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Abstract: The occurring growth in e-commerce comes along with an increasing number of first-time
delivery failures due to the customer’s absence at the delivery location. Failed deliveries result
in rework, causing a significant impact on the carriers’ delivery cost. Hence, the last mile is the
portion of a journey that involves moving people and commodities from a transportation hub to
a final destination, which should be an efficient process. The above-mentioned concept is used in
supply chain management and transportation planning. The paper at hand is a position paper that
aims to scrutinize the concept of driverless last-mile delivery, with autonomous vehicles, in order
to highlight and stress the challenges and limitations in the existing technology that hinder level
five autonomous driving. Specifically, this work documents the current capabilities of the existing
autonomous vehicles’ perception and cognition system and outlines their future skills towards
addressing complete autonomous last-mile delivery, as well as efficient robotic process automation in
logistics from warehouse/distribution center to hub’s delivery.

Keywords: last-mile delivery challenges; last-mile automation; driverless delivery; autonomous
vehicles; perception and cognition challenges

1. Introduction

The evolution of logistics leads to inevitable, significant changes in traditional ware-
houses, also known as distribution centers. The fulfillment and distribution approaches
change, while this is further fueled by a shift in consumer expectations, order characteris-
tics, and service requirements. This tendency is boosting the development of a new type
of warehouse that is extremely adaptable, extendable, and responsive, and that optimizes
the capabilities of man and machine in a new symbiotic relationship. Second, warehous-
ing is benefiting from technological advancements, notably in the physical/mechanical sec-
tor. Collaborative robots, augmented reality, autonomous vehicles, sensor technologies,
and the Internet of things are all coming together to create a new type of warehouse:
the smart warehouse. Specifically, a well-designed warehouse with a lean approach across its
supply chain, a so-called warehouse 4.0, can run efficiently. Furthermore, it is necessary to
have standard operating procedures that prioritize warehouse performance metrics, for the
purpose of simulation, before being evaluated and confirmed in real-world situations [1].

At the same time, automated delivery in urban areas is a cost-effective way to keep
up with the growing demand for e-commerce. Essentially, fleets of mobile delivery robots
from a node (which can be a truck on the border of a car-free area), which are in charge
of delivering goods, mail, etc. to the last mile, are an innovative way of automated
logistics that can further boost the supply chain along with the warehouse 4.0 developments.
According to the literature [2,3], several solutions are in principle possible, which range
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from fully automated mobile delivery robots to remotely human-operated minirobots fleets.
Whilst fully automated robots have the lowest operational costs (no human operator is
needed), they are harder to design and build, as they must be able to operate in crowded,
highly dynamic, and unstructured environments [4]. Such capabilities can be achieved on
the basis of a possibly expensive suite of onboard sensors and sophisticated perception,
cognition, and control algorithms. Finally, the lack of human supervision of the operation
in complex (urban) environments poses serious liability issues. The designer has to spend
extra effort to ensure that the robot does not harm the surrounding crowd and can operate
safely. Therefore, fleets of remotely operated robots balance the reduction of operating
costs and flexibility of service. Nevertheless, the remote operation of mobile systems has to
rely on wireless, long-distance connectivity [2].

This position paper analyzes the last-mile driverless delivery problem, proposing
solutions to overcome its limitations and challenges. Specifically, a complete road map to
achieve driverless last-mile delivery is the main goal of our approach. The main contribu-
tions of our work are summarized as follows:

• To summarize the most recent and relevant literature in the domain of driverless
vehicles.

• To highlight and stress the opportunities of introducing autonomous driving in last-mile
delivery.

• To reveal the technological challenges and barriers of introducing such solutions in
this domain.

• To suggest, where possible, some conceptual alterations that should take place in order
to realize true autonomous driving in urban environments.

• To link the automated logistics section with the last-mile delivery needs.

The rest of this paper is structured as follows. In Section 2, we discuss representative
related works in the field of warehouse 4.0 and the last mile of supply chain management.
In the same section, the problem formulation is also presented. Section 3 describes the
challenges of autonomous transportation. In Section 4, we analyze the robotic process
automation in logistics, while in the last section (Section 5), we draw conclusions and make
suggestions for future work.

2. Related Work and Problem Formulation

Owing to the growth of e-commerce and similar commercial activities, along with
changes in consumer habits evidenced especially in the last two years of the COVID-
19 pandemic, goods, transportation, and the freight fleet operating in cities have also
increased [3]. One auspicious way to decongest city roads of freightage relies on putting
forward optimized ways to carry out the flow of both vehicles and merchandise. This
can be done by aiming to achieve the transportation vehicles are fully loaded both ways,
something that can be realized only if innovative logistics centers are to be established on
the periphery of urban areas [5]. The transit of goods from such a center to its ultimate
destination is denoted as the last mile. In urban areas, the starting point is usually a city hub
and the final points are many urban delivery points following the door-to-door paradigm
(Figure 1).

City logistics encounter many difficulties, as the last mile tends to be the stage exhibit-
ing the least efficacy [6]. Such difficulties might be owed to:

1. The volume increase of e-commerce transportation, by means of both parcels and
deliveries [7].

2. The growingly exacting typical final consumer, who demands faster and faster
deliveries [8].

3. The customization of the flow of merchandise, which leads to lower volume dispatches
with timing constraints [9].

4. The tougher environmental regulations in urban areas [10].
5. The traffic conditions and regulations [11].
6. The economic pressure from distributors on the cost of delivery [12].
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7. The city streets’ burden, which directly affects logistics operations, is something that
does not seem to normalize over time [13,14].

Figure 1. The conceptual representation of the driverless delivery in last mile.

The above-mentioned difficulties extend beyond the realization of an optimized sorting
system [6]. Moreover, it is a task depending solely on human resources to be realized; thus,
it is normally fulfilled at standard working hours [15].

The standard way to overcome issues imposed by different factors is automatization.
To this end, autonomous vehicles (AVs) can provide solutions, i.e., to efficiently deliver
services and goods to urban dwellers. Autonomous robots have been proposed for last-
mile parcel delivery in urban areas [16]. Such novelties can improve efficacy in terms of
delivery times, cost, and environmental footprint (reduced CO2 footprint and efficient
energy profiles) [17]. Simulations considering platoons of robots have indicated that mixed
fleets are suitable for energy-efficient last-mile logistics [18]. Furthermore, robots constitute
the ideal agents for last-mile delivery, as they can conduct contactless deliveries, especially
useful in pandemic situations [19]. Shared autonomous vehicles (SAV) [20,21] are capable
of conveying people and goods to their final destination. Therefore, they are appropriate
for conducting last-mile delivery services, while it has been shown that mixed people and
goods missions tend to be on average about 11% more efficient than single-function ones
[20]. Moreover, the truck-based scheduling problem has been modeled for last-mile deliv-
ery, by optimizing good deliveries to the customers, taking into account late deliveries [15],
providing promising findings in cases of heavy congestion [22]. The authors in [23] studied
the application of platooning in urban delivery and discussed waiting times at a transfer
point and the number of platoons using a microsimulation. In the work presented in [24],
the authors discussed a system model for autonomous road freight transportation high-
lighting a structural model and an operational model focusing on system dynamics.

3. Challenges for Autonomous Transportation

The typical operational scenarios that must be addressed by autonomous vehicles
(AVs) in the context of last-mile delivery introduce major challenges, which in turn neces-
sitate advanced robotic perception and cognition methods, robust and efficient enough
to be deployed in the relevant real environments. The concept of autonomous vehicles
for logistics tasks is not a new one. We can take for example the paradigm of the JD.com
retailer, which recently realized a fleet of autonomous bots to deliver goods in a structured
environment. Although such vehicles could fulfill effectively their task, they operated in
a territory were geofencing was needed along with human supervision. This solution is
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mostly close to level four autonomous driving and also is quite far from level five autonomy.
Moreover, further to the typical autonomous driving solutions, which so far mainly deal
with navigation in well-structured streets, with clearly visible lanes and traffic signs, last-
mile delivery includes also the need for the vehicle to move in further spaces, from which
it will take the goods and at which it will deliver them. As such, the last-mile scenarios
include also the need for AVs to navigate within unstructured, possibly congested and
crowded—with pedestrians as well—spaces, while the vehicle may also need to perform
complex maneuvering actions therein, so as to park and unpark on its own. Such spaces
and navigation scenarios are rather complex, in need of highly robust and efficient methods
for scene segmentation, understanding, and prediction, as well as for robot behavior and
path planning, as further explained below.

3.1. Perception of Vehicles

An autonomous vehicle’s operation in a fully automated manner under all circum-
stances, the so-called level five automated driving level, requires a reliable and detailed
perception of the surrounding scene. Currently, most open-source software stacks and
autonomous driving companies focus on urban environments, where the existence of
consistent road marks, traffic signs, or even detailed high-definition maps are a prerequisite.
However, in order to extend the number of driverless vehicles in logistics applications, it is
necessary to overcome these requirements and ensure continuous operation through any
kinds of environment and under any environmental conditions [25]. The coexistence of
nonautonomous and autonomous vehicles in a common space introduces many challenges
and increases the importance of risk assessment modules. This leads to the need for an
autonomous system that imitates a normal driver’s behavior [26], utilizes comfort and
decreases risk situations during driving [27], and generally thrusts the public acceptance of
autonomous platforms [28].

The requirements for the perception system derive from the localization and navigation
systems that control the overall motion of the autonomous vehicle. Driverless vehicles used
in logistics applications must be able to continuously localize with high accuracy in their
environment, detect the drivable and traversable area [29], decide on the optimal paths
over structured and unstructured areas, and finally detect the delivery space in order to
complete their mission. Apart from that, a smooth interaction with humans is required
through advanced human–machine interaction interfaces.

Autonomous robotic systems are equipped with a plethora of different sensors, each
one contributing in a unique way to the overall perception system. Cost, data format and
hardware limitations are the main factors that introduce critical limitations to the perception
system. Each type of sensor must be analyzed separately; however, their combination and
how it can improve the overall performance are of great interest[30].

The key sensors in autonomous vehicles currently are: (i) vision cameras, (ii) Li-
DAR, (iii) radar, (iv) sonar, and (v) inertial measurement units (IMUs). Cameras are
found in probably all driverless vehicles for direct visualization of the surrounding envi-
ronment using high quality image data at a high frame rate, imitating human eyesight.
They diversify according to their optical field of view, narrow or wide, and their image
quality and are commonly placed around the vehicle, providing a 360° visual view. Color
information provides the essential information for traffic signs interpretation, lane markings
detection, and a detailed semantic segmentation of the surrounding scene [31,32]. However,
their main disadvantage is their degraded operation in changing illumination conditions
and their inability to provide accurate depth measurements. In Figure 2, a classic topology
of the sensors arrangement around the autonomous vehicle is graphically illustrated.
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Figure 2. Typical sensor setup for driverless vehicles with each sensor’s field of view. Radar is
denoted with blue, LiDAR with yellow, vision cameras with green, and short-range sonars with red.

LiDAR sensors provide a 3D representation of the surrounding environment through
the emission of infrared laser light beams. The resulting data from LiDAR sensors are a set
of coordinates along with the surface reflectivity information. This kind of sensor is able to
provide centimeter accuracy for long-range depth data, which is a great contribution to
perception algorithms, while their operation remains unaffected in all light and weather
conditions [33]. The increased cost of spinning LiDAR sensors was an important issue
for automotive industries, affecting negatively the mass production and data collection of
AVs [34]. However, solid-state scanning systems that have been introduced in recent years
have led to significantly decreased costs and improved accuracy and robustness [35].

Radar sensors are a key component of a driverless vehicle’s sensor suite [36], due to
their low cost in mass production and their ability to provide accurate depth measurements
over long distances. This allows the operation of high-speed vehicles with improved
collision avoidance systems, independently of the weather conditions. However, they are
not able to provide information-rich data that will improve other tasks, e.g., semantics,
in perception systems. Their operation principle is based on radio waves emissions and the
calculation of their return time, in order to estimate the distance, angle, and velocity of the
obstacles detected.

Regarding low-speed tasks of autonomous vehicles, such as parking and maneuvering
in narrow areas, sonar sensors are suitable for estimating the surrounding free space.
They can reliably detect large objects made of solid materials in short distances through the
emission of sound pulses and the reading of the echoes, while maintaining the cost at low
levels.

Inertial measurement units are an integral part of modern autonomous vehicles.
They make use of accelerometers and gyroscopes, which can be fused with GNSS data when
they are available. Through the continuous and reliable six-DOF movement information,
the vehicle can estimate its position and orientation at all times, even in GPS-denied
environments or when other localization modules fail to operate. The main drawback
of IMUs is the error accumulation over time due to sensor drifting along with their low
accuracy. Such problems are mostly tackled through the measurements’ filtering using
estimation algorithms (e.g., Kalman Filter).
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The aforementioned sensors always have an overlapping field of view, allowing a
better understanding of the environment through different data representations. An essen-
tial component for such vehicles becomes the sensor fusion module, which is responsible
for the fully accurate knowledge of the relative placement between the sensors. Online
calibration must be available, in order to ensure that the sensors will always report accurate
data [37]. Sample data of multiple sensors with common FOV are shown in Figure 3.

(a) (b)

Figure 3. Sample data from an autonomous vehicle equipped with an RGB stereo camera and a
LiDAR sensor. (a) LiDAR points projected on the RGB image plane, providing sparse but accurate
measurements. (b) Depth image coming from a stereo camera, providing dense depth measurements.

3.2. Cognition of Vehicles

To enable autonomous last-mile delivery for logistics tasks, AVs will also need to
have advanced cognitive capabilities that will regulate their navigation behavior [38],
their adaptation to unexpected situations, and their safe operation in urban human-
populated environments. The existence of remote human operators that can intervene and
handle dangerous situations is currently required for automated vehicles that participate in
last-mile delivery services as well as in other logistics tasks (e.g., the Hail robotaxi [39]).
Ideally, there would be no severe consequences if an AGV completes its mission through
remote control, apart from a minor time delay. However, the coexistence with the surround-
ing traffic actors, pedestrians, and vehicles requires that any malfunction be solved directly
and do not affect the traffic flow. Moreover, companies aim to decrease as much as possible
the remote-operator-to-fleet size ratio. This indicates that driverless vehicles that undertake
delivery tasks should achieve level five autonomous driving, based on which the vehicle
can operate in any road network and under any weather conditions [40].

However, the existing vehicles are only endorsed with advanced driver-assistive sys-
tems (ADAS) that can reach up to level three autonomy involving capabilities such as
collision avoidance, emergency braking systems, departure warning, and lane-keeping
assistance, all supervised by the actual driver. To reach level five autonomy, there are signif-
icant barriers that need to be overcome concerning, apart from the perception limitations,
the cognitive functionalities that the future autonomous vehicles should retain. According
to the Society of Automotive Engineers [41], level five AVs will be a new type of vehicle
with autonomous driving capabilities that can handle different scenarios, equipped with
self-configuration and self-healing capabilities [42], while enabling social interaction with
their users.

The cognitive challenges that autonomous vehicles should tackle to reach level five au-
tonomy can be better highlighted if we may juxtapose them with normal drivers’ cognitive
behavior. A normal driver is capable of navigating and routing in a congestive urban envi-
ronment given a map (typically provided by an application integrated into the infotainment
system of the vehicle) and approximate GPS measurements to localize the vehicle’s location
on this map. However, this is only high-level information and the drivers’ perception
and cognitive functionalities close the loop of efficient driving by addressing hundreds of
peculiarities that involve vehicle maneuvering and local navigation behaviors that comply
with the highway code, ethical, and societal rules. The highway code comprises the set of
information, regulations, and guidelines for all road users, in order to promote road safety.
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3.2.1. Availability of High-Definition Maps

For autonomous vehicles, such maps are typically called high-definition maps [43]
and have been introduced together with autonomous vehicles, as a necessary infrastructure
component for reliable navigation. They describe a predefined area with high fidelity,
including all traffic marks, available lanes, and barriers (see Figure 4). Through this infor-
mation, a vehicle is able to localize and safely navigate even in high-traffic areas, but this
creates more limitations for the vehicles. The selected area must be already mapped from
previous vehicles and any changes in the environment must be reflected in real time on the
HD map information. In order to deploy autonomous vehicles anywhere, new innovative
ways must be introduced that do not depend on the information of predetermined maps.

The high-level behavior planning and navigation of autonomous systems rely on GPS
sensors for rough position estimation in such maps. Imitating a real driver who is using
Google Maps for reaching an unknown destination, autonomous vehicles make use of
online map applications in order to receive a route estimate given their initial GPS location
and destination. Obviously, this information is not enough and the perception along with
the local path-planning modules are responsible for the route execution [44].

(a) (b)

Figure 4. (a) Sample HD map used for autonomous driving with detailed representation of every
traffic mark (Poggenhans et al. 2018). (b) Sample map from OpenStreetMap, providing rough
information on the road information.

3.2.2. Limitations of GPS-Based Localization

GPS-based solutions with precise point positioning corrections cannot guarantee
the stability of autonomous systems [45]. Underground passageways and GPS-denied
environments are areas that cannot be supported by GNSS solutions. Even with the optimal
localization accuracy from such solutions, perception systems must always have a higher
priority in the final decision-making of the vehicles, due to unprecedented situations that
exist in real-world environments and the sparse GPS reception in specific areas. This is to
stress that GPS-based localization on high-definition maps can be used for approximate
vehicle positioning and can be part of global trajectory planning. To address this challenge
closed-loop perception systems should operate constantly in order to improve the vehicle’s
local positioning.

3.2.3. Challenges in High-Level Mission Planning and Decision-Making

High-level mission planning for autonomous vehicles dedicated to last-mile delivery
concerns several functionalities that among others involve: vehicle parking in predeter-
mined position for merchandise pick-up, global path planning that optimally addresses
efficient multiple delivery targets by solving the routing problem, vehicle’s arrival at the
delivery point, and even communication through advanced human–machine interaction
interfaces for the package delivery [46]. Such cognitive functionalities should be adaptable
to cope with dynamic changes in the environment (blocked roads, extreme traffic condi-
tions, etc.) ensuring driverless vehicle self-learning and reorganization. HD maps and
GPS are used for the global path planning and replanning while optimization methods
attempts to connect all the subordinate routes and tasks given the uncertain perception
input. To this end, the state-of-the-art perception modules of autonomous vehicles rely on
learning-based methods that are highly connected with the kind of data that have been
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used during the training procedure. Even though many publicly available datasets that
contain a great diversity of road scenes have been introduced lately, and autonomous
driving companies continuously update their data through testing in real-world environ-
ments, there is no guarantee that an undefined scenario may not be presented during the
operation of driverless vehicles [47]. Consequently, the generalization of deep learning
methods is of high priority in the development of such systems, while having the option
for remote support and/or teleoperation of certified personnel, until a fully safe operation
is guaranteed. In addition, the understanding and generalization of revisited areas, i.e.,
the so-called loop-closure detection [48], can further improve the vehicle’s localization on
the map, reinforce the knowledge of the vehicle regarding its surroundings, and can be
used for future routing based on past experiences, thus improving even more the last-mile
delivery services.

3.2.4. The Complexity of Behavior Planning for Autonomous Vehicles

The behavior planning concerns a real-time vehicle’s reaction based on the spatiotem-
poral input obtained from its perception system. This involves real-time obstacle avoid-
ance respecting at the same time the highway code, the detection of pedestrians, and the
assessment of the situation for their safe avoidance or for granting them a priority, the un-
parking and parking in predetermined spots, or the safe response in congested situations.
More precisely, several vehicles are already equipped with autonomous valet parking
enabling them to park and unpark safely in structured areas, such as parking lots [49].
However, these methods rely on visual input, which, even when fused with sonar mea-
surements, are prone to errors in dynamic illumination conditions and operate well only in
indoor parking lots. Autonomous vehicles in last-mile delivery should be able to detect and
park in their dedicated delivery spot, yet in situations where the delivery spot is blocked
or not well defined, the vehicle’s behavior adaptation system should compensate for such
situations and infer a new, safe, and acceptable parking area in order to deliver the package.

Regarding obstacle avoidance, there are a plethora of methods to achieve this challenge
according to [50]. Most motion planning approaches take into account the obstacles for a
given state at a specific moment [51], without considering the future and past states of the
surrounding dynamic objects, leading to an open-loop system that does not receive feedback
from the rest of the traffic actors and operates for discrete time moments, regardless
of the previous motion planning estimates. There are also other methods that employ
the state lattice planner approach, which takes into consideration parameters from the
dynamic environment [52], yet their increased complexity, when loaded with thousands
of observations, can render such methods insufficient for real-time inference. Pedestrian
detection, motion intention, and reaction have been extensively studied in the past decades
for autonomous vehicles’ safe navigation [53].

Machine-learning-based methods have been utilized on LiDAR [54] as well as on image
data ([55] that provide accurate measurements in real time, supporting multiple pedestrians’
detection in a single frame. However, such approaches are very computationally expensive
and considering that this module should operate constantly along with other vital systems
of the vehicle, e.g., localization, control, map update, object detection, in some cases, the
performance can drop or the utilized computational unit can dramatically increase the costs
of such solutions. An alternative could be the utilization of multitask neural networks,
that are able to extract multiple inference results using a common network architecture
[56]. Such approaches commonly use shared blocks for feature extraction and employ
separate decoders for the inference of each different desired output. The advantage of
using these techniques is the reduction of computational cost and inference time, due to the
shared weights, along with the end-to-end training of multiple tasks in a single model. One
limitation on this is the absence of such complete publicly available datasets that retain
multimodal and multipurpose contextual information, while the recording and annotation
of such hyperdatasets is time-consuming and laborious work. Self-supervised networks
have been introduced in order to replace the need for labeled data, while achieving the
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same efficiency [57], but the current methods still require great advances for fulfilling the
needs of driverless vehicles.

3.2.5. Delivery with Distributed Autonomous Vehicles

The existence of multiple driverless systems in the same environment has intro-
duced the term connected vehicle technology [58]. Vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I) and vehicle-to-everything (V2X) technologies are the most common
technologies present in modern vehicles, which allow the information exchange with other
connected operating vehicles and infrastructure sensors, such as traffic congestion, traffic
light status, etc. The development of such technologies presents great improvements for
the entire traffic network and each vehicle independently [59]. Vehicles’ routes can be
optimized in real time in order to reduce traffic congestion [60], notify vehicles of danger-
ous weather conditions, and even further reduce the total energy consumption from each
vehicle by using smoother and synchronized driving motions.

4. Robotic Process Automation in Logistics

According to Section 2, the last-mile delivery refers to the transportation of goods
from a warehouse or distribution center to their final destination. Hence, some processes in
a warehouse or distribution center should be automated. Warehouse automation consists
of a range of complexity levels; to avoid repetitive operations, basic automation employs
planning, machinery, and transportation, while artificial intelligence and robotic systems
are used in advanced technologies. Hence, several processes in an intelligent warehouse
should be automated to address autonomous goods transportation in the entire supply
chain. The types of warehouse automation are as follows [61]:

• Simple warehouse automation: using basic technology to aid employees with tasks that
would need more manual work otherwise (for example, a conveyor or carousel can
transport products between two warehouse locations).

• Warehouse system automation: activities and procedures are automated using devel-
oped AI methods.

Many distinct types of warehouse automation exist due to the wide range of ware-
house capabilities accessible. Warehouse automation aims to eliminate human labor and
speed up processes from receipt to shipping. Hence, goods-to-person (GTP) fulfillment
is one of the most common ways for improving efficiency and reducing congestion.
This category includes anything from conveyors to carousels to vertical lift systems.
When implemented effectively, GTP systems have the potential to double or triple ware-
house picking speed. Moreover, automated storage and retrieval systems (AS/RS) are
automated systems and equipment for storing and retrieving materials or items, such
as material-carrying vehicles, tote shuttles, and miniloaders. In high-volume warehouse
applications with limited space, AS/RS systems are frequently used. Automated guided
vehicles (AGVs) utilize magnetic strips, cables, or sensors to navigate a predetermined
path across the warehouse. AGVs are a type of automated guided vehicle. AGVs can only
be used in big, straightforward warehouse locations with this navigation scheme. AGVs
are not a good fit for complex warehouses with a lot of human traffic and limited space,
whilst AMRs use GPS systems to determine effective courses within a warehouse, making
them more versatile than AGVs. Because AMRs use current laser guidance systems to
identify obstructions, they can safely handle dynamic settings with a lot of human traf-
fic. Furthermore, the voice-directed warehousing activities, also known as pick-by-voice,
are carried out utilizing speech recognition software and mobile headsets. The technology
creates efficient pick-up routes to instruct warehouse staff where to pick up or put away a
product. This solution eliminates the need for portable tools such as RF scanners, allowing
pickers to concentrate on their work in a safer and more productive way [61].

Furthermore, many companies use automated sortation systems for receiving, pick-
ing, packaging, and delivering orders in order fulfillment, for example, radiofrequency
identification (RFID), as depicted in Figure 5. The robotic equipment and systems are used
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to assist individuals with warehouse responsibilities and operations in this type of ware-
house automation. For instance, self-driving mobile shelf loader robots lift product racks
and move them to human pickers for retrieval and sorting. Finally, advanced warehouse
automation uses automated warehouse robots and automation technologies to replace
labor-intensive human techniques. This automated process assumes that the fleet of robotic
forklifts navigates a warehouse using advanced AI, cameras, and sensors and transmits
each forklift’s location [62].

Figure 5. The concept of RFID-based warehouse management system.

The development and adoption of automated intelligent systems in a modern WMS
is very crucial for the monitoring/tracking of goods within the supply chain, including
the transition between different storage nodes and distribution points. The industrial
Internet of things (IoT) contributes to the automation of processes throughout the supply
chain. In this regard, RFID-IoT plays a critical role in assisting supply chains in collecting,
locating, improving, and optimizing supply chain processes in dynamic environments.
In addition, RFID-IoT also allows the interconnection between devices and interface be-
tween the environment and humans. The advent of the Internet of things (IoT) technology
was aided by RFID’s improved identification and WSN’s pervasive computing. The pri-
mary goal of the Internet of things (IoT) is to create a large network by combining numerous
sensor devices such as RFID, a global navigation satellite system (GNSS), and a network to
offer global information exchange. RFID and WSN are the IoT’s essential technologies, with
RFID converting physical things and the environment into digital data and WSN providing
dispersed and pervasive wireless systems. Furthermore, RFID’s superior sensing capability
and WSN’s high ubiquitous capability are combined to create a globally networked object
that can be discovered and exploited as a resource in an IoT network (RFID-IoT). RFID-
IoT has improved device interoperability across a wide range of applications, and it is
driving the industrial revolution, particularly in supply chain management. Figure 5 graph-
ically illustrates the concept of the RFID-based warehouse management system. Hence,
the automation of the processes from the stage of storing them within the warehouse or
the city hub contributes to the achievement of the last mile challenge. Hence, several
processes in intelligent warehouses should be automated to address autonomous goods
transportation in the entire supply chain. Moreover, many technologies that contribute to
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the automation of processes within warehouses are common and adopted by autonomous
vehicles that achieve delivery at the final point, for example, the autonomous navigation of
AGVs or AS/RS, or human–robot interaction.

5. Discussion

Level five autonomy vehicles should be capable of driving on any mapped road
independently of whether a human driver steers the vehicle or not. Should the final
destination be determined, the vehicle will be able to locomote towards it and deliver
any passengers or goods. The vehicle will be self-managing, in the sense that it should
accomplish any scenario by its own means and perform the whole driving task without
any human intervention, i.e., it should competently respond to any unexpected situation
on its own. Notwithstanding the dust being kicked up concerning fully autonomous cars,
level five autonomy is still some time away from entering our cities. That is, the existence
of automated vehicles along with pedestrians and other vehicles (either autonomous or
not) can cause severe conflicts in the normal flow of traffic in urban scenarios. Even the
escalation process may lead to a delay that will create an uncomfortable situation for the
rest of the people that are involved in such scenarios. For instance, an AGV crossing
an intersection interferes with multiple traffic actors and any malfunction that is not
directly solved is a problem affecting everyone and not only for the goods’ transportation.
In addition, companies that deploy such automated vehicles in order to optimize their
benefits aim to reduce as much as possible the remote-operator-to-fleet size ratio, ideally
making this ratio equal to zero. For these reasons, the current technological solutions on
automated delivery vehicles require the existence of remote operators that can intervene
and cope with dangerous or unexpected situations.

These reasons create the need for level five autonomous systems, and even though
they cannot be deployed at this time, they will be a reality for last-mile delivery ser-
vices, once the issues that are mentioned above have been solved. However, in order
for such systems to be deployed, accompanying technologies need to be developed.
That being said, the benefits of deploying level five autonomy include the vehicles’ contin-
uous optimization of their own route, conditioned to their current state and their environ-
ment. In order accomplish that, a real-time expert system for monitoring traffic and weather
conditions is essential. Such a system should include predictive models about the evolution
of the traffic in the areas the AGV is going to move. Decision-making intelligent systems
will enable the vehicle to dynamically reroute, on its way to deliver the last mile, thus
saving operating time and fuel. In turn, such a continuous optimization will have a positive
impact not only on enterprise’s revenues, but it will contribute to reduce congestion on city
streets and, subsequently, will reduce the overall CO2 footprint.

6. Conclusions

Urban logistics has been more prevalent in recent years, due to the market digitization
and the subsequent increase in online sales. However, there are a number of externalities
associated with last-mile logistics, and researchers and businesses are constantly looking
for ways to increase their efficiency, both by relying on conventional approaches and by
turning to recently developed methodologies connected to artificial intelligence. In this
paper, the conceptual approach to the challenges and solutions of driverless last-mile de-
livery was presented. Notably, a summary was provided of the key scientific approaches
formulated by researchers in recent years to improve the performance of urban logistics,
focusing on both established operational research techniques and state-of-the-art machine
learning methodology. The further advancement of autonomous vehicles’ perception and
cognition capabilities that will enable them to operate in urban environments and to cope
with encountered challenges is essential to increase automation in last-mile delivery. Smart
data processing and the handling of the AVs’ perception system should be combined
with efficient machine learning strategies, e.g., multitasking learning algorithms that will
relieve the computation burden of the AVs and will enable an efficient reuse of data knowl-
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edge with fewer resources. In the cognition domain, synergistic robotic and behavioral
planning should be applied to enable autonomous agents to rapidly exchange and share
information, in which 5G technology is also anticipated to contribute, in order to cope with
complex navigation and delivery missions in urban and unstructured environments with in-
creased traffic, human congestion, and unexpected situations. Attention to the safe, reliable,
and ubiquitous connectivity of such technological domains should be applied. Finally,
another challenge constitutes the interconnection of the current robotic process automation,
which is already at a significant technological level, with autonomous vehicles such as
trucks, robots, etc., which will contribute to the seamless integration of these technologies
in logistics and will effectively contribute to the robustness and performance increase of the
supply chain by ensuring the prompt transportation and delivery of goods. Concluding,
it should be stressed that the impact of this work is to concentrate the attention and, hence,
the research efforts of scholars towards the weaknesses of robotic perception, cognition,
behavioral navigation, and supply chain organization where major flaws and limitations
exist so as to expedite the introduction of level five driverless vehicles in unconstrained
urban and rural environments.

Author Contributions: Conceptualization, V.B., K.T., D.G., I.K., D.F. and A.G.; methodology, V.B.,
K.T., D.G. and I.K.; validation, A.G. and D.T.; writing—original draft preparation, V.B., K.T., D.F. and
I.K.; writing—review and editing, V.B., K.T. and I.K.; visualization, V.B., K.T. and A.G.; supervision,
A.G. and D.T.; project administration, A.G. and D.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AGVs Automated guided vehicles
AS/RS Automated storage and retrieval systems
AVs Autonomous vehicles
GNSS Global navigation satellite system
GTP Goods-to-person
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