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Abstract: The crack fault has an important influence on the vibration characteristics of the trans-
mission system. This paper is devoted to analyzing fault mechanism and dynamic characteristics
of transmission with gear crack, which provides the basis for crack diagnosis and monitoring of
helical gear in two-stage transmission system. For this purpose, an improved calculation method of
time-varying meshing stiffness with crack fault is proposed considering the axial force of the helical
gear. The influence of crack depths and angles on stiffness is analyzed. Based on this, the dynamic
model of the two-stage helical gear transmission system is established using the lumped mass method.
The influence of crack parameters on the characteristics of the transmission system is studied. In
order to better diagnose the crack fault of the helical gear, the statistical index in time domain is
calculated and the sensitivity to crack fault is analyzed. It is shown that the stiffness decreases by 25%,
and the vibration acceleration increases by 8.3% after the axial force component is considered into the
stiffness of the crack gear pair. The meshing stiffness decreases with the increase of crack depths and
crack angles. The dynamic model is verified by rig test. Periodic impact exists in the system. The time
of entering meshing of the cracked tooth and the time of complete disengagement is observed in the
residual signal. In the frequency domain, there appear sidebands on the mesh frequency of the first
gear pairs and its harmonics, the second gear mesh frequency and its harmonic frequencies. There
is a little influence on the vibration acceleration of the driven gear of the second-stage. According
to the signals in the frequency domain and the time domain, we can tell at which stage the gear is
cracked. While through the time required for the crack tooth from engagement to disengagement
completely, we can tell which gear is cracked. The sensitivity of skewness, impulse factor and kurtosis
to crack fault decreases successively. The results provide theoretical basis for crack fault diagnosis of
a two-stage helical gear transmission system.

Keywords: crack fault; stiffness; helical transmission; dynamic model; vibration characteristics;
fault diagnosis

1. Introduction

A helical gear transmission system has the characteristics of smooth transmission,
strong bearing capacity and high speed. It has been widely used in aerospace, ships,
automobile transportation and other fields. It is shown that gear faults account for 60% of
the transmission faults [1]. Driven by motor directly, the gear working in the transmission
system of pure electric vehicle bears high-frequency alternating load, which is prone to
crack failure. Analysis of the vibration characteristics of cracked gear provides a theoretical
basis for the diagnosis of crack fault. The accurate calculation of time-varying meshing
stiffness is the key to dynamics analysis. Therefore, the calculation of helical gear meshing
stiffness accurately with axial force is considered important. The influence of a crack on
the vibration characteristics of a two-stage helical gear transmission system is of great
significance to the fault diagnosis of helical gear.

There are several methods to calculate the stiffness of helical gears. The finite method
is more accurate, but refined by the mesh accuracy, the calculation speed is relatively slow.
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In some systems [2], using the analytical Hertzian model for contact deformation and FEA
simulation for the bending and foundational deflection to get a more accurate stiffness
in dynamic model. The analytic-FE method combines the analysis method and the finite
method more accurately and saves time, but it is slightly complex for some dynamic model.
The analytical method is simplified, with a lower accuracy, but it is fast. The calculation of
the gear stiffness using potential energy method was proposed first by Yang and Lin [3]. In
the method, the gear considered was a cantilever beam with variable cross-section. The
elastic deformation of the gear included Hertz contact energy, bending deformation energy
and axial compression energy. The shear deformation was also considered by Tian [4].
The foundation deformation formula was derived by Sainsot [5] and the deformation was
included in the calculation of gear stiffness. In the above assumptions, the cantilever beam
was from the base circle. When the root circle of the gear was larger than the radius of
the base circle, the energy and deformation between the root circle and the base circle
was ignored. To solve this problem, the stiffness calculation formula with a different
radius of root circle and base circle was derived [6]. The error of meshing stiffness of gears
with different number of teeth was reduced compared with the finite element calculation
result. A cantilever beam model starting from the root circle was proposed by Ma [7] of
Northeastern University. The accurate transfer curve between the tooth profile and the
root circle was studied rather than considering the size relationship between the root circle
and the radius of the base circle. Compared with the previous method, the calculated
stiffness is closer to the finite element calculation result. After that, an improved calculation
method for the helical gear was proposed [8]. With the action of axial force considered, the
meshing stiffness of the helical gear was calculated [9-12]. Yan [13] calculated the meshing
stiffness of the helical gear using the connection of the contact line method and the slice
method. Zhang [14] calculated the meshing stiffness of helical gears using the FE-analytical
slice method. Yang [15] improved the stiffness calculation of helical gears considering the
flexible deflection and the clearance. Huangfu [16,17] improved the stiffness calculation
method of helical gear and calculated the stiffness of helical gear with a space crack. Lin [18]
studied the meshing stiffness of helical gears with crack faults.

The gear transmission system mainly consists of gears, bearings and shafts. The gear
transmission system was regarded as a single degree of freedom system. Based on the
impact theory, the excitation generated by the meshing impact was calculated. It was not
until 1950s that the gear meshing transmission model was equivalent to the spring-mass
model [19] for the first time. The one DOF model of pure torsion was established. In
1991, Kahraman and Singh [20] established a 3 DOF model considering the coupling multi-
degree-of-freedom model and studied the influence of tooth clearance on it. Brethee [21]
established an 8 DOF model considering the influence of motor, load and bearing. Chen [22]
established the dynamics model of high-speed locomotive vehicle and gear transmission
with crack faults.

Meng [23] established a dynamic model with the first-level spur gear cracked. The vi-
bration response of the crack failure was analyzed by segmental stiffness method. Chen [24]
developed the dynamic model and analyzed dynamic characteristics of a two-stage plan-
etary gear transmission with cracked gear. The oil lubrication of bearing is analyzed in
the literature [25]. An accurate dynamical model of gear systems was established [26].
Considering the eccentricity, Esayed [27] established modified helical gear models. A
lumped element model was developed considering meshing stiffness and backlash [28].
Wang [29] established a distributed helical gear dynamic model with error tooth profiles.
Yan [30] achieved tooth surface optimization by analyzing the dynamic characteristics of
helical gears. Jiang [31] studied the helical gear dynamics model considering the friction.
Wei [32] studied the calculation of time-varying meshing stiffness and dynamic character-
istics of a two-stage helical gear system based on potential energy method. Liu [33] used
the energy method to calculate the meshing stiffness and developed a 16 DOF model of
gear-bearing-rotor using the lumped mass method.
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The existing literature mainly focuses on spur gear cracks and planetary gear cracks.
However, there are a few studies on the dynamics of a two-stage helical gear transmission
system with crack failure considering axial force. In this paper, a calculation method of
meshing stiffness of helical gear with crack fault considering the axial force and the crack
fault is proposed. The lumped mass model of a two-stage helical gear transmission system
with gear cracked is established. The influence of time-varying mesh stiffness and trans-
mission error on the dynamic characteristic of gears is studied. The time-frequency signal
of vibration acceleration of helical gear is obtained and compared with the experimental
results. The influence of crack parameters of helical gear on vibration characteristics of
the two-stage transmission system is analyzed. Considering the axial force in the stiffness
model, the impact amplitude of the cracked gear vibration acceleration is 25% larger. This
is helpful to realize the diagnosis of crack fault. There appears sidebands around the
first mesh frequency and the second mesh frequency and their harmonics. However, the
amplitude of vibration acceleration of driven gear on the output shaft changes a little when
the driving gear on the input shaft is cracked.

2. Calculation of Time-Varying Meshing Stiffness of Helical Gears with Crack Fault
2.1. Computational Formula for Helical Gears with Crack Fault

Figure 1 is the force analysis diagram of helical gear. The axial force in helical gear is
an important component of the meshing force, and it can be expressed as:

F, = Fcosay, sin 1

where &, is the normal pressure angle, f3 is helical gear helix angle. The method of time-
varying meshing stiffness should include the axial components.

Figure 1. The force analysis diagram of helical gear.

The helical gear tooth is sliced along the tooth width, and each slice is regarded as
a variable section cantilever beam. According to the theory of material mechanics and
elasticity mechanics, the calculation of helical gear stiffness should include not only Hertz
contact stiffness, bending stiffness caused by transverse force, shear stiffness and axial
compression stiffness but also the axial bending stiffness and axial shear stiffness caused
by axial force. In addition, the fillet-foundation deflection should also be included. The
calculation method can be given [9] as follows:

LS LN
Wy = 50k h’/o 24U, " @
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F2 I F2
dUs=—— ke = | ——d
Us =2 = Jy 2au,™ ®)
FZ i FZ
d = ——, kye = —d 4
Uye 2dk,o’ rc o 2dU,. Z 4)
F? I F?
Uao = S kv = | 5, 42 ®)
F? LF?
Alys = Tkas, kas = 0 Tllasdz (6)
F? ELm
dUh - zdkh/kh - 4(1 o Uz)/ (7)

where F is the meshing force, dU,, dUs, dU,., dU,,, dU,s are the bending deformation
energy, shear deformation energy, axial compression deformation energy, axial bending
deformation energy and axial shear deformation energy of each slice, respectively. ky, ks,
kre, kap, kas, are the equivalent bending, shearing, axial compression, axial bending and
axial shear stiffness, respectively. kj, is the Hertz contact stiffness, G is the shear elasticity
modulus, the expression is given [34] as:

E

¢ =379 ®)

where E is the elasticity modulus, v is the passion ratio, L is the length of the contact
line length.
The total energy of a slice of a pair of meshing teeth in a helical gear pair is:

_LZ_EZ(LJ’_L_'— 1 + 1 + 1 +L+L+i+ 1 + 1 + 1 ) (9)
-~ 2dk 2 Vdky o dks o dkeq o dkgp o dkea o dky o dkyy o dkg o dkye o dkgy o dkes

dau

where dk is the total meshing stiffness of a slice unit, 1, 2 represents the driving gear and
driven gear of the first-stage, respectively.

Besides tooth deformation, the fillet-foundation deflection also affects the meshing
stiffness, so the gear fillet-foundation stiffness should be also considered [5]. The calculation
method and parameter selection of fillet-foundation stiffness have been mentioned in the
literature [5], so it is not described here. Therefore, the comprehensive meshing stiffness of
a single pair of teeth by integrating Equation (9) is described as:

L V/CLUNTE I R S R S T R .
ken kst ket kot kst kn o ki ke ke kap ka2 kg kg

) (10)

Figure 2 is the schematic diagram of slicing method. When more than one pairs of
teeth are engaged, by adding stiffness in Equation (10), the stiffness of multiple pairs can
be written as:

N
1 1 1 1 1 1 1 1 1 1 1 1 1
k=Y 1/(—+—+ e et = —+ (11)
i; (kbli ksii* kreti Kapri o Kasti knio Keoi o Ksoi o kre2i o Kapoi Kas2i o kg k fZi)

where the N is the number of gears engaged at the same time, i is the ith pair of gears engaged.

During the working process of helical gear, cracks may occur due to the excitation of
external motor, road surface and other parts of the transmission system. With the change
of meshing angle, the depth and angle of cracks will change and crack propagation will
occur. As the meshing stiffness of helical gears changes, the dynamic response of gear
transmission system will change.
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Figure 2. The schematic diagram of slicing method.

When the root crack of helical gear occurs, the bending stiffness and the shear stiffness
caused by radial force, and the axial bending stiffness and the axial shear stiffness caused
by axial force will change. While the axial compression stiffness caused by radial force
remains unchanged, and the Hertz contact stiffness remains unchanged.

According to the relationship between the radius of the root circle and the base circle
of the gear pair, the stiffness calculation of crack fault is discussed in two cases; only the
process in case of 71 < 747 is deducted in this paper.

Figure 3 is the schematic diagram of helical gear transverse face with crack fault.

Figure 3. Schematic diagram of helical gear transverse face with crack fault.

We can see from the Figure 3 that when ry; < 7y, if the operating point of F is inside
the crack affected zone, then the cross-section area is:
hy +heo)L,xo <d
A= ( at x2) X2 = dg (12)
thzL, Xy > d,

where h;, is the distance from crack termination point to tooth centerline, x; is the distance
from meshing point to root circle, d, is the distance between the end point of the crack
on the tooth and the tooth root circle, h,, is the distance from the contact point to tooth
centerline, and L is the contact line length. When the meshing stiffness of helical gears is
calculated by slice method, the contact line length of each slice is dz. The h,; and hy; are
given as:

hy = rp;sinay — I siny (13)

h

- +sinal,0 <x; <d
x2:{ rhl[gaz ) cos o + sin a] xp < dg (19)

rp1[(ap — ) cosa + sinal,d, < xp < d;
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where d; is the distance from apex circle to root circle.
The inertia moment can be given by:

o Bt he)’Lxs < d, .
x2 1 3 ( )
15 (2hx2)°L, X2 > d,
_ %(ha + hxz)(dZ)B, xy <d,
Ly = 1 3 (16)
15 (2hy2) (dz)”, x5 > d,

Figure 4 is the schematic diagram of a cracked gear tooth with slice method.

Contact
lige

Figure 4. The schematic diagram of a cracked gear tooth with slice method.

We can see from Figure 4 that when cracks occur in helical gears, the axial compression
stiffness is not affected, so the axial compression stiffness is calculated [34] by:

2

1 /XF sin” ay,
- = dx 17
dkrcl xQ EAx 2 ( )

where A, is the cross-sectional area at the coordinates.
However, the bending stiffness and shear stiffness caused by radial force as well as
the axial bending stiffness and axial shear stiffness caused by axial force are affected.
These parameters are put into the calculation formula of the stiffness, then we get:

1 xp [cos ay cos B(xp—xz)—sin ayyp)>
Ty — = /5 %0 FI,, dx;

o f [cos oy, cos Blry (ap+aq) sinay+ry cos g —rpy (a—ap) sinw—ry; cos lX]*Sin ay (11 sin ap —I sin )]
E/12(ry; sinap —1gq siny+ry7 [(22 —a) cos a+sin a]) (dz)

rp1(ap — &) cos wda (18)

+f ag cosa,,Cosﬁrbl[(az—&-al)51nu¢1+cosa1—[(a ) sina—cos &) — 51nanrb1[(u¢2+oc1)cosu¢1 sina])?

E/12(2rp [(a2—a) cos a+sinal])> (dz) Tp1 (0‘2 — 06) cos adn

where g is the involute expansion angle of the point corresponding to the crack termination
point G, and it is also the critical angle of the crack affected zone. Debug the program to
make the following equation in the critical condition, then we can get the critical angle «,.

rp1 (a2 4 ag) cos g + Iog siny = 1y sinay + rpy sinag (19)

Using the same method, the shear stiffness caused by radial force can be obtained as:

1 _ prxr 1.2 cos? ay, cos? B
dk€1 - IXQ GAXZ dx
_ f g 1.2 cos? an cos? B(1+v)ry; cosa(ay— oc)d (20)
- Erpy[(ap— a)cosochsmuc](dz)
+f 21.2 cos® ay, cos? B(14v)ry; cos a(wy—a) du
E(rpy sinag—Igq siny+ry; [ (a2 —a) cos a+sin al) (dz)
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The axial bending stiffness caused by axial force is written as:
1 _ X [cosan sin B(xp—1x2))? dx,
dkahl XQ Elyz
g 6{cos2 oy sin® Bry 2 [(wy +ay) sin &g +cos aq +(ap —a) sina—cos uc]z } (a—ap) cos o du (21)
! E(dz)®[sin a+(ap — ) cos ]
2 in2 Ry 2 : ) i 2
+fnc2 12 cos* ay, sin” Bryy [(uc1+ac2).smucl+co.s a1+ (ap : o) smzx3 cos ] 7’b1(“ . “2) cos adu
E[rp; [(ag—a) cos a+sin a]+ry7 sinap—Ic siny](dz)
The axial shear stiffness caused by axial force is given by:
1 prxp 2%1.2cos? &y, sin? B(1+v)
dkasl - XQ EAXZ dxz
. 1.2(14-v) cos? &y, sin? B
f—vq Erp [(ap—a) cos a+sin a](dz) Tp1 (& ( (x) cos adu (22)

+f 2%1.2(140) cos? &y, sin? B (

E(rpy sinap—Icq siny+rp; [(ap—a) cos a+sina]) (dz) g 2) cos adu

when the contact force is within the influence zone of the crack, the cross-section area is:
AxZ = (hu + hXZ)L (23)
and the formula for calculating the moment of inertia is:

1
Lp = 12(h o+ 1)L (24)
where L is the contact line length. When the meshing stiffness of helical gears is calculated
by slice method, the contact line length of each slice is dz.
Substitute the above formula into the stiffness calculation formula of crack fault, then
the bending stiffness caused by radial force is given by:

1 (xp [cosay cos B(xp—xo)—sina,yp]> d
dkyy — Jx ET *2
b1 Q x2 (25)

= [ Al rp1(ap — &) cos ada
&1 E/12(rp; sinag—l,1 sin y+ry; [(x2—a) cos a+sinal)® (dz)

where

A1 = [cos &y, cos B[ry cos(aq + ap) sinay + 1y cos g — 1y (@ — @) sina — 741 cos a] — sina, (rp; sinay — I siny)]? (26)

Similarly, the shear stiffness caused by radial force is written as:

1 _ [ 12sin’ay
dksl - xXQ GAX2 dxz (27)
ap 1.25in? a, (140)rp; cos a(ap —a) dn
 J—aq E(rp sinag—Ig siny+rp[(ap—a) cos a+sina])(dz)
Likewise, the bending stiffness caused by axial force can be described as:
2 in2 2
1 __ [Xp cos”ay,sin” B(xp—xp
T = Jx ) Elﬁ( Sx;
abl 0 y2 (28)

C

= sdo
f &1 E/12[rp [(ag—ex) cos a-+sin a] 7y sinay—I sin ] (dz)®

C= {cos2 ay sin? Bri; [(ag + ap) sinag + cosay — (« — ap) sina — cos a}z}rbl(tx — ap) Ccos (29)
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The shear stiffness caused by axial force is written as:

1 pxp 2¥1.2cos? ay sin? B(1+0)
dk,]s] - IXQ EAxl dx2 (30)
) 2%1.2(14-v) cos? &y, sin? B .
- fﬂxl E(rpy sinag—Igq siny+ry; [ (a2 —a) cos a+sinal) (dz) b1 (“2 0() cos adu

Figure 5 is the mesh stiffness of cracked gear pair when the axial force is neglected
and considered, respectively. The stiffness reduced 0.7 x 10% N/m after the axial force is
considered in the method. It is shown that the stiffness decreased by 25%. This is because
the axial bending and the axial shear stiffness reduces when a crack fault happens.

2. SXIORM
__2.1x10°%}
\'-E: ”-—"\ r——“\\
Z.2. 0x10%F-ac___ o Nl .y el
£ 1. 6x10%}
=
& 1.2x108F
&
28, 0x107t
the original method
4. 0x107| :
. the improved method
0,0 : : :
0. 000 0. 001 0. 002 0. 003

Time [s]
Figure 5. The mesh stiffness of cracked gear pair when axial force is considered and neglected.

2.2. Influence of Crack Parameters on the Time-Varying Meshing Stiffness

The tooth root crack of helical gear can be determined by the depth of crack on the
front I, the crack angle y on the front end face and crack length q. The influence of crack
parameters on meshing stiffness is studied by analyzing the change of stiffness values of
parameters under different values. According to the helical gear pairs listed in Table 1,
the influence of parameters on time-varying meshing stiffness is analyzed. The driving
gear speed is 3000 r/min. The tooth profile parameters of helical gear pair are shown in
Table 1. The module is selected according to the literature [35]. The Young’s modulus and
the Poission’s ratio are selected according to the value of steel in the Ansys/workbench.

Table 1. Parameters of gears.

Parameters Driving Gearl Driven Gearl Driving Gear2 Driven Gear2
Number of tooth 16 52 23 71
Normal Module (mm) 1.25 1.25 1.5 1.5
Pressure angle (°) 20 20 16 16
Young’s modulus (Pa) 2.11 x 101 2.11 x 1011 2.11 x 1011 2.11 x 1011
Poission’s ratio 0.3 0.3 0.3 0.3
Width of tooth (mm) 10 10 12 12

When the crack length g is 10 mm, the crack depth I. of the transverse face is 2.5 mm,
the stiffness is calculated. It is calculated when crack angle is 30 degrees, 45 degrees and
60 degrees, respectively. It can be seen from the Figure 6 that time-varying meshing stiffness
reduces when crack fault occurred. With the increase of crack angle, the meshing stiffness
of cracked gear decreases more seriously. When the crack angle is 30 degrees, the amplitude
decreases by 0.1 x 107 N/m.



Machines 2022, 10, 1052

9 of 25

health

E 2: 2)(108 i — - =30 crack
Ea 45° crack
v s ===-60" crack
§ 2.0x10°F
g ~_ 7 A} ! [
= 1.8x10°
O ““. ', \‘ /r
= . e o

1exid 0. 000 0. 001 0. 002 0. 003

Time [s]

Figure 6. Stiffness values at different crack angles.

When the crack angle -y at the transverse face is 60 degrees, the influence of crack depth
parameter . is studied with the crack length 4 10 mm. The results in Figure 7 show that
with the increase of crack depth, the amplitude of crack stiffness decreases more obviously.
The stiffness decreases by 2.5 x 107 N/m when the crack depth is 2.5 mm. This is because
the cross-sectional area and the moment of inertia reduces with the change of crack angle
and depth.

— health
\E‘_ 2 2)(108 B === 1.5mm crack
Z 2mm erack
I: — = =2.5mm crack
2. 0x10°
£ \\* ;
= :: \ ! \ 7
= 1.8x10%f \ / \ /
B \-\_ / ! ; rd
= 8 ~ \.

L GXI& 000 0. 001 0. 002 0. 003

Time [s]

Figure 7. Stiffness values at different crack depths.

3. Establishment of Dynamic Model

Y12, Y34 is the normal vibration displacement along gears 1 and 2, and gears 3 and 4,
respectively, and their expressions are as follows.

{ Y12 = ((X1 — X23) cosat + (yl — yzg) sina; + 1101 — 1’292) Ccos ,Bh + (Zl — 223) sin ,Bb — €12 31)
y3a = ((x23 — x4) cosat + (Y23 — ya) sinay + 3603 — r404) cos By + (223 — z4) sin By — €34

where ¢1, is transmission error between gears 1 and 2, e34 is transmission error between
gears 3 and 4. The expression of the two errors is written as:

e1n = e + ey cos(wt + ¢) (32)
e3q = e + ey cos(wt + )

where b1 is the clearance between gear 1 and 2, bsy4 is the clearance between gear 3 and 4.
The expressions of the displacement are:

Y12 — b2, y12 > b2
f(y12) =% bia, —b1a <y12 < bz

Y12 +bio, y12 < —b1p

33
Y34 — b34, Y34 > b3y 33)
f(ysa) = { bag, —bzs < y3a < bag

Y34+ b3y, y3q < —bzy
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The normal meshing forces between gears 1 and 2 and between gears 3 and 4 are:

{ Fip = kf(y12) + Cf(ylz) (34)
F3y = kf(y34) +cf (y34)

where Fy12, F,12, Fy34, Fo34 represents the components of contact force of gear 1 and 2 along
the transverse direction and axial direction, the components of contact force of gear 3 and 4
along the transverse and axial direction, respectively, and they can be expressed as follows.

{ FylZ = F12 COSs ,Bb
F1p = Fpsin By,
{ Fy34 = F34 Ccos ﬁb

Fp34 = F34sin By

(35)

The transmission system of pure electric vehicle is typically composed of motor, gear,
bearing, elastic shaft and output half shaft of the transmission system. Therefore, a 15 DOF
dynamic model of a two-stage helical gear transmission system is established in this paper,
as shown in Figure 8a. In Figure 8b, T, is the input torque of the motor, and Ty is the load
torque, representing the moment of resistance to the wheel.

The model established has fifteen degrees of freedom, including the x, y, z and 6 of
the driving gear 1, driven gear 4, the x, y, z of the gear 2 and 3 as well as the rotation of
gear 2 and gear 3. The dynamic equations are shown as follows.

The dynamics equation of the driving gear on the first level is described as:

myXy + ky1x1 + cx1x1 = Fy, cosa
mlyl + kxl]/l + Cxlj/l = Fyu sin oy
miz1 +kazi +caz1 = By,

J161 = Tp - 1’1Fy12

(36)

The dynamics differential equation of gears on intermediate shaft is given by:

(THQ + M3)5&23 + kx23X23 + Cx235623 = FylZ COoS Xy — Fy34 COS ¢t

(m2 +m3)ps + kx23Y23 + Cx23Yo3 = Fy1zsina; — Fyzgsina;

(ma +m3)2z23 + kx23223 + Ca23223 = Fo1 — Fa (37)
J202 = Fy1ora — (c23(62 — 03) + ka3(62 — 63))

J303 = (c23(02 — 03) + ko3(02 — 03)) — Fyaars

The dynamics differential equation of gear on output shaft is written as:

MyXy + KygXg + CoqXy = Fy34 COS &t
M4y + kysya + cyayy = Fyyy siney
MaZy + KxaZa + Czaz4 = Fay

Jaby = r4Fyzq — T

(38)

where x, y, z, respectively, represents the displacement in three directions, and the subscripts
represent gears 1 to 4. 0 is the torsional degree, p, g represents the driving and the driven
gear, «; is the end pressure angle of helical gear. The parameters selected of the system are
shown in Table 2.
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Driving gearl
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Driving gear2 Driven gearl

Driven gear2
Load
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Figure 8. The two-stage drive system. (a) The physical model. (b) The dynamic model.

Table 2. Stiffness and damping parameters used in the transmission system.

Parameters Value Unit
Ky, i=1,23,4 8 % 107 N/m
kyi,i=1,23,4 8 % 107 N/m
ky,i=1,23,4 5 % 107 N/m

ki, i=1,23,4 1.2 % 10° N.m/rad
Cxi,i=1,23,4 500 N/(m/s)
cyiyi=1,23,4 500 N/(m/s)
Criyi=1,23,4 500 N/(m/s)
c;,i=1,23,4 10 N.m/(rad/s)

4. Analysis of Dynamic Characteristics of Transmission System
4.1. Experimental Test

Figure 9 is the test of the two-stage transmission system. A two-stage electric drive
system test platform is built, as shown in Figure 9a. The system consists of driving motor,
two-stage helical gear reducer, half shaft, torque speed sensor, loading motor, controller,
accelerometer and so on. The transmission system parameters used are shown in Table 1.
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Driving motor Half shaft

Vibration
accelero-
meter

Transmission system Torque-speed sensor The loading motor

(@)

(b)

Figure 9. The test rig. (a) The helical gear test rig. (b) The gear with crack fault.

The accelerometer SAE30001 made in Shi’ao Technology is used in this system. The
voltage sensitivity is 500 Mv/g. The vibration accelerometer is installed at the bearing
of the two-stage drive system near the first driving gear on the gearbox. The sampling
frequency of the accelerometer used is 40 kHz. After working for 10 min, with the system
working stablely, data is sampled for approximately 2 min.

A 10 N.m torque is applied to the transmission system. The motor input speed is
set as 3000 rpm, the same parameters as the simulated. The vibration acceleration data is
obtained in the upper computer.

4.2. Analysis of the Simulation and Test Result

The dynamics model of the transmission system established in the above part is solved
using Runge-Kutta method. The improved method is used to calculate the stiffness of the
gear with crack fault and the gear under normal state. The calculated stiffness is used in
the dynamics model.

It is assumed that a crack fault occurs on a tooth of a high-speed driving gear in the
transmission system, with the parameters of 10 mm length, 2.5 mm depth, and 30 degrees
angle. Figure 10 shows the test and simulated result under normal state in time domain.
There appears regular vibration in the test and simulated vibration, and there is no obvious
impact in the vibration.
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Figure 10. Time domain diagram of vibration acceleration of the helical gear in normal state.

Figure 11 is the test and simulated vibration result under healthy state in the frequency
domain. Fourier transform is applied to the experimental and simulated acceleration in
time domain. Then, we get the data in frequency. The blue line represents the simulated
acceleration vibration, and the red line represents the test data. There are mesh frequency
fm1 of the first gear pairs, mesh frequency f,» of the second gear pairs, the harmonic
frequencies of the mesh frequency 2f1, 3f;1, and 4f,,1 in the frequency domain under
normal state. The amplitude at harmonic frequencies is smaller than that of the gear mesh
frequency fy;1 and fy;». The simulated result is consistent with the test data. This indicates
that the dynamic model is correct.

2fm1
fml test
0.2} / --------- simulated
02 \ 3fml
“lfm2 *
%‘D e 4fml
(@]
0.1
E | B im2
0.1f
0.0
0 1300 2600 3900

Frequency [Hz]
Figure 11. Frequency domain diagram of vibration acceleration of the helical gear in normal state.

5. Dynamic Characteristics Analysis of Transmission System with Crack Fault
5.1. Influence of the Crack on Vibration Response of Transmission System

Figure 12 shows the test and simulated result of the first gear under fault state. The blue
line is the simulated acceleration vibration in time domain, and the black line represents the
test acceleration vibration. Choosing 0.3 s as the analytical time, there is a small deviation
between the simulated signal and the test data. This is because there is a small deviation of
starting time between the simulated data and the test data. There appear regular impacts in
the test and the simulated vibration, and the time T is the rotation frequency. This is the time
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of the input shaft rotating a cycle. In time domain, the result of the simulated is consistent
with the test data. The amplitude of vibration is larger than that under normal state.

. test
6.0 = = = -simulated

4.0t

2.0]

0.0

il

-1.0

Acce [g]

76 0 L 1 1
0.600 0.675 0.750 0.825  0.900
Time [s]

Figure 12. Time domain diagram of vibration acceleration of the helical gear in faulty state.

In order to analyze fault signals more clearly, the difference between vibration accel-
eration in faulty state and that in normal state in time domain is defined as the residual
signal. Figure 13 is the result of residual vibration acceleration under cracked state over
time. The depth of the crack is 2.5 mm and the crack angle is 30 degrees. In Figure 13, T is
0.02 s, which is the time for a gear rotating a cycle. It is also the rotation period of the shaft
the cracked gear located on. This indicates that the periodic impact vibration is caused by
the crack fault. The impact amplitude is approximately 3 g. T¢ is 0.0030431 s, which is
the time required for the crack tooth from engagement to disengagement completely. The
t1 represents the time one gear rotating from the tooth after the cracked one. Working to
the time 2, the cracked tooth starts to enter mesh. After the time T, the cracked tooth
disengages completely. Then, the tooth after the cracked one enters meshing, starting the
next cycle from the time t3. Telling the impact time, we can deduce which gear is faulty in
the two-stage helical system.

i3
/T|T

|
—

0.62 0. 61 0. 66 0. 68
Time [s]

Figure 13. Residual vibration acceleration under cracked state over time.
Figure 14 is the vibration result in frequency domain. Fourier transform is applied to

the test and simulated data in time domain data in Figure 12. The red line represents the
test acceleration in frequency domain, and the blue represents the simulated result. There
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appears sidebands around the frequency of the mesh frequency and its harmonics, and the
zoomed plot is shown in Figure 15. The sideband frequency is the rotation frequency of the
shaft mounting the faulty gear.
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Figure 14. Frequency domain diagram of vibration acceleration of the helical gear in faulty state.
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Figure 15. The zoomed plot of Figure 14.

5.2. Influence of the Stiffness Considering Axial Force on Vibration Response with Cracked Fault

The vibration acceleration of the driving gear 1 over time in y-direction under the
cracked condition is shown in Figure 16. The gear is cracked with the crack depth of 2.5 mm
and the crack angle of 30 degrees. Figure 16a is the vibration acceleration over time with
axial force neglected. The amplitude of the impact vibration is less than 6 g. Figure 16b is
the vibration acceleration over time considering the axial force. From the Figure 16b, we
can see that there are obvious periodic impacts. The amplitude of these impacts increases
to more than 6 g, larger than that without considering the axial force. The period of the
impacts is T. The T equals to the time used by the shaft mounting the faulty gear to rotate
a cycle. The impact characteristics caused by faults in time-domain Figure 16b are more
obvious compared with those in Figure 16a. The vibration acceleration increases by 8.3%
after the axial force is considered into the stiffness of the crack gear pair. This indicates
that the characteristics of the crack fault are more obvious after considering the axial force.
This is helpful for the diagnosis of crack faults. The increased impact amplitude suggests
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that the difference between the stiffness in cracked status and the stiffness under normal
status is bigger than compared with the method without considering the axial force. This is
because bending stiffness and shear stiffness are reduced due to the crack fault without
considering the stiffness calculation of axial force, while with the axial force considered,
the deformation resulted by the axial force increases, resulting in the reduction of the
axial bending stiffness and axial shear stiffness in addition to the reduction of the bending
stiffness and shear stiffness.

6 T T

Acclg]

80. 62 0. 64 0. 66 0. 68

Time [s]
(a)
g
b T
6 L
4 F
2
ol
z of
<
-2
-1
-6
78 L L L L
0.629 (G.646 0.663  0.680
Time [s]
(b)

Figure 16. Vibration acceleration under cracked state. (a) Before improved. (b) After improved.

The acceleration of the gear on the output shaft of the two-stage gears under the
healthy and the faulty state is analyzed in Figure 17. Fourier transform is applied to the
vibration acceleration of the driven gear 4 in x direction in time domain. The influence of
the crack fault is small on the second gear of the output shaft. The acceleration vibration
amplitude of the driven gear of the second-stage at the mesh frequency is reduced only

approximately 0.08 g. There is nearly no sidebands around the mesh frequency and
its harmonics.
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Figure 17. Frequency domain diagram of vibration acceleration of the driven gear in second stage
under faulty state.

5.3. Influence of Transmission Error on Vibration Response of Transmission System

The vibration acceleration over time with different transmission errors under nor-
mal state is shown in Figure 18. The blue, green and red lines represent the vibration
acceleration in the y direction in normal state with the 0 error amplitude, 20 um error
amplitude and 50 um error amplitude, respectively. It can be seen from Figure 18 that
the vibration amplitude with the three errors is approximately 0.5 g, 4 g and 12 g, respec-
tively. With the increase of the transmission error, the vibration acceleration amplitude
increases significantly.

20.0

10.0

0.0

Ace |g]

-10.0r1

209 60 0. 61 0. 62 0.63 0. 64

Time [s]

Figure 18. Time domain diagram of vibration acceleration under different transmission errors.

Figure 19 is the acceleration signal of gearbox with different transmission errors under
faulty condition. Figure 19a shows the vibration acceleration of a cracked gear with the
crack depth of 2.5 m, the crack angle of 30 degrees and the crack length of 10 mm when
the transmission error amplitude e = 0. The periodic vibration impact caused by the fault
can be clearly observed in Figure 19a. The cracked gear starts entering meshing at the
moment f2, and at the moment ¢3, the cracked gear disengages completely. Figure 19b
shows the vibration acceleration when e equals to 20 um. The amplitude is approximately
4 g. Periodic impact exists, but it is not obvious as that when e is 0. Figure 19¢ is the
vibration acceleration over time when e is 50 um, and its amplitude is 12 g. The periodic
impact is not obvious. It shows that the vibration amplitude increases with the increase of
transmission error amplitude e, which is consistent with the conclusion in a normal state.
However, the periodic impact characteristics caused by crack faults are submerged heavily,
increasing the difficulty of the crack fault diagnosis.
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Figure 19. The acceleration of the gear with crack fault under different transmission error amplitudes.
(a)e=0. (b) e =20 um. (c) e = 50 um.
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5.4. Influence of Different Crack Parameters on Vibration Response of Transmission System

The vibration characteristics of the transmission system under different crack angles
and different crack depths are analyzed. In order to make the crack fault characteristics
more obvious, the difference between the vibration acceleration value under faulty state and
that under normal state is defined as the residual signal. This signal reduces the interference
of the transmission error on the crack fault characteristics. The residual errors of residual
errors of gear vibration acceleration at different crack angles over time is shown in Figure 20.
The red, green and blue lines show the residual signals of 30 degrees crack, 45 degrees crack
and 60 degrees crack with the crack depth 2.5 mm and the tooth length 10 mm (100% gear
root width). Figure 20a shows that there exists obvious vibration impact characteristics at
the three angles, and the impact amplitude is approximately 3 g. In zoomed plot Figure 20b,
it can be seen that the impact amplitude increases as crack angle increases.
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(b)

Figure 20. Time-domain diagram of residual error of vibration acceleration at different crack angles.
(a) The whole. (b) Zoomed plot.

Figure 21 is the residual signals of vibration acceleration at different crack depths.
Red, green and blue lines represent the residual signal of the 1.5 mm depth crack, 2 mm
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depth crack and 2.5 mm depth crack over time when the crack length of the root crack
is 10 mm, and the crack angle is 60 degrees. Figure 21a shows that the residual impact
vibration is obvious when the crack depth is 1.5 mm, 2 mm and 2.5 mm, and the vibration
impact amplitude is approximately 3 g. Figure 21b shows that the residual increases with
the deepening of the fault depth.
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Figure 21. The residual signal of vibration acceleration with different crack depths. (a) The whole.
(b) Zoomed plot.

With the increase of crack depth and crack angle, the amplitude of residual signal
increases gradually. In order to diagnose the degree of crack fault more sensitively, statistical
analysis of crack fault is needed.

6. Statistical Index Analysis of Time Domain Signal

The degree of crack failure can be evaluated by statistical indexes. The RMS, clearance
factor, peak, crest factor, kurtosis, impulse factor, skewness, shape factor and other indica-
tors of time-domain vibration signal are calculated, respectively, to evaluate the level of
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crack failure. The calculation process of the above statistical indicators has been introduced
in the literature [36], so we will not expand in detail here.

In order to reflect the degree of crack failure more sensitively, the method of percentage
of statistical indicators is calculated. The percentage can be calculated as follows:

pe =2 4 100% (39)
Xh
where x. is the value of statistical indicators in the faulty state, and xy, is the value of
statistical indicators in the normal state.

The change of percentages of several statistical indexes when the crack angles increase
is shown in Figure 22. As shown in the Figure 22, the skewness first decreases and then
increases with the increase of the angle, and the difference is the largest at different angles
among the statistical indexes. The impulse factor changes from 0 to —0.6%, which is second
only to the skewness. The value of kurtosis changes from 0 to 0.31% as the angle increases
from 0 to 60 degrees. The crest factor increases from 0 to 0.13%. The change of RMS is
similar to the crest factor, whose value changes from 0 to approximately 0.1%. The shape
factor and kurtosis factor change very slowly, almost close to 0, very insensitive to crack.
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Figure 22. Change of percentage of statistical index with different crack angles.

Figure 23 is the percentage calculation result of these statistical indicators under
different crack depths. Similar to the angle curve, the skewness is most sensitive to the
change of crack depth. The impulse factor is also sensitive to crack, varying from 0 to
approximately —0.55%. The change of kurtosis factor is weak, only from 0 to approximately
—0.1%. The least obvious is the lower shape factor, whose change is almost zero.
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Figure 23. Variation of percentage of statistical index with different crack depths.

As can be seen from Figures 22 and 23, the gap between the statistical indicators and
the normal condition becomes larger with the deepening of the fault degree. By comparing
the percentages of the above statistical indexes at different crack angles and different crack
depths, it is concluded that the skewness, impulse factor and kurtosis are more sensitive to
the crack, and the sensitivity decreases in turn. It shows that the percentage of skewness can
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be used as the judging basis for the crack evolution of the helical gear in the transmission
system. The conclusion provides a basis for fault diagnosis of crack.

7. Conclusions and Future Work

To analyze the crack influence on two levels of helical gear transmission system, the
meshing stiffness is improved. A two-stage dynamic model of the helical gear is established.
The influence law of crack parameters on the vibration characteristics is analyzed. The
sensitive degree of statistical indicators with a crack is studied in order to better implement
the two-stage helical gear fault diagnosis. The following conclusions are drawn.

(1) Considering the axial force with crack fault, the stiffness decreases by 25%. The
stiffness reduced more vigorously with the increase of crack depths and angles. The impact
amplitude increases by 8.3%. The improved method is more helpful to crack fault diagnosis;

(2) There appears periodic interval under the faulty state in time domain. Sidebands
appear around the mesh frequency and the harmonics of the first-stage gear pairs and the
second-stage gear pairs, while there is a little influence on the vibration acceleration of the
driven gear on the second-stage;

(3) The introduction of transmission error brings interference to the diagnosis of the
crack fault. Residual signal can be more useful to diagnose the crack fault of the helical gear;

(4) According to the residual signals in frequency domain and time domain, we can
tell by the gear which stage is cracked. While through the time required for the crack tooth
from engagement to disengagement completely, we can tell which gear is cracked. we can
tell the faulty gear pair of the two-stage helical gear transmission system, while through
the impact periodic analysis, we can tell which gear is cracked. This is of great importance
to the fault diagnosis in two-stage helical gear transmission system;

(5) The skewness, impulse factor and kurtosis change obviously to the crack fault, and
their sensitivity decreases in turn. They can be used for the crack fault diagnosis of the
helical gear.

The results proposed can be used for the crack diagnosis of helical gears. However,
the dynamic characteristics and data processing method used in the electric transmission
system need more efforts to investigate.
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Nomenclature

A,, the cross-sectional area at the coordinates, m?
A1 the abbreviation of an expression

b1y  the clearance between gear 1 and 2, m

b3y  the clearance between gear 3 and 4, m

C the abbreviation of an expression

Ci the torsional damping of drive shaft, N/(m/s)
cyi  thebearing damp in the direction of x, N/(m/s)
cyi  the bearing damp in direction of y, N/(m/s)

c;i  thebearing damp in direction of z, N/(m/s)
dg the distance from the end point of the crack to the tooth root circle, m
dg the total meshing stiffness of wheelset slice unit, N/m

dy the distance from apex circle to root circle
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e1n the transmission error between gears 1 and 2, m

€34 the transmission error between gears 3 and 4, m

E the elasticity modulus, Pa

F the meshing force, N

Fi» the contact force of gear 1 and 2 on the normal surface, N
F34 the contact force of gear 3 and 4 on the normal surface, N
F, the axial force, N

fe3 the rotation frequency of the output shaft, Hz

fm3 the first gear mesh frequency, Hz

fm2  the second gear mesh frequency, Hz

Fj1»  the components of contact force of gear 1 and 2 along the end face, N
F,1p  the components of contact force of gear 1 and 2 in the axial direction, N
Fys4  the components of contact force of gear 3 and 4 along the end face, N
F,3¢  the components of contact force of gear 3 and 4 in axial direction, N

g the acceleration of gravity, 9.8 N-kg ™!

G the shear elasticity modulus, Pa

i the number of the pair of gears engaged

ky the equivalent bending stiffness, N/m

ks the shearing stiffness, N/m

kre the axial compression stiffness, N/m

kap the axial bending stiffness, N/m

kas the axial shear stiffness, N/m

ky, the Hertz contact stiffness, N/m

k. the bearing stiffness in the direction of x for the gear i, N/m
kyi the bearing stiffness in the direction of y for the gear i, N/m
ki the bearing stiffness in the direction of z for the gear i, N/m
L the length of the contact line length, m

I the depth of crack on the front, mm

N the number of gears engaged at the same time

Pe the percentage of statistical indicators

q the crack length, mm

Ry the radius of the base cycle of the driving gear 1, m
Ry theradius of the root cycle of the driving gear 1, m

T the rotation time of the gear in one cycle, s

t the time, s

t1 the time one gear rotating from the tooth after the crack one, s
t2 the time the cracked tooth starts to enter mesh, s

t3 the time the tooth after the cracked tooth enters meshing, s
Tc the time required for crack tooth rotating in one cycle, s

Ty the input torque of the motor, N.m

Tg the load torque, N.m

dU,  the bending deformation energy of each slice, ]

dUs the shear deformation energy of each slice, J

dUy.  the axial compression deformation energy of each slice, |
dU,, the axial bending deformation energy of each slice, |
dU;s  the axial shear deformation energy of each slice, J

v the passion ratio

x the displacement in the x direction, m

X the distance from meshing point to root circle, m

Xc the value of statistical indicators in the fault state

Xy the value of statistical indicators in the normal state

y the displacement in the y direction, m

Y12 the normal vibration displacements along gears 1 and 2, m
Y34 the normal vibration displacements along gears 3 and 4, m

z the displacement in the z direction, m
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Greeks

®y  the normal pressure angle, rad

a;  the end pressure angle of the helical gear, rad
v  the crack angle on the end face, rad

p  thedriving gear

g  thedriven gear

B the helical gear helix angle, rad

0 the torsional vibration, deg.

Abbreviations

RMS  the root-mean-square value
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