of the integral provides

∆E =
1
4

λ(1 + e)δ̇(−)δ
5
2
m (123)

Finally, the combined use of Equations (77) and (123), energy balance

1
2

mi

(
v(−)i

)2
+

1
2

mj

(
v(−)j

)2
=

1
2
(
mi + mj

)
v(m)

ij +
2
5

Kδ
5
2
m +

1
4

λδ̇(−)δ
5
2
m (124)

and linear momentum conservation

miv
(−)
i + mjv

(−)
j =

(
mi + mj

)
v(m)

ij (125)

yields:

λ =
8K(1− e)

5eδ̇(−)
(126)

and the proposed contact force formula is as follows:

Fn = Kδ
3
2

(
1 +

8(1− e)
5eδ̇(−)

δ̇

)
(127)

Machado et al. embodied (127) in a general methodology for 3D-contact problems [61]
and in biomechanic analyses of knee joints [62,63]

3.12. Gharib and Hurmuzlu (2012)

Gharib and Hurmuzlu [64] assumed a contact force of the form:

Fn = Kδn + λδn δ̇ (128)

and observed that, at the end of an elastic collision (t = t(+)), both the contact force FN and
the indentation δ f vanish, while the indentation velocity is

δ̇(+) = v(+)
i − v(+)

j 6= 0 (129)

Therefore, the following equation holds

δn
f

(
K + λδ̇(+)

)
= 0 (130)

the solution of which is
δ̇(+) = −K

λ
(131)

Since by definition of coefficient of restitution

δ̇(+) = −eδ̇(−) (132)

one has the following expression for the damping coefficient

λ =
1
e

K
δ̇(−)

(133)
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In conclusion, the first formula for the elastic contact force proposed by Gharib and
Hurmuzlu is

Fn = Kδn
(

1 +
δ̇

eδ̇(−)

)
(134)

Gharib and Hurmuzlu also analyzed the case of impact with indentation. The contact
forces can be mathematically written as follows:

Fc = Kcδn compression force (135)

Fr = Fm

[
δ− δp

δm − δp

]n
restitution force (136)

The restitution force can be alternatively expressed in the form:

Fr = Kr
(
δ− δp

)n (137)

Since
Fm ≡ Kcδn

m = Kr
(
δm − δp

)n (138)

or

δp = δm

[
1−

(
Kc

Kr

) 1
n
]

(139)

Since ∫ δm

0
Fcdδ =

Kcδn+1
m

n + 1
Work in the compression phase (140)

∫ δp

δm
Frdδ =

Kr
(
δm − δp

)n+1

n + 1
Work in the restitution phase (141)

using the definition of the energetic coefficient of restitution ew one obtains

e2
w = −

∫ δm
0 Fcdδ
∫ δp

δm
Frdδ

=

(
Kc

Kr

) 1
n

(142)

The combination of (139) and (142) gives

δp = δm

[
1− e2

w

]
(143)

Moreover, the combination of (136) and (137) yields

Kr =
Kc

e2n
w

=
Fm(

δm − δp
)n (144)

In conclusion, for the case of impact with indentation, the second contact force formula
proposed by Gharib and Hurmuzlu is

Fn =

{
Kcδn Compression phase
Kr
(
δ− δp

)n Restitution phase
(145)

with Kc = K, Kr, Fm and δp from (144), (139) and (138), respectively.
For the impact of a slender bar against a hard wall, experimental values of the coeffi-

cient of restitution are reported in [65].
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3.13. Hu and Guo (2015)

Hu and Guo [66] estimate the energy loss by means of (79), whereas the relationship
between the deformation and deformation velocity are

δ̇ =





δ̇(−)

√

1−
(

δ

δm

) 5
2

Compression phase

δ̇(+)

√

1−
(

δ

δm

) 5
2

Restitution phase

(146)

deduced assuming the differential Equation (2) of the elastic Hertz contact model and
symmetry of behavior between compression and restitution phases.

Flores et al. [14,25] instead deduced (119) using a linear differential equation without
damping.

The energy losses for the two phases are, respectively:

∆Ec =
∫ δm

0
λδ

3
2 δ̇(−)

√√√√1−
(

δ

δm

) 5
2

dδ =
4
15

λδ̇(−)δ
5
2
m (147a)

∆Er =
∫ δm

0
λδ

3
2

∣∣∣δ̇(+)
∣∣∣

√√√√1−
(

δ

δm

) 5
2

dδ =
4
15

λ
∣∣∣δ̇(+)

∣∣∣δ
5
2
m (147b)

and the overall energy loss is

∆E = ∆Ec + ∆Er = ∆E =
4

15
λ(1 + e)δ̇(−)δ

5
2
m (148)

To evaluate the hysteresis damping factor λ, the combination of energy balance

T(−) = T(m) +
∫ δm

0
Kδ

3
2 dδ + ∆Ec (149)

and momentum conservation (80) yields

δ
5
2
m =

15m
4
(
2λδ̇(−) + 3K

) δ̇(−)
2

(150)

or

λ =
3K(1− e)

2eδ̇(−)
(151)

In conclusion, Hu and Guo proposed the following formula for the normal contact
force

Fn = Kδn
[

1 +
3(1− e)

2e
δ̇

δ̇(−)

]
(152)

4. Numerical Example

Some of the contact force models listed in the previous section have been tested within
a multibody dynamics simulation. In particular, the scotch-yoke linkage with a circular
guide, depicted in Figure 8, has been chosen as a test bench. In order to highlight the effect
of different formulations for the normal contact force Fn, the only clearance introduced
is the one between the pin and the circular slot. All the remaining kinematic joints are
frictionless and without clearance.
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1
2

3

4

Figure 8. Scotch-yoke linkage.

The geometrical data, initial condition and inertia parameters are listed in Table 10.
The crank rotates at a constant angular speed of 24π rad

s , and the effect of gravity is omitted.
All bodies are made of steel with a Young modulus of 207 GPa and a Poisson ratio of 0.3.
The mechanism moves two masses m of 1 kg each fixed at both ends of the slotted slider.

As already been pointed out in the previous sections, the normal force models are
mostly implicit. To reduce the computational burden of the simulation, all the formulations
are represented as a polynomial function of the type Fn = Kδn.

The contact between the pin and circular slot has variable stiffness properties depend-
ing on the geometry bodies in contact. Three different regions can be observed:

• Pin to inner track: external contact between the pin with radius Rp and the inner track
with radius Ri;

• Pin to outer track: internal contact between the pin with radius Rp and the outer track
with radius Ro;

• Pin to circular track: internal contact between the pin with radius Rp and the circum-
ferential track with radius Rc.

Table 10. Input data.

Geometry
Inertia

Initial Conditions
Name Mass

(kg) Inertia (kg· mm2)

Ro 68 mm 1 Frame \\ \\ Θin 31 deg
Rm 60 mm 2 Crank 0.090 30.40 ωin 0 rad

s
Ri 52 mm 3 Pin 0.015 0.48 ω 24 · π rad

s
Rc 8 mm 4 Slotted slider 0.353 3495.6
Rp 7.9 mm
θ 120 deg

The normal contact force is governed by the equation:

Fn = Kδn +
3
2

αK|δ|n δ̇m (153)

The elastic constant K and the indentation exponent n are obtained by fitting five
different cylindrical contact force relationships. In particular, the models tested are: Radzi-
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mowsky, Johnson, Goldsmith, EDSU-78035 and Lankarani and Nikravesh. Among those
considered in this numerical example, the last one is the only model already explicit.
Table 11 reports the polynomial fitting results for each model and every contact region.

On the other hand, following the Hunt and Crossley model, the viscous coefficient
C is taken proportional to K by means of the coefficient α. For materials such as steel,
bronze and ivory, Hunt and Crossley suggest values of alpha between 0.002 and 0.008 s/in
(0.08–0.32 s/m). In this numerical example, α is set as equal to 0.32 s/m, and the penetration
velocity exponent m is set to unit value.

Table 11. Fitting results.

∆R Lankarani Radzimowsky Johnson

(mm) K [ N
mmn ] n K [ N

mmn ] n K [ N
mmn ] n

Ri/Rp 60.1 1.220 · 105 1.50 4.321 · 104 1.09 4.914 · 104 1.10
Ro/Rp 59.9 1.424 · 105 1.50 4.315 · 104 1.09 4.907 · 104 1.10
Rc/Rp 0.1 1.198 · 106 1.50 1.846 · 105 1.22 3.147 · 105 1.28

∆R Goldsmith EDSU-78035

(mm) K [ N
mmn ] n K [ N

mmn ] n
Ri/Rp 60.1 1.717 · 104 1.04 1.300 · 104 1.09
Ro/Rp 59.9 1.743 · 104 1.04 1.254 · 104 1.09
Rc/Rp 0.1 2.221 · 104 1.05 4.786 · 104 1.22

As it is possible to observe from the fitting results, the values of K for the inner track
region (Ri to Rp) and the outer track region (Ro to Rp) are very similar, especially for
Johnson and Radzimowsky formulations. In fact, these models give the same force result
for internal and external contact with the same ∆R.

To clarify this statement, both the formulation of Johnson and Radzimowsky are
reported below, emphasizing the ∆R dependence

δ =
W

πE∗

[
ln
(

4π∆RE∗

W

)
− 1
]

, Johnson

δ =
W

πE∗

[
2
3
+ ln

(
8∆RE∗

1.62W

)]
, Radzimowsky

In the slot without clearance condition, referring to Figure 9, and minding that ∆R =
Ri ± Rj (+/− : external/internal contact), one can write:

∆Rext = R∗p + Ri

∆Rint = Ro − R∗p = Ri + 2R∗p − R∗p = Ri + R∗p = ∆Rext

*

Figure 9. Scotch-yoke linkage, without (left) and with clearance (right).
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This relationship, valid for pin-slot coupling without clearance, can be generalized
with a clearance δ as

∆Rext = ∆Rint + δ

This geometrical condition can be used to simplify the dynamic analysis of curved
slots, calculating just one of the two values of K and using it for both the inner and outer
track. As highlighted in Figure 10a for steel and Figure 10b for aluminum-like material,
the error involved in such a simplification will be proportional to the clearance. The
penetration reported is computed for a contact force per unit length of 10 kN/mm and
variable clearance. The error does not exceed 2%. This supports the righteousness of
considering only one stiffness coefficient when the clearance is quite small.
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Figure 10. Effect of clearance on the error.

For a complete crank rotation, the comparison of contact forces computed according
to the different models is depicted in Figure 11. To minimize the effects of the initial
conditions, the second full crank revolution is monitored. A region with a null contact
force is visible around 100 degrees of the relative crank angle corresponding to pin-slot
separation caused by clearance.
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Figure 11. Contact force comparison.

When the contact is continuous (i.e., neither impact nor rebound occur), there is no
relevant difference between the models. In fact, the contact force must be consistent with
the dynamic equilibrium matching all the other forces acting on the system. On the other
hand, the penetration, as well as its oscillation frequency, heavily depends on the contact
model due to the different stiffness characteristics, as observed in Figures 12 and 13.

The detail on the impact sections, depicted in Figure 14, is useful to highlight the
differences in the model’s dynamic behavior. Since the exponent n values are close for all
models, except for the Lankarani–Nikravesh model, one can state (for all the remaining
formulations) that the higher the K value, the higher the amplitude of contact forces during
the impact phases (i.e., until 100 deg of relative crank angle). Moreover, a high value of
K, and, consequently, a high value of C, provides contact steadiness. In this regard, the
Goldsmith model (the less stiff) is the only model that shows the detachment of the pin
from the slot in the range between 120 and 300 degrees.
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Figure 12. Penetration comparison.
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Figure 13. Detail of penetration comparison.
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Figure 14. Detail of contact force comparison.
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Figure 15 depicts the differences between the hysteresis profile obtained isolating a
situation of contact and rebound within the dynamic simulation of interest.
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Figure 15. Hysteresis comparison.

In accordance with the previous considerations, higher forces and more steep loops
are noticeable in the Johnson and Radzimowsky models. Conversely, Goldsmith and EDSU
exert less abrupt profiles. The Lankarani–Nikravesh model provides intermediate behavior.

Finally, the contact formulation affects the position, velocity and acceleration of the
slider. However, the small clearance between the pin and slot causes the position to be
slightly influenced by the contact formulation. Conversely, in the velocity and acceleration
plots versus the relative crank angle, some differences are detectable and are consistent
with the effects observed in the contact force variation (See Figure 16).
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Figure 16. Slotted slider kinematics.

5. Conclusions

The availability of reliable and computationally efficient contact force models is an
important requirement in multibody dynamics simulations. A review of methods on the
basis of analytical developments and behavior in simulations has been presented herein.
Our main focus was the dynamic analysis of mechanisms with the pin-in-the-slot kinematic
pairs. The discussion herein offered gives guidelines about the distinctive computational
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features of each model, but cannot offer a definitive answer on how faithfully the model
reproduces reality. This would require an extensive campaign of experimental validation.
As an element of novelty and to speed-up the simulation, the polynomial fitting of implicit
equations has been presented in tabular form to compute static indentation with different
models. Moreover, the possibility of taking into account just one track stiffness instead of
differentiating between internal and external contact has been studied. We inferred that
this simplification is feasible with small clearances. Lastly, choosing high-stiffness models
will provide severe contact forces with high-frequency oscillation, but with a high value of
exponent n the contact proved to be more stable in this particular case study.
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agreed to the published version of the manuscript.
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Nomenclature

c damping coefficient
D damping coefficient
e kinematic coefficient of restitution

E∗ =
1

hi + hj
composite Young modulus

Ek Young modulus of body k (k = i, j, 1, 2)
Fm maximum contact force
Fn normal force
F1, F2 forces acting on the masses of the Dubowsky and Freudenstein impact pair
Fm maximum contact force
g(Xr) contact force as function of relative displacement

hk =
1− ν2

k
Ek

(k = i, j, 1, 2)

K contact stiffness parameter
L length of the contact
m exponent of penetration velocity δ̇

mr
M1 M2

M1 + M2
effective mass

n Hertz exponent
Mk masses (k = 1, 2, i, j)
Rk cylinder radius of body k (k = i, j)
t time
te time at the end of outward contact phase
vi, vo relative speeds before and after collision
∆R = Ri ± Rj clearance (+/−: External/Internal contact)
∆E variation of kinetic energy

t(−), t(m) and t(+) initial time of compression, the time of maximum indentation and the final
time of restitution, respectively

T(−), T(+) system kinetic energies at times t(−) and t(+), respectively
T(m) kinetic energy at the end of impact compression phase
U(m) maximum strain energy at the end of impact compression phase

v(−)k , v(+)
k body k velocities at times t(−) and t(+), respectively (k = i, j)

v(m)
ij common velocity of the bodies at the end of the contact compression phase
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vi, vo relative velocities at the beginning and at the end of contact, respectively
Vs elastic wave propagation speed in colliding solids

W =
Fn

L
contact force per unit length

X1, X2 masses displacements of the Dubowsky and Freudenstein impact pair
α a constant based on the slope of the (e, vi) curve
δ relative indentation between contacting bodies
δ f relative indentation at the end of contact
δk indentation of sphere k, (k = i, j)
δm maximum relative indentation value
δp permanent indentation after impact
δ̇(−) relative approach velocity (same as vi)
δ̇(+) relative departing velocity (same as vo)
λ hysteresis damping factor
ε width of the transition zone (see Figure 3)
νk Poisson ratio of body k (k = i, j)
ω system natural frequency
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