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Abstract: Object positioning is a basic need for visual robotics in automatic assembly lines. An
assembly line requires fast transfer to new object positioning tasks with few or no training data
for deep learning algorithms, and the captured visual images usually suffer from partial missing
and cropping and environmental lighting interference. These features call for efficient and robust
arbitrary shape positioning algorithms under data-scarce and shape distortion cases. To this end, this
paper proposes the Random Verify Generalised Hough Transform (RV-GHT). The RV-GHT builds a
much more concise shape dictionary than traditional GHT methods with just a single training image.
The location, orientation, and scaling of multiple target objects are given simultaneously during
positioning. Experiments were carried out on a dataset in an automatic assembly line with real shape
distortions, and the performance was improved greatly compared to the state-of-the art methods.
Although the RV-GHT was initially designed for vision robotics in an automatic assembly line, it
works for other object positioning mechatronics systems, which can be modelled as shape distortion
on a standard reference object.

Keywords: machine vision; Hough transform; object positioning; shape distortion; automatic
assembly line

1. Introduction

Object positioning is crucial to many visual robotic systems, such as sorting robot
arms, transfer robot arms, assembly robots, etc. These applications require not only the
information of an object’s location, but also its orientation, scale, and the number of
instances for operation. Although deep learning has shown impressive accuracy in shape
recognition and localisation, in dealing with precise orientation and scale information, it
suffers from poor performance without a comprehensive training dataset [1]. On the other
hand, many applications are frequently transferred to a totally new operation target. Deep
learning methods require days or even months of training data collection to guarantee
good performance in comprehensive situations, which is a serious interruption to normal
production and cannot meet the online efficiency requirement. An alternative deterministic
method is the Generalised Hough Transform (GHT), a shape detection method [2–5], which
uses the contour of a template shape to build a codebook, known as the R-Table. In the
detection step, votes are cast for the presence of the shape in the Hough space by looking
up the R-Table. Since the R-Table is a one-to-many mapping between indices and votes,
the shape can be identified through majority voting. Local information stored to generate
the R-Table can be expanded into interest points [6], image patches [7], or regions [8]. The
GHT extends the Hough transform, which can only be used to detect shapes that have
analytical models such as line segments, circles, ellipses, etc. [9–11], to arbitrary shapes.
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The conventional GHT is known [3,12] to suffer from two fatal limitations: (a) There
is a high computational cost when the input shape is rotated or scaled. If the rotation or
scaling of the target shape is different from the template, common practice is to transform
the R-Table template to all its potential rotations and scaled sizes, with a certain step. Not
only does this approach come at a high cost, but the detection resolution is limited to the
step size. Some authors find their own rotation/scale invariant features [13–17], but these
methods are either too sensitive to noise or limited to shape constraints. Another category
of approaches uses supervised training and matching for task-adapted R-Tables called
Hough forests [18]. The primary Hough forest cannot give the rotation information; some
extended works [19,20] augmented the training dataset with rotated copies of the template
or trained a classifier common to “all” orientations. (b) There is poor performance when
the target shape is similar, but not identical to the input template; this is a common case
in automatic assembly and packaging lines. For example, in the demo images shown
in Figure 1, the contour of the target shapes is polluted when there is light interference
from the environment or the components themselves have a high reflective rate or shape
fluctuation. For precise manufacturing applications, other visual modalities such as infrared
and X-ray are also common. These visual images are much more fuzzy than visible light
images, which easily leads to shape distortion. The R-Table template in Hough methods is
made up of standard shapes, and any distortion in the target will result in votes, which
contaminate the ground truth in conventional methods. This phenomenon is exacerbated
with the increase in the number of the one-to-many mappings in the R-Table.

Figure 1. Example images of different modalities of visual robotic systems in automatic assembly
lines. From top to bottom are visible light, infrared, and X-ray.

In order to address both issues described above, we introduce a novel computer vision
algorithm called the Random Verify GHT (RV-GHT). It has low complexity, yet achieves
state-of-the-art accuracy. Our main contributions are as follows:

• This paper provides one efficient and robust algorithm for arbitrary shape detection
under data-scarce cases for visual robotics in automatic assembly lines. The proposed
method can be trained with even just a single image to build the R-Table, while deep
learning methods require a large dataset to cover different rotations/scalings, and such
a dataset usually takes a long time to collect for new detection targets.

• To handle the bottleneck of poor performance under shape distortion for the traditional
GHT methods, a series of anti-distortion procedures was designed; the major one is
the random verify process. The difficulty of the one-to-many mapping problem for
traditional GHT is greatly reduced, and this leads to a great accuracy improvement.

• To avoid the time-expensive iterative multi-dimensional voting process for traditional
GHT methods, this paper designs one single-shot voting scheme to obtain the scaling
factor, shape centre, and target rotation from 0 to 2π simultaneously.
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• To effectively lower the search overhead in detection, a new R-Table is designed, which
has the most concise form compared to the existing GHT methods. Besides, a new
minimum point set selection algorithm that reduces the number of indices both in
R-Table construction and in the detection process is designed.

• The validation results illustrate a much better accuracy than other algorithms under
shape distortion cases. The overall efficiency is similar to the state-of-the art method.

2. Related Work

Efficient GHT algorithms: The concept of the GHT was introduced in the 1980s [2],
but has been subject to a number of further refinements in the presence of rotation and
scaling. The R-table typically records the position of all (or most) boundary points of a
template shape relating to a fixed reference point [12].

Several authors have put effort into improving the overall efficiency in the presence of
scaling and rotation. One category is putting the scaling and rotation into the R-Table [21],
but this method costs too much storage space for the R-Table compared to methods that
use invariant features. Commonly considered invariant features are invariant interest
points [22,23], local curvature [15] and pole–polar triangles [24–28]. Methods based on
interest points find invariant interest points on both the target and the template image [29]
using detectors such as SIFT, SURF, HoG, etc. The results of such algorithms are sensitive
to background noise. Additionally, any outlying interest points or a general insufficiency of
interest points decreases the overall performance. Another category of the GHT is based on
curvature. It performs poorly for shapes that consist of line segments rather than curves.

A third category of the GHT is based on pole–polar triangles. These algorithms are
more robust to noise and have been more popular in practical applications. Pole–polar-
triangle-based methods can be categorized into pixel-based and non-pixel-based methods.
Pixel-based methods calculate an index for every edge pixel. The advantage is that they are
rich in index information, but are time-consuming. Ser et al. [24] proposed a dual-point
GHT (DP-GHT), which uses pixel pairs with the same slope to form the triangle. This
method does not work for shapes that lack pixels with the same slope. Chau and Siu [25]
proposed an improved version of the DP-GHT called the GDP-GHT (also called the RG-
GHT), which uses index pairs with a constant angle difference. The DP-GHT is a special
case of the GDP-GHT. They further extended the algorithm to accommodate shapes with
multiple constant angle differences [28].

By contrast, non-pixel-based methods approximate the target shape using
blocks [30–32], lines or circles [26], or polygons [16]. This approach involves a fast in-
dex calculation at the cost of representation errors of the template shape. If the target is
identical to the approximation, the algorithm cannot distinguish between the two. This
approach may also lack sufficient indices to vote for the true configuration. Jeng and
Tsai [26] used half lines and circles in the R-Table. The detection process involves separate
scaling-invariant and orientation-invariant cell incrementing strategies. This works well
only when the rotational angle and scaling are in a fairly restricted range. Yang et al. [16]
proposed a polygon-invariant GHT (PI-GHT), which employs the local pole–polar triangle
features based on polygonal approximation, using dominant points from the edges as the
index. Due to limited invariant feature quantity, the results are too sensitive to the quality
of the polygonal approximation, which means the algorithm cannot identify shapes that
are the same as their approximation. Ulrich et al. [27] introduced a hierarchical strategy
that splits the image into tiles; each tile has a separate R-table. However, in the absence
of invariant features, this is just an improved, but inefficient brute force search. Kimura
et al. [30] proposed a fast GHT (FGHT), which splits the image into small sub-blocks and
approximates the slope of each block. In order to reduce the influence of noise on estimat-
ing block slope, Reference [31] proposed a generalized fuzzy GHT (GFGHT). The overall
process is much the same as the FGHT, with the exception of a fuzzy voting process, which
gives a block pair’s centre point more weighting in the voting if it is closer to the centre
of the shape. The serious limitation of the latter two methods is the increased complexity:
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if N blocks satisfy the distance threshold, the index pair is C2
N . To reduce the complexity

of FGHT methods, Chiu et al. [32] proposed a fast random GHT (FRGHT), which uses a
random pair selection procedure in index searching and weighting. This method greatly
reduces the index number, at the cost of reduced robustness.

In summary, the pixel-based subcategory of using the pole–polar triangle as an invari-
ant feature has the richest index and, hence, is the most robust to noise. The state-of-the-art
GDP-GHT methods and PI-GHT methods are not limited to shape constraints; however,
the high number of one-to-many mappings from the index of the R-Table to a configuration
increases the time complexity and the presence of incorrect votes. In the case of both
pixel-based and block-based methods, the number of index pairs can be unacceptably high.
The FRGHT reduces the number of indices required by the GFGHT at the cost of a sacrifice
in robustness.

GHT algorithms that are robust to shape distortion : Few approaches deal with the chal-
lenge of shape distortion directly. The most popular methods rely on the fuzzy voting
concept, by weighting each vote instead of simply accumulating every single one. For ex-
ample, Xu et al. [33] weighted the voting in the GHT by how important the corresponding
ship part was. They gave the fore and the poop deck a higher weight because they are most
different from the rest of the contour. The Generalised Fuzzy GHT [31] (GFGHT) gives
more weight to index pairs whose middle pixel is closer to the shape centre. The reference
point concept in the GFGHT is a good effort to remove incorrect votes. However, these
methods still only have a limited ability to deal with shape distortion.

3. The Proposed Random Verify GHT

The proposed RV-GHT method has a similar outline to other GHT methods, as shown
in Figure 2: it extracts local index information, builds an R-Table offline, and then applies
detection online. There are mature methods for the contour extraction and slope calculation
processes. The idea proposed in this paper designs a new R-Table and detection process,
which efficiently deal with rotation and scaling under shape distortion. While building the
R-Table, we used pairs of contour pixels with a constant slope difference in order to generate
rotation- and scaling-invariant features as indices. In the detection process, each index is
simultaneously used to vote for location, rotation, and scaling and uses a Gaussian kernel
function for voting. The rotation is only described as the angle of rotation, but no actual
centre of rotation was identified. Furthermore, during the detection step, a random verify
scheme helps to eliminate ambiguities in the one-to-many mappings, thereby reducing the
influence of distortion or partial missing.

Contour 
extraction

Slope 
calculation

Slope

Build R-Table 
off-line

Detection on-line

Input 
images

R-Table 
database

Extract local information

Template 
images

Off-line
On-line
Shared steps

Figure 2. The overall diagram of the RV-GHT.

3.1. A New and Concise R-Table in RV-GHT

The R-Table stores the projection between local information and the standard template
shape. Based on the contour slope, a contour pixel pair AB with constant-convexity-
augmented slope difference θ is chosen as two vertices of the pole–polar triangle, as is
shown in Figure 3. θ can be any value set by the user, but needs to be the same for
building the R-Table process and the detection process. Therefore, Points A and B and the
intersection point of their respective slope lines form a pole–polar triangle.
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Based on Points A and B, the index in the R-Table is the difference between the slope
of A (denoted as α1) and the slope of Line AB (γ). This index is invariant to rotation and
scaling because the rotation amount for α1 is always the same as that of γ.

α1

β1

BA

α1 – α2 = θ, 
where θ is a constant;
α1, α1, β1, β2, γ ⸦[0, π]

C

γ

Index Item
α1 – γ α1 Distance 

of AC
β1 β2

… … … … …

R-Tableβ2

α2

Figure 3. R-Table in the proposed RV-GHT.

The items of the resulting R-Table are also shown in Figure 3. To give an accurate
description of shape location, a reference point (centre point) C is allocated. This point can
be set at any location by the user. Some special settings can help with future processing,
e.g., the centroid or the start and end points of a simple curve. Given Point C, it is possible
to calculate the slope of Lines CA (denoted as β1 in Figure 3) and CB (β2). All items are
angles except the third column for the length of Segment AC, because all related angle
information can be derived from the stored angles.

Each row of the R-Table is made up by searching iteratively for constant slope differ-
ence pairs such as AB for 0 ≤ α1 < π. As is shown in Algorithm 1, the algorithm aims
to compress the length of the R-Table while preserving as much information as possible
during the searching process. Firstly, the length of AB must be greater than a threshold.
This threshold can be as small as 10 pixels just to avoid the estimation error for γ. Secondly,
it is popular for a shape contour to show a group of consecutive pixels that has the same
slope. In conventional versions of the GHT, all these pixels will generate index pairs,
which is highly redundant. Instead, we propose the following minimum point set selection
scheme in order to cut down redundancy. Our algorithm takes as the input a point set that
has the same local information. A separate input is a distance threshold that defines the
minimum distance between two points. The output is a point set whose distance between
any two points in the set is greater than the defined threshold. The minimum point set can
be obtained after N − 1 to (N−1)N

2 times of distance calculations and comparisons, where
N is the number of contour pixels.

Algorithm 1: Find the minimum point set, the pairwise distance of which is above
a threshold.

Input: Point set that has same local information, P.
A distance threshold, Dth

Output: Minimum point set, Pm
1 Choose any point in the set as the seed, P1;
2 Initial minimum point set, Pm={P1};
3 for any remaining point in P, Px do
4 if all distances of PmPx > Dth then
5 Add Px to Pm
6 else
7 Remove Px from P.
8 end
9 end
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For some shapes, the contour pixel pairs that satisfy α1 − α2 = θ are not unique.
For example, there are 4 contour pixels whose slope is α1 (Point A in Figure 3) and
3 for α2 (Point B in Figure 3). In such cases, every A is matched with every B to con-
struct 12 pairs. This results in an over-complete R-Table. This R-Table ensures the scheme
in the Find AB pairs section can always find the corresponding record under multiple
candidates for A and B.

3.2. Detection Process of RV-GHT

The detection process is shown in Figure 4. The principal contours of the whole
target image are first obtained by running, for example, a Canny edge detector, followed
by calculating the slope for the resulting contours. Given these pre-processing steps, the
RV-GHT finds an index pair first. With an R-Table for a template shape, the primary
centre (point C in Figure 3), rotation, and scaling can be found. The random verify gives
a weighting factor for each configuration. Lastly, the multi-instance classification process
gives the final centre, rotation, and scaling for each instance. The rest of this section
introduces each stage in detail.

Find index pair

Primary centre, 
rotation, scale

Random verify

Multi-instance 
classification

Slope

R-Table for
shape 1

End

R-Table for
shape 2

R-Table for
shape 3

R-Table for
shape N

…

Figure 4. The detection process of the RV-GHT.

3.2.1. Find AB Pairs

The first step is to find edge pairs such as A and B in Figure 3. To this end, the slope
for all contour pixels (denoted G) is computed first. Algorithm 2 details the searching
process. The example given in the last paragraph of Section 3.1 generates 12 index pairs.
As every index pair will generate a vote later, if there are too many points with the same
slope, brute force searching of this large set can greatly increase the complexity of the
detection process. This motivates why Step 5 of Algorithm 2 limits the number of output
pairs. Within the same example discussed above, Step 5 of the algorithm only generates
four pairs: A1B1, A2B2, A3B3, and A4Bx, where x is a random value within {1, 2, 3}. This
eliminates about 60% of the redundant votes for this example whilst guaranteeing that
every A and B participated in the vote.
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Algorithm 2: Find the AB pair from the edge image.
Input: The slope for all contour pixels, G; Constant angle, θ
Output: ABPair

1 ABPair = {empty};
2 for i = 0 to π do
3 Find all points of G = i, and compress with Algorithm 1 as A1, A2,. . . , Am;
4 Find all points of G = i− θ + πH(θ − i), and compress with Algorithm 1 as

B1, B2, B3,. . .,Bn, where H(.) is the Heaviside step function;
5 Assume m > n and m/n = p. . . q, NewABPair =

A1B1, A2B1,. . . , ApB1, Ap+1B2, Ap+2B2,. . .,
A2pB2,. . . , Am−q+1Bx1, Am−q+2Bx2,. . . , AmBxq, where x1, x2, .., xq is a random
permutation for the sequence from 1 to q; if m ≤ n, just swap the index of AB;

6 ABPair = ABpair ∪ NewABPair;
7 end

3.2.2. Find Primary Centre, Rotation, Scaling

This section shows how each pair AB is mapped onto votes for the centre, rotation,
and scaling factor.

Centre: A line intersection method is proposed to find the centre. Using Figure 3 as
an example, the coordinates of centre C can be calculated in terms of β1, β2, the R-Table
(denoted as R), and the coordinates of A(xA, yA) and B(xB, yB).

Lines AC and BC can be written as linear entities as:

yA = aAxA + bA
yB = aBxB + bB

(1)

where aA, aB, bA, and bB are parameters for the linear function. Then, the coordinates of
C are:

C =

(
bB − bA
aA − aB

, aA
bB − bA
aA − aB

+ bA

)
(2)

To find the coordinates in Equation (2), firstly, the index in the R-Table can be calculated as:

I = α1− atan
(

yA − yB
xA − xB

)
− πH(xA − xB) (3)

where H(x) = d
dx max{x, 0} is the Heaviside step function. Therefore, aA = tan(RI,4) and

aB = tan(RI,5), where Ri,j is the ith row and jth column in the R-Table. Then, bA and bB can
be derived from (1).

Rotation : With the index I in (3), the rotation bringing the template to the target
shape is:

r = α1− RI,2 (4)

which is the current slope of A substituting the original value of the template stored in
the R-Table.

Scaling : With the index I in (3), the scaling factor by which the template is multiplied
to obtain the target shape can be calculated as the current distance AB divided by the
original value of the template stored in the R-Table.

s =

√
(xA − xB)

2 + (yA − yB)
2

RI,3
(5)

3.2.3. Random Verify Scheme for Centre, Rotation, and Scaling Refinement

This paper proposes the random verify to assign a weighting to each configuration
to deal with the one-to-many mapping problem: if a certain configuration is voted for,
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the voted configuration should have a high intersection ratio with the target edge image,
even in the presence of distortions. Firstly, given the R-Table and a configuration (centre,
rotation, scaling), the random verify takes the shape from that given configuration back to
the image space by Equation (6a,b). We denote (x̂, ŷ), where I is a random row index in the
R-Table and c =

(
cx, cy

)
, r, and s are the candidate centre coordinate, rotation, and scaling,

respectively.
x̂ = cx − sRI,3 cos(β1− r)

= cx − sRI,3 cos(RI,4 − r)
(6a)

ŷ = cy − sRI,3 sin(RI,4 − r) (6b)

Secondly, for a given configuration, every row in the R-Table can be projected back
to a point in the image space. The random verify involves randomly selecting rows from
the R-Table for back projection. Figure 5 illustrates a case where the target shape presents
distortion from the template. Two candidate configurations are randomly projected back
into the image space with 5 and 7 pixels, respectively, shown as green and blue dots in the
figure. To deal with shape distortion, each projected pixel is expanded to a square area
±R pixels away. Even in the presence of distortion, the expanded area is more likely to
intersect the target shape. Intersection is considered to take place when the total number
of pixels in the expanded range is above a set threshold. We denote the intersection
percentage as τ, (0 ≤ τ ≤ 1) to indicate whether the current configuration corresponds
to a found shape. This random verify process, which returns a weighting, is denoted as
w = fr(s, r, c, R, E, Nr, R), where E, Nr, and R are, respectively, the edge image of the target
shape, the number of random projection pixels, and the expansion radius in pixels. We
define its relation to τ as Equation (7).

w = τk, k ∈ R > 1 (7)

Only configurations with w greater than a threshold are retained. An intersection
percentage τ closer to 100% is trusted more than lower percentages, and the output weight-
ing is set as a power of τ. Therefore, the configurations closer to the target are more
likely to be found, whereas the wrong configurations are quickly eliminated. For example,
for k = 2 and τ = 0.3, more than 12 incorrectly voted configurations can override the true
configuration because 1/0.32 ≈ 11.1. Note that τ = 0.3 is already a seriously polluted image.
Conversely, this can happen for the “wrong” configuration to obtain τ = 1 accidentally and
for the true configuration to only obtain τ = 0.8 due to shape distortion. In this case, if k
is too large, this wrong configuration needs too many true votes to be eliminated. When
k = 3, two true configuration votes can override the wrong votes because 1/0.83 ≈ 1.95.
Therefore, we recommend k to be 2 or 3.

Due to the strong wrong vote compression ability, it is not necessary to gather a rich
index to make the true configuration stands out. The benefit is that if most of the index is
lost or polluted in the target image, the true configuration still can stand out; if the target
image is less polluted, downsampling the multiple index found in the R-Table will not
influence the final results, but will reduce the time consumption greatly, which means this
random back projection process deals with the traditional one-to-many mapping problem
in the R-Table and distortion efficiently.
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Configure 
1

Configure
2

Random 
verify

Intersection percentage

(a)

R-Table

2R

2R

Local 
intersection 

count

Detection target

(b)

0/5

7/7

Figure 5. Diagram for the random verify. The green and blue dashed lines in (a,b) are the fully
back-projected shape for Configurations 1 and 2. For the random verify, the configurations are
projected back onto the target image with some random rows in the R-Table, so there are some
random points that correspond to Configurations 1 and 2 in (a). Then, an intersection percentage of
each configuration can be calculated with an expanded range for each point, as shown in (b).

3.2.4. Multi-Instance Classification

The multi-instance case features in many real applications. The target edge image may
vote for the existence of several instances of the template shape. Each pair of edge pixels
corresponds to one specific configuration and to a weight, if the index generated by the
pair can be found in the R-Table. These configurations can be stored in a matrix M:

M =


c1 r1 s1 w1
c2 r2 s2 w2
· · · ·

cn rn sn wn

 (8)

where n is the total number of votes.
Due to noise or distortion, the centres stored in M usually do not coincide, but cluster

discretely in the voting space. To estimate the precise location and strength of each shape’s
appearance, a Gaussian kernel function is used in the voting process.

Pxiyi = Pxiyi + wi exp

(
− (x− xi)

2

2σ2
c

+
(y− yi)

2

2σ2
c

)
(9)

where i = 1, 2, 3,. . . , n. Pxiyi is a patch in the voting space, which has (xi, yi) as the patch
centre. Likewise, the latter centre and rotation voting also use a Gaussian kernel for
accumulation, as shown in (10).

Pri = Pri + wi exp

(
− (x− ri)

2

2σ2
r

)
(10)

The overall algorithm for this multi-instance is given in Algorithm 3. Given the
configuration matrix in Equation (8) and a cut-off threshold T, the algorithm returns the
multi-instance centre coordinates and the corresponding strength, rotation, and scaling.
The algorithm votes for the centre first, followed by searching for the multi-instance centres.
It simply searches for peaks above the cut-off part of the max vote value, and the maximum
is the corresponding strength. After obtaining a centre, it votes for a rotation and scaling
for each centre. If different objects use the same angle difference, several target shapes can
be detected after obtaining the relevant index. This process lends itself to parallelisation,
which can be effectively processed by hardware [34].
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Algorithm 3: Multi-instance classification.
Input: Configuration matrix, M; cut-off threshold 0 < T ≤ 1
Output: TureCentre, Strength, Rotation, Scale

1 Vc = 0 is a 2D voting space for centre, which has the same size as the input image;
TrueCentre = {empty}; Strength = {empty};

2 for each row of M do
3 Vote Vc with Gaussian kernel as Eqn. (9);
4 end
5 Cmax = max value in Vc;
6 while max value in Vc ≥ CmaxT do
7 NewTrueCentre = the max value position;
8 TrueCentre = TrueCentre ∪ NewTrueCentre;
9 Strength = strength ∪max value in Vc;

10 Set the patch of the true centre in Vc as 0;
11 end
12 Initialise the 1D rotation and scale voting vrx = 0; vsx=0; x = 1,2,3,. . . is the number

of TrueCentres;
13 for each row of M do
14 if c is in certain range of the i-th TrueCentre then
15 vote vri and vsi with Gaussian kernel as Eqn. (10);
16 end
17 find the max value position in vrx and vsx as rotation and scale.

4. Experiments and Discussion

The RV-GHT algorithm resolves the two fatal issues for the traditional GHT, i.e., the
high computational cost in the presence of rotation or scaling and the failure to find target
shapes that are similar, but not identical to the template shape. The experiments in this
section validate our efficiency and accuracy claims.

Comparisons were made against the most efficient of the GHT algorithms in the
literature, namely the PI-GHT, GDP-GHT, GFGHT, and FRGHT. The GDP-GHT uses edge
pixel pairs with a constant slope difference to calculate the R-Table index and, for each
pair, stores the displacement vector in the centre. To improve the overall performance, our
algorithm uses the scaling factor obtained from AB, AC, and BC in order to remove some
wrong projections for the GDP-GHT. The GFGHT, PI-GHT, and FRGHT divide the images
into small blocks and store a reference point in the R-Table. The FRGHT randomly chooses
a block as a seed and iteratively looks for a subsequent point that is further than a distance
threshold and that has never been chosen before; the found point B in the last iteration is
used as Point A in the next iteration; this index chain is also linked to the vote weighting.

4.1. Dataset

Existing publicly available datasets are too simple for efficiency and robustness testing
because: (1) there is no real case shape distortion; (2) there is no interference from ambient
light or reflective surfaces; (3) existing shapes are relatively regular, which goes against
real applications. Our dataset was built to feature ten radically different shapes, shown in
Figure 6. Theses shapes were chosen to be relevant to a variety of potential real applica-
tions. For example, S1 refers to a challenging, highly reflective object positioning; S2 is a
challenging case for accurate rotation and scaling detection due to the rich one-to-many
mapping in the R-Table. S8, S9, and S10 represents infrared, ultrasound, and X-ray inspec-
tion applications in manufacturing, respectively. Other source shapes are some common
components’ positioning in automatic assembly and packaging line.
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S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

Figure 6. The source shapes in the test dataset, numbered from S1 to S10.

4.2. Accuracy Analysis

Even in the absence of shape distortion, the one-to-many mapping pollutes the voting,
especially when rotation and scaling are also present. The corresponding template for
source images in the test dataset are shown in Figure 7 by Canny edge detection. Compared
to deep learning methods, which require a huge dataset for pre-training, this method only
requires a single typical image to build a template contour shape. Building a simple, yet
unique template for each source shape is preferred, which helps to improve efficiency.
Every shape is assigned a centre of coordinates; the position and dimension illustrated
in Figure 6 were set as templates. The R-Tables for each algorithm and every shape are
generated before the detection process.

Figure 7. Template for objects in the test dataset, numbered from T1 to T10.

4.2.1. Qualitative Accuracy Performance

To have a first impression of the accuracy of the RV-GHT in dealing with one-to-many
mapping, the first experiment involved the most ambiguity-prone shape, S8 for shape
centre and shape and S2 for rotation and scaling. Both shapes were transformed with an
anti-clockwise rotation of 53◦ and a scaling factor of 0.73. The constant angle difference
for our RV-GHT and the GDP-GHT were set as 60◦; the block size of the GFGHT and
FRGHT was set to 10 pixels. The distance threshold for the found pair was 10 and 60 pixels,
respectively, for our RV-GHT and the GFGHT/FRGHT. Accumulation with one pixel for
each vote is too sensitive to noise or distortion: any noise or distortion will cause position
misalignment to affect the voting. A more robust scheme is voting with a Gaussian kernel,
as shown in Equations (9) and (10). To make the vote fair, in our experiments, we allowed
the use of the Gaussian kernel voting scheme, even though the various algorithms did not
originally make use of such a scheme.

The voting results for the centre, rotation, and scaling for these two challenging
shapes are shown in Figures 8–10, respectively. The proposed RV-GHT had the best peak
voting. Due to shape S8 having a serious one-to-many mapping, the GDP-GHT method
found many centres that were nowhere near the ground truth, as shown in Figure 8. The
GFGHT and FRGHT had a cleaner vote space because the check point removed some
wrong votes, but the resulting centres still did not intersect with the ground truth due to
the representation error using blocks. Smaller blocks can improve the accuracy, but will
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greatly increase the index number. Figures 9 and 10 show that the sidelobe for the RV-GHT
was much narrower than its counterparts, although all methods detected the configuration
correctly; this also means a better confidence level for our method. In the presence of
background noise, the peak for the rotation and scaling votes of other methods can easily
be defeated.

(a) (b)

(c)

(d)
(e)

Figure 8. Centre voting for S8 (a) for the proposed RV-GHT, (b) the GDP-GHT, (c) the PI-GHT, (d) the
GFGHT, and (e) the FRGHT under the configuration of rotation = 53◦ and scaling = 0.73. The ground
truth centre is labelled as a black star near the peak.

Figure 9. The voting space for rotation for the most-challenging shape S2 with the configuration of
rotation = 53◦ and scale = 0.73.

Figure 10. The voting space for scale for the most-challenging shape S2 with the configuration of
rotation = 53◦ and scale = 0.73.
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Figure 11 shows the final detection results of some typical shapes. The proposed
method had the cleanest voting space (shown as the white cloud in Figure 11), and the
positioning results were accurate. Other methods were influenced by the one-to-many
mapping seriously.

Figure 11. Examples of positioning results for some typical shapes (columns) for the proposed
RV-GHT, the GDP-GHT, the PI-GHT, the GFGHT, and the FRGHT (in top-down order). The red and
green contour are the source image contour and detection results, respectively. The white clouds are
the centre voting results.

4.2.2. Qualitative Multi-Instance Detection Performance

Figure 12 shows our algorithm’s multi-instance detection ability. Multi-instance
detection is not a key argument for this paper, so a sample image containing multiple
instances of three shapes was made just to show that our proposed method can deal with it.
The detection targets were T1 and T4, and T7 was the interference. Only the results of the
RV-GHT are given because other GHT methods do not contain a procedure to deal with
multiple instances for different rotations or scalings. The outlier shapes generated almost no
votes in the voting space, which shows that our method is robust to background noise. All
targets were successfully detected even if they had different rotations and scaling factors.
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7 05
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Figure 12. Multi-instance positioning results for shapes T1 and T4 (left) and the centre votes’ response
(right).

4.2.3. Quantitative Analysis of Key Parameters for Dealing with Shape Distortion

This experiment analysed key parameters in the proposed RV-GHT for dealing with
shape distortion. Shape distortion is one of the major challenges of GHT methods, i.e.,
when the target shape is similar, but not identical to the template, the performance becomes
unacceptably poor. Our proposed method uses a series of procedures to deal with shape
distortion including line intersection to find the centre, the random verify, and Gaussian ker-
nel voting. The two key parameters that influence the performance are the back projection
point number Nr and the expansion radius R in Figure 5.

Based on the same dataset shown in Figure 6, different levels of salt and pepper noise
were added manually to the template shapes. Figure 13a illustrates some distorted versions
for S2. Under different salt and pepper noise densities (from 0 to 0.35 with a stepsize of
0.05), there were partial missing, shape distortion, and noise incurred. The accuracy curves
under such settings are given in Figure 14 using Monte Carlo simulation. Every template
shape in Figure 6 was tested and transformed to a random rotation and scale, and every
noise density was repeated 50 times to obtain the average performance. Accuracy is defined
as the rate of total true positives (TPs) and true negatives (TNs) for all test samples (N),
i.e., accuracy ≡ (TP + TN)/N. The true positives for centres, rotation, and scaling are
defined, respectively, when the detected results are within 5 pixels, within 5◦, and within
a factor of 0.05 of the ground truth. These thresholds do not need to be strictly so; other
values that are not too relaxed will not influence the conclusion. Users should set them
according to the error tolerance of their task.

For centre, rotation, and scale accuracy, increasing Nr improved the ability of com-
pressing the one-to-many mapping, so 0 ≤ Nr ≤ Number o f rows in R−Table. Nr = 50
had slightly better accuracy than Nr = 15 pixels, but will increase the computation time.
As for R, R = 5 showed the best performance. The principle behind this is that, when R is
close to 0, the algorithm will give more weight to the identical part and use it to detect the
shape. When R increases from 1, the shape distortion tolerance improved, but it decreased
the ability of compressing the one-to-many mapping. Increasing R will not keep improving
the tolerance for shape distortion. If R = 0 or R approaches or becomes greater than half of
the image size, the algorithm loses the ability of compressing the one-to-many mapping
totally. However, if there is not an absolutely identical part in a real application, setting R
as 5 to 10 is a better choice than 1 to allow shape distortion.
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（a）

（b）

Figure 13. (a) S2 under salt and pepper noise densities of 0.1, 0.2, 0.3, and 0.4 (left to right). (b) Demo
of positioning results for the proposed RV-GHT, the GDP-GHT, the PI-GHT, the GFGHT, and the
FRGHT (in top-down order) for S2 and S8 with a noise density of 0.1 and 0.3.
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(a)

(b)

(c)

Figure 14. Accuracy vs. salt and pepper noise density for (a) centre, (b) rotation, and (c) scale under
various R and Nr in Figure 5 for the proposed RV-GHT using the Monte Carlo method.

4.2.4. Quantitative Accuracy Performance under Shape Distortion

This section compares our proposed method with other counterparts under various
levels of distortion. We set Nr = 15 and R = 5 according to the analysis in Section 4.2.3.
Some of the detection results are shown in Figure 13b. Salt and pepper noise brought
partial shape loss, shape distortion, and interference. Only the proposed RV-GHT handled
all these cases successfully.

For a quantitative study, the more comprehensive evaluation metrics of precision and
recall were used because accuracy ignores the false negatives (FNs) and false positives
(FNs), where precision ≡ TP/(TP + FP), recall ≡ TP/(TP + FN). Precision describes
how much ground truth there is within the predicted truth, and recall describes how much
ground truth has been extracted. The precision vs. recall curves for centre, rotation, and
scaling are shown in Figure 15. The same Monte Carlo method and setting as in Figure 14
were used. Nr and R were set as 15 and 5, respectively. Figure 15 shows that the proposed
method outperformed all other state-of-the art methods greatly in the accuracy for centre,
rotation, and scaling detection.



Machines 2022, 10, 1079 17 of 20

Figure 15. Precision vs. recall for (a) centre, (b) rotation, and (c) scaling estimation using the Monte
Carlo method.

4.3. Efficiency Analysis

The time complexity of the traditional GHT method is Nr NsNidx, where the respective
numbers refer to all possible rotations, scalings, and indices computed for the target
image. Efficient GHT algorithms eliminate the iteration for rotations or scaling, preferably
both, leading to a time complexity of around Nidx. To further analyse the complexity of
efficient GHT methods, this paper recalls the processes that are common to these algorithms.
During the detection process, after obtaining the index for the target image, the algorithm
will look up this index in the R-Table. When one-to-many mappings are present in the
R-Table, an index may correspond to multiple rows, each of which will correspond to a
projection and will yield the calculation of a centre, rotation, and scaling triplet, followed
by the accumulation for each parameter.

The calculation of these parameters can vary greatly with the particularities of each
shape. This makes it nearly impossible to find a closed-form equation for the time com-
plexity. However, from the description of our method, it should be clear that introducing
the random verify will greatly reduce the accumulation number by downsampling and by
removing some of the wrong voting. Other GHT methods count towards the accumulation
of all the relevant rows in the R-Table. In our method, whilst the number of random verify
points also increases the overall time, those extra back projections improve the accuracy of
the results at the expense of a small amount of extra computation.
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Our time efficiency tests were carried out on the dataset from Section 4.1, on a laptop
with a Core i7-7500u CPU. Each shape was considered in a series of rotational positions so
as to obtain the average runtime. No scaling or shape distortion were applied. The overall
runtimes are given in Table 1. As expected, the random verify point number (Nr) caused
the overall time to increase. The normalised runtime efficiency shared the same trend for
all shapes, which had a gain factor of only around 0.6. Although the proposed method was
not the most time-efficient one, it still outperformed the others in most cases when Nr = 5;
this setting already showed a great improvement in accuracy, and Nr ≥ 15 did not improve
the overall efficiency much.

Table 1. Runtime efficiency for all shapes in the dataset for different algorithms in seconds.

Shape No. 1 2 3 4 5 6 7 8 9 10 Average

Pro (5) 0.0238
=1

0.0244
=1

0.0130
=1

0.0104
=1

0.0133
=1

0.0466
=1

0.0480
=1

0.0601
=1

0.0675
=1

0.0414
=1 1

Pro (15) 0.0417
=1.8

0.0449
=1.8

0.0229
=1.8

0.0178
=1.7

0.0200
=1.5

0.0705
=1.5

0.0767
=1.6

0.0903
=1.5

0.1264
=1.9

0.0676
=1.6 1.67

Pro (30) 0.0565
=2.4

0.0773
=3.2

0.0372
=2.8

0.0306
=3.0

0.0309
=2.3

0.1407
=3.0

0.1533
=3.2

0.1349
=2.3

0.1714
=2.5

0.1068
=2.6 2.73

Pro (50) 0.0834
=3.5

0.1043
=4.3

0.0688
=5.3

0.0360
=3.5

0.0527
=4.0

0.2015
=4.3

0.2192
=4.6

0.2071
=3.4

0.2529
=3.7

0.1578
=3.8 4.04

GDP-GHT 0.0497
=2.1

0.0689
=2.9

0.0092
=0.7

0.0069
=0.66

0.0141
=1.1

0.1077
=2.3

0.0899
=1.9

0.1824
=3.0

0.0252
=0.37

0.0677
=1.6 1.66

PI-GHT 0.0234
=0.98

0.0820
=3.4

0.0062
=0.48

0.0113
=1.1

0.0015
=0.12

0.0733
=1.6

0.1249
=2.6

0.0782
=1.3

0.0489
=0.73

0.0615
=1.5 1.37

FGHT 0.0259
=1.1

0.0560
=2.3

0.0149
=1.1

0.0098
=0.95

0.0244
=1.8

0.0306
=0.66

0.0189
=0.39

0.0302
=0.5

0.0224
=0.33

0.0085
=0.21 0.941

FRGHT
0.0209
=0.88

0.0212
=0.87

0.0109
=0.84

0.0081
=0.79

0.0066
=0.49

0.0081
=0.17

0.0095
=0.2

0.0203
=0.34

0.0078
=0.12

0.0012
=0.03 0.472

Note: The proposed RV-GHT with different random verify numbers is listed as Pro (Nr). Normalised time is
given bellow “=” in each cell. The last column is the average normalised time.

5. Conclusions

Efficient and robust component positioning is a basic need for visual robotic systems
in automatic assembly and packaging lines. The proposed RV-GHT method addresses the
challenges present in current GHT methods of low overall efficiency and poor accuracy
when dealing with shape distortion.

Pixel pairs with a constant slope difference are used to index the R-Table. A new,
reduced-size R-Table was proposed, which has only five columns. This is an improvement
on the data storage, for example nine columns in the GFGHT or eight columns in the
GDP-GHT. Its rows are further compressed by a minimum point set selection algorithm.

During the detection process, an index pair search algorithm obtains a minimum
index without losing information. These schemes significantly reduce the search overhead
without losing integrity. Subsequently, a line intersection method is used to find from
the R-Table the primary centre and the corresponding rotation and scaling, which is more
robust to shape distortion than traditional methods that simply use the displacement
vectors. Then, a random back projection scheme assigns a weighting to each configuration.
The random back projection significantly reduces the number of wrong votes, thereby
enabling the overall algorithm to downsample the one-to-many mappings, obtaining a
linear gain in efficiency.

The runtime was very low compared to the other GHT algorithms, placing our method
in the state-of-the-art, simultaneously achieving a ground-breaking improvement in accu-
racy in distortion cases.

This paper targeted positioning tasks in visual robotic systems in automatic assembly
and packaging lines, where the view angle is usually set at a constant or similar point.
To benefit wider industrial applications, we will push this method to deal with 3D shape
detection where the view angle becomes a key issue, but this is beyond the scope of
this article.
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