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Abstract: The main transmission system of wind turbines is a multi-component coupling system,
and its operational state is complex and varied. These lead to frequent false alarms and missed
alarms in existing monitoring systems. To accurately obtain the operational state of the main
transmission system and detect its abnormal operation, an early fault warning method for the main
transmission system based on SCADA and CMS data is proposed. Firstly, the SCADA and CMS
feature parameters relevant to the operating status of the main transmission system are selected by
two different methods separately, and the correlation mechanism between the feature parameters
and the operating characteristics of the main transmission system is further analyzed. Secondly, the
Long Short-Term Memory (LSTM) network-based prediction model of the main transmission system
operating parameters is established, in which SCADA and CMS feature parameters are fused as the
input feature vectors. Then, the predicted residuals of the state evaluation parameters are used as
the operational state evaluation index. The early fault warning model is established by Analytic
Hierarchy Process (AHP) and Kernel Density Estimation (KDE). Finally, a case study is used to verify
the correct performance of the proposed method. The results show that this method can realize early
warning functions 73 h earlier than the existing SCADA system. The method can provide a theoretical
basis for the safe operation and condition-based maintenance of wind turbines.

Keywords: main transmission system; data fusion; parameter prediction; residual analysis; SCADA
and CMS data; early fault warning

1. Introduction

As a renewable energy source, wind energy has broad development prospects [1–3].
With the rapid development of the wind power industry, how to ensure the safe and reliable
operation of wind turbines is a great challenge. Since the wind turbine is a kind of device
with a complex structure and mutual coupling of multiple components, various faults
will occur in service. According to the statistics data shown in Figure 1 [4], the failure
rate of the electrical system is the highest, but its maintenance is simple. In contrast, the
maintenance time of the main transmission system is the longest, and the maintenance
cost is very high. According to relevant statistical analysis, for onshore wind turbines
with a service life of 20 years, the maintenance cost accounts for 10–15% of the total
revenue of the wind farm, while for offshore wind farms, the proportion is as high as
20–25% [5]. The main transmission system, including blades, hub, axis, bearings, gearbox,
and generator, plays an important role in energy transmission, and its safety and reliability
are the keys to ensuring the normal operation of the wind turbine. Therefore, it is of great
significance to monitor and evaluate the operational state of the main transmission system,
find out the abnormality and deterioration trend in advance, and carry out condition-based
maintenance. It can ensure the safe and reliable operation of wind turbines and reduce
operation and maintenance costs.
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Figure 1. Wind turbine component failure distribution and maintenance downtime of each compo-
nent. 

To address the safety and management issues in the operation of wind turbines, most 
wind turbines in service are equipped with SCADA systems and CMS. SCADA and CMS 
systems mainly provide real-time monitoring, event alarm, and fault report output. How-
ever, it lacks the mining and analysis of historical data. Traditional fault maintenance and 
routine maintenance are both regular maintenance modes which have serious defects in 
dealing with changing conditions. They cannot effectively make full use of fault diagnosis 
and prediction data. The timeliness and effectiveness of maintenance are low, and the de-
gree of intelligence is not enough. Therefore, mining and extracting the feature quantities 
related to the operational state of the main transmission system from SCADA and CMS 
data and establishing an intelligent monitoring and evaluation model are the keys to en-
suring the safe and reliable operation of wind turbines. 

Some researchers have conducted related research on the monitoring and evaluation 
of wind turbine operating conditions based on SCADA and CMS data. David et al. [6] 
implemented wind turbine gearbox condition monitoring from the perspective of SCADA 
data distribution based on the distribution of probability density function after data nor-
malization. Corley et al. [7] established a gearbox thermal network model based on heat 
conduction theory to successfully monitor gearbox failures. Pandit et al. [8] proposed a 
nonparametric modeling method based on SCADA data for wind turbine power curve 
estimation, which better meets the condition monitoring needs of later generation units. 
Dai et al. [9] processed the wind speed correction and used Gaussian fitting of the cor-
rected wind power curve to obtain a more accurate wind turbine performance index. Dao 
et al. [10] conducted two-stage cointegration analysis on SCADA data and successfully 
monitored gearbox faults. Chen et al. [11] used a hierarchical prediction method based on 
Gaussian process and principal component analysis, and the method has an accuracy rate 
of 79% for fault monitoring. Zhang Fan et al. [12] analyzed the relationship between 
SCADA data input/output parameters from a physical point of view, and proposed a cal-
culation formula for the abnormal degree index of the operating state of wind turbines. 
Fu et al. [13], Zhao et al. [14], and Bangalore et al. [15] used CNN-LSTM, DAE, and NARX-
ANN to predict and reconstruct SCADA target parameters, the prediction and 
reconstruction errors were used as indicators of wind turbine operation status, and the 
abnormal operation of the wind turbine was successfully monitored. Rezamand et al. [16] 
proposed a fault detection method based on a mixture of RPCA and wavelet probability 
distribution functions to achieve early fault monitoring of wind turbine blades. Jin et al. 
[17] successfully identified anomalies in wind turbine operation by constructing a 
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(a)Distribution of faults caused by each component of wind turbine
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Figure 1. Wind turbine component failure distribution and maintenance downtime of each component.

To address the safety and management issues in the operation of wind turbines,
most wind turbines in service are equipped with SCADA systems and CMS. SCADA and
CMS systems mainly provide real-time monitoring, event alarm, and fault report output.
However, it lacks the mining and analysis of historical data. Traditional fault maintenance
and routine maintenance are both regular maintenance modes which have serious defects in
dealing with changing conditions. They cannot effectively make full use of fault diagnosis
and prediction data. The timeliness and effectiveness of maintenance are low, and the
degree of intelligence is not enough. Therefore, mining and extracting the feature quantities
related to the operational state of the main transmission system from SCADA and CMS data
and establishing an intelligent monitoring and evaluation model are the keys to ensuring
the safe and reliable operation of wind turbines.

Some researchers have conducted related research on the monitoring and evaluation
of wind turbine operating conditions based on SCADA and CMS data. David et al. [6]
implemented wind turbine gearbox condition monitoring from the perspective of SCADA
data distribution based on the distribution of probability density function after data nor-
malization. Corley et al. [7] established a gearbox thermal network model based on heat
conduction theory to successfully monitor gearbox failures. Pandit et al. [8] proposed a
nonparametric modeling method based on SCADA data for wind turbine power curve
estimation, which better meets the condition monitoring needs of later generation units.
Dai et al. [9] processed the wind speed correction and used Gaussian fitting of the corrected
wind power curve to obtain a more accurate wind turbine performance index. Dao et al. [10]
conducted two-stage cointegration analysis on SCADA data and successfully monitored
gearbox faults. Chen et al. [11] used a hierarchical prediction method based on Gaussian
process and principal component analysis, and the method has an accuracy rate of 79%
for fault monitoring. Zhang Fan et al. [12] analyzed the relationship between SCADA
data input/output parameters from a physical point of view, and proposed a calculation
formula for the abnormal degree index of the operating state of wind turbines. Fu et al. [13],
Zhao et al. [14], and Bangalore et al. [15] used CNN-LSTM, DAE, and NARX-ANN to
predict and reconstruct SCADA target parameters, the prediction and reconstruction errors
were used as indicators of wind turbine operation status, and the abnormal operation of the
wind turbine was successfully monitored. Rezamand et al. [16] proposed a fault detection
method based on a mixture of RPCA and wavelet probability distribution functions to
achieve early fault monitoring of wind turbine blades. Jin et al. [17] successfully identified
anomalies in wind turbine operation by constructing a Mahalanobis space as a reference
space. In literature [18–20], the state monitoring model of wind turbines was established by
LSTM-AE, SVM, and ACNN-Bi-LSTM, respectively, to complete abnormal monitoring of
the operating state of wind turbines. Peng et al. [21] used the maximum average difference
algorithm combined with CNN to evaluate the state of the wind turbine’s operational state.
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Compared to the SCADA system, which comprehensively monitors the operating
status of the wind turbines, the CMS is used to monitor the key components. It contains
more precise operational status information. ZimrozandA et al. [22] and Pan et al. [23] used
the analysis methods of PCA and CEEMDAN-KPCA, respectively, to realize the condition
monitoring of the gearbox. Ogata et al. [24] proposed a time-frequency domain feature
extraction method based on Fourier local autocorrelation (FLAC), which successfully
detected faults that could not be detected by conventional methods. Li et al. [25] used the
deep random forest fusion (DRFF) technique to fuse acoustic emission sensor signals with
vibration signals, and verified that the method can accurately identify gearbox faults under
11 different operating conditions. Li et al. [26] successfully used the combined method of
KPCA and Bi-LSTM for condition monitoring and evaluation of high-speed shaft bearings
of wind turbines. In the literature [27], an abnormal monitoring method for the main
bearing of the unit based on a small sample of unbalanced vibration data was proposed.
Pu [28] proposed a deep enhanced fusion network (DEFN) for wind turbine gearbox fault
diagnosis and proved that it has good fault diagnosis accuracy. Gomez [29] used the
changing trend of wavelet packet transform energy before and during the occurrence of
faults to identify the operating state of the gearboxes. Isham [30] decomposed the vibration
signal of the wind turbine and used the limit learning machine for fault classification to
successfully diagnose the gearbox fault.

As mentioned above, the existing operational state monitoring of the wind turbine
main transmission system has made some progress. However, there are still limitations
in the following aspects. (1) The main transmission system is a complex coupled system
with multiple components and the operational state is complex and varied. However,
most of the existing research methods use a single index to evaluate its operational state.
The influence of multiple components coupling on the final monitoring results is ignored,
therefore the results are not accurate in evaluating the operational state of the main trans-
mission system. For its condition monitoring and evaluation, we should consider multiple
dimensions. (2) In the current research, SCADA or CMS data are mostly used to monitor
the operational state of wind turbines, respectively, which will be difficult to make full use
of their advantages. The curves of active power, spindle rotational speed of wind turbine,
and vibration acceleration of the measuring point on the 2MW wind turbine gearbox on a
certain day are shown in Figure 2. The data in Figure 2a were collected using a vibration
data acquisition system at the wind farm by the authors, and the data in Figure 2b,c are
from the SCADA system. It can be seen that the trend of SCADA and CMS monitoring
data is highly consistent. SCADA has more information about the state of the entire wind
turbine, while CMS vibration data contain more precise condition information. Most exist-
ing methods analyze two types of data separately, ignoring the strong correlations between
the data. As a result, the characteristics related to the operational state of the wind turbine
main transmission system cannot be fully and effectively obtained, and the final monitoring
and evaluation results are inaccurate.

To detect the abnormality and deterioration trend of the main transmission system
in advance, improve the operation reliability, and reduce the maintenance cost, in this
paper, an early fault warning method of the wind turbine main transmission system based
on SCADA and CMS data is proposed. SCADA and CMS data are fully mined to obtain
feature information related to the operational state of the main transmission system. The
deep learning model is used to fuse the data feature of SCADA and CMS, and the early
fault warning model of the operational state of the main transmission system is established.
The effectiveness of this method is verified by the test data of wind turbines in wind farms.
The main contributions of this paper are as follows:

• By fully exploiting the advantages of SCADA and CMS, an early fault warning method
for the wind turbine main transmission system is proposed.

• Based on SCADA and CMS data, the prediction model of main transmission system
condition evaluation parameters with feature-level fusion is established, which has
better generalization performance and prediction accuracy.
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• A multi-residual fusion method was used to evaluate the main transmission system
condition, which will solve the difficulty of accurately monitoring and characterizing
of the operational state by a single indicator.
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Figure 2. Curves of the active power, spindle rotational speed, and vibration acceleration.

The remaining parts of the paper are organized as follows. In Section 2, there are
differences in data acquisition and storage between SCADA and CMS, so different ways
are used to select the characteristic parameters related to the main transmission system.
The prediction model of state evaluation parameters for the main transmission system is
established by fusing feature parameters of SCADA and CMS in Section 3. In Section 4, the
quantization algorithm of the fusion residuals is determined, and the early fault warning
model of the main transmission system is established. A case study is used to validate the
proposed method in Section 5, and the conclusions are given in Section 6.

The general flowchart of the main transmission system condition monitoring is shown
in Figure 3.
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2. Parameters for Early Fault Warning
2.1. State Evaluation Parameters

The main transmission system consists mainly of hubs, spindles, bearings, gearboxes,
and generator sets. The SCADA system contains a number of parameters related to the
operating status of these components. Any abnormality of one state parameter may mean
its failure. In order to find fault earlier and more accurately, it is necessary to select several
state evaluation parameters to reflect the operational state from different angles.

During the service of the wind turbine, the loads acting on the blades are very complex
(aerodynamic load, gravity load, inertial load, operating load, etc.). Bearing, gearbox, and
generator are the main failure parts of the main transmission system because they carry
most of the load [31,32].

The heat is produced by the gears during operation, and the heat flux is calculated
by [33]:

qc(t) = γ fc(t)σc(t)V12(t) (1)

where γ is the coefficient of conversion from friction energy to heat energy, generally taken
as 0.9~0.95, fc(t) is the tooth surface friction coefficient, σc(t) is the normal contact stress of
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the meshing surface, and V12(t) is the dynamic relative sliding velocity of the two meshing
tooth surfaces, taking into account the system vibration.

For a bearing, its frictional heat flux is calculated as:

q(t) =
π · n

30× 103 A
×
[
10−7 f0(v0n)

2
3 d3

m + f1Fβdm

]
(2)

where n is the rotational speed, f0 is the coefficient related to the type of bearing and its
lubrication method, taking the value of 2, v0 is the lubricant viscosity, f1 is the coefficient
related to the bearing structure and load, Fβ is the bearing force of the equivalent load, and
dm is the bearing knuckle diameter.

From the above analysis, due to the interaction of various excitations in the abnormal
operation process, it will inevitably affect the operation of gears and bearings and load-
bearing forms. At the same time, the fault will result in too small clearance, insufficient
lubrication, static and dynamic imbalance, etc. These will lead to changes in fc(t), Fβ and
other parameters that will significantly affect the heat flux of gears and bearings. These
will further result in rapid changes in temperature over a short period of time.

For permanent magnet synchronous generators, the power generated by a generator
can be calculated as [34]:

P =
3
2

p
[
Ψ f isq + (Lsd − Lsq)isdisq

]
ω (3)

where, p is the number of pole pairs, Ψ f is the permanent magnet magnetic field, isd and
isq are d axis and q axis components of stator currents, respectively, and Lsd and Lsq are d
axis and q axis inductances of the stator, respectively. Obviously, abnormal operation of
the generator (like demagnetization of permanent magnets, bearing failure resulting in a
decrease in generator speed) will lead to changes in parameters such as Ψ f isd isq Lsd Lsq.
These will affect the power of the generator [35].

Therefore, the abnormal changes of temperature and active power can effectively
reflect the early failure of the main transmission system. Accordingly, six parameters are
selected as the state evaluation parameters from SCADA data, which are active power (P),
gearbox high-speed bearing temperature

(
Tg
)
, gearbox low-speed bearing temperature

(Tl), gearbox oil temperature
(
Tgo
)
, generator drive-end bearing temperature

(
Tq
)
, and

generator non-drive-end bearing temperature
(

Tf q

)
.

2.2. Feature Parameter Selection

Considering that not all monitoring variables in SCADA and CMS data are related to
the failure of the main transmission system, when more feature parameters are selected
as the input of the prediction model, it will not only affect the calculation speed, but also
the final prediction results will not match the actual situation due to the large redundant
information among variables. These will lead to inaccurate monitoring of the operational
state. To realize the early fault warning, the feature parameters related to its operational
state must be selected as input of the prediction model first. Due to the difference in
monitoring data between SCADA and CMS systems, the feature parameters are selected in
two different ways.

(1) Selection of feature parameters from CMS

The CMS system is mainly used to monitor the vibration of the main transmission
train. During the operation of the wind turbine, the main shaft and gearbox will generate
rich vibration signals. It usually leads to more obvious changes in the time and frequency
domain feature parameters of the vibration signal when the main transmission system
of the wind turbine operates abnormally. Therefore, the magnitude and distribution of
energy in the time domain signal waveform and spectrum can be calculated as CMS feature
parameters [36]. We calculated common time domain and frequency domain features.
Additionally, in order to select CMS feature parameters with strong correlation to the
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operational state, the maximum mutual information values (MIC) are used as the criteria
for selecting the feature parameters.

The MIC is calculated as:

I(X; Y) =
∫

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy (4)

MIC(X, Y) = max
a∗ b≤nk

I∗(X; Y)
logmin(a, b)

(5)

where p(x), p(y) is the probability density function, and p(x, y) is the joint probability
density function, I∗(X; Y) indicates the MIC in all meshing, a, b denotes the number of
divisions of the lattice in the x, y direction of the two-dimensional space, n is the sample
size, and k usually is set according to empirical values as 0.6. MIC takes values between
[0,1], the closer to 1, the higher the correlation, and vice versa, the lower the correlation.

The results of the MIC values between the CMS feature parameters and the state eval-
uation parameters are shown in Table 1. We selected six-time domain feature parameters
and four frequency domain feature parameters with the strongest correlation, as shown
in Table 2.

Table 1. CMS parameters and MIC values of main transmission system state evaluation parameters.

SCADA Feature
Parameters

State Evaluation
Parameters Active

Power

Gearbox
High-Speed

Bearing
Temperature

Gearbox
Low-Speed

Bearing
Temperature

Gearbox Oil
Temperature

Generator
Drive-End

Bearing
Temperature

Generator
Non-Drive-

End Bearing
Temperature

Root Mean Square 0.831 0.657 0.680 0.548 0.686 0.536
Peak-To-Peak Value 0.842 0.706 0.750 0.643 0.748 0.634

Form Factor 0.867 0.716 0.761 0.688 0.732 0.689
Pulse Factor 0.646 0.640 0.633 0.628 0.628 0.627

Margin Factor 0.595 0.586 0.582 0.566 0.572 0.562
Cliffness Factor 0.471 0.357 0.361 0.309 0.365 0.352
Kurtosis Factor 0.480 0.289 0.347 0.221 0.329 0.284
Signal Energy 0.830 0.657 0.680 0.548 0.686 0.536

Skewness 0.281 0.310 0.290 0.260 0.330 0.270
Gravity of Frequency 0.762 0.518 0.548 0.645 0.582 0.585
Average amplitude 0.910 0.736 0.807 0.611 0.761 0.640

Standard Deviation of
Frequency 0.800 0.631 0.668 0.520 0.661 0.574

Root Mean Square of
Frequency 0.720 0.673 0.639 0.536 0.657 0.562

Among these time and frequency domain feature parameters, the root mean square

(xrms) value and signal energy
(

U f

)
reflect vibration intensity and energy magnitude.

Its value will be very large when the main transmission system is operating abnormally.
The peak-to-peak value

(
xp∼p

)
reflects the amplitude of the shock vibration generated by

the fault. The pulse factor
(

I f

)
and margin factor

(
CL f

)
are more sensitive to impulse

faults and have an obvious increasing tread in the early stage of fault. Gravity of frequency
(FC) and root mean square of frequency (FRMS) describe the position change of the main
frequency band of the signal power spectrum, and the standard deviation of frequency
(FRMSF) represents the dispersion degree of spectral energy.
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Table 2. Time and frequency domain feature parameters and formula.

Feature Name Formula Feature Name Formula

Root Mean Square xrms =

√
1
N

N
∑

n=1
x2(n) Signal Energy U f =

N
∑

n=1
| x(n) |2

Peak-To-Peak Value xp∼p = xmax − xmin Gravity of Frequency
FC =

K
∑

k=1
fks(k)

K
∑

k=1
s(k)

Form Factor S f =
xrms

| 1
N

N
∑

n=1
x(n)|

Average amplitude F =
K
∑

k=1
s(k)/K

Pulse Factor I f =
xmax

| 1
N

N
∑

n=1
x(n)|

Standard Deviation of
Frequency FRMSF =

√
K
∑

k=1
( fk−FC)

2s(k)

K−1

Margin Factor CL f =
xmax

| 1
N

N
∑

n=1

√
|x(n)||

2
Root Mean Square of

Frequency FRMS =

√√√√√ K
∑

k=1
f 2
k s(k)

K
∑

k=1
s(k)

Note: x(n) is the feature sequence vector, N is the feature sequence vector length, xmax, xmin are the maximum
and minimum values of the feature sequence vector, s(k) is the spectrum of signal x(n), and fk is the frequency
value of K spectral lines.

(2) Selection of feature parameters from SCADA

SCADA system includes functions such as remote control of the wind turbines, moni-
toring data collection, and operational state alarms. The SCADA system collects a large
number of dimensional data, but there are problems with missing data, storing outliers, and
error values. Therefore, it is necessary to clean the SCADA data, and then select the feature
parameters related to the operational state of the wind turbine’s main transmission system.

• Data cleaning

The untreated wind speed power profile is shown in Figure 4a. It can be seen that
there are a large number of power outlier anomalies and zero power stacking points. These
anomalies will affect the accuracy of the operational state monitoring results. In this paper,
the DBSCAN clustering and direct truncation rejection are used to clean the SCADA data,
and the cleaned wind speed–power curve is shown in Figure 4b. The cleaning result
matches the theoretical wind speed–power curve of the wind turbine.

Machines 2022, 10, x FOR PEER REVIEW 9 of 22 
 

 

Power outlier 
anomalies

0 power stacking 
points

(a) Raw wind speed-power diagram (b) Wind speed power diagram of cleaning
 

Figure 4. Wind speed–power curve. 

 Selection of SCADA feature parameters 
To solve the problem of the high dimensionality of SCADA monitoring data and re-

dundancy among variables, the correlation analysis method was also used to select the 
feature parameters in the SCADA data that have a high correlation with the operational 
state of the wind turbine’s main transmission system. We will establish a prediction model 
for the main transmission system state evaluation parameters in Section 3. To obtain more 
accurate prediction results, the selected SCADA feature parameters were analyzed by cor-
relating each state evaluation parameter with other parameters. According to the non-
linear characteristics of SCADA data, the Maximal Information Coefficient (MIC) with 
low computational complexity and good robustness is used to measure the correlation 
between parameters. 

The results of the MIC values between the SCADA feature parameters and the state 
evaluation parameters of the main transmission system are shown in Table 3. 

Table 3. SCADA parameters and MIC values of main transmission system state evaluation param-
eters. 

State Evaluation 
Parameters  

SCADA Feature  
Parameters 

Active 
Power 

Gearbox 
High-Speed 

Bearing Tem-
perature 

Gearbox Low-
Speed Bearing 
Temperature 

Gearbox Oil 
Temperature 

Generator 
Drive-End Bear-

ing Tempera-
ture 

Generator Non-
Drive-End Bear-
ing Temperature 

Average spindle rotation 
speed 0.959 0.81 0.763 0.608 0.548 0.579 

30-s average wind speed 0.928 0.716 0.76 0.61 0.587 0.65 
Average value of torque 

feedback 0.882 0.727 0.772 0.604 0.539 0.569 

Average value of V-phase 
winding temperature of gen-

erators 
0.788 0.749 0.762 0.653 0.642 0.638 

Average value of W-phase 
winding temperature of gen-

erators 
0.781 0.742 0.76 0.651 0.643 0.632 

Average value of U-phase 
winding temperature of gen-

erators 
0.758 0.716 0.732 0.623 0.644 0.621 

Figure 4. Wind speed–power curve.

• Selection of SCADA feature parameters

To solve the problem of the high dimensionality of SCADA monitoring data and
redundancy among variables, the correlation analysis method was also used to select the



Machines 2022, 10, 1018 9 of 21

feature parameters in the SCADA data that have a high correlation with the operational
state of the wind turbine’s main transmission system. We will establish a prediction model
for the main transmission system state evaluation parameters in Section 3. To obtain
more accurate prediction results, the selected SCADA feature parameters were analyzed
by correlating each state evaluation parameter with other parameters. According to the
non-linear characteristics of SCADA data, the Maximal Information Coefficient (MIC) with
low computational complexity and good robustness is used to measure the correlation
between parameters.

The results of the MIC values between the SCADA feature parameters and the state
evaluation parameters of the main transmission system are shown in Table 3.

Table 3. SCADA parameters and MIC values of main transmission system state evaluation parameters.

SCADA Feature
Parameters

State Evaluation
Parameters Active

Power

Gearbox
High-Speed

Bearing
Temperature

Gearbox
Low-Speed

Bearing
Temperature

Gearbox Oil
Temperature

Generator
Drive-End

Bearing
Temperature

Generator
Non-Drive-

End Bearing
Temperature

Average spindle
rotation speed 0.959 0.81 0.763 0.608 0.548 0.579

30-s average wind speed 0.928 0.716 0.76 0.61 0.587 0.65
Average value of
torque feedback 0.882 0.727 0.772 0.604 0.539 0.569

Average value of V-phase
winding temperature

of generators
0.788 0.749 0.762 0.653 0.642 0.638

Average value of W-phase
winding temperature

of generators
0.781 0.742 0.76 0.651 0.643 0.632

Average value of U-phase
winding temperature

of generators
0.758 0.716 0.732 0.623 0.644 0.621

Average value of
generator speed 0.939 0.842 0.768 0.62 0.559 0.602

Average value of generator
slip-ring temperature 0.61 0.797 0.788 0.768 0.918 0.866

Average ambient temperature
outside the cabin 0.435 0.549 0.552 0.584 0.452 0.489

Average value of gearbox
inlet temperature 0.606 0.84 0.84 0.88 0.632 0.731

Average gearbox oil pressure 0.874 0.591 0.601 0.688 0.43 0.47
...

...
...

...
...

...
...

In Table 3, the 10 parameters of the strongest correlation were selected separately
as SCADA feature parameters. Furthermore, the six prediction models for the main
transmission system state evaluation parameters were developed in Section 3. For each
state evaluation parameter prediction model, the combination of the selected 10 SCADA
parameters and 10 CMS feature parameters was used as the input vector of the model. The
six prediction models input vectors were expressed as:

XP =
[
vz, v f , vw, Tq, Tf q, Tf u, Tf v, Tf w, T, Pa, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
XTg =

[
vz, v f , vw, Tin, Th, Tgo, Tq, Tf q, T, Pa, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
XTl =

[
vz, v f , vw, Tin, Th, Tgo, Tq, Tf q, T, Pa, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
XTgo =

[
vz, v f , vw, Tin, Th, Tf u, Tf v, Tf w, T, Pa, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
XTq =

[
vz, v f , P, Tg, Th, Tf u, Tf v, Tf w, T, Pa, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
XTf q =

[
vz, vw, P, Tgo, Th, Tf u, Tf v, Tf w, T, Tin, xrms, xp∼p, S f , I f , CL f , U f , FC, F, Frms, Frms f

]
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where the names corresponding to each symbol in the input vector are shown in Table 4.

Table 4. Selected SCADA feature parameters.

Symbols Parameter Name Unit Symbols Parameter Name Unit

vz Average spindle rotation speed rpm Tl
Gearbox low-speed
bearing temperature

◦C

v f Average value of generator speed rpm Tin
Average value of gearbox

inlet temperature
◦C

vw 30-s average wind speed m/s Th
Average value of generator

slip-ring temperature
◦C

P Active power KW Tf u
Average value of U-phase winding

temperature of generators
◦C

Tq
Generator drive-end
bearing temperature

◦C Tf w
Average value of V-phase winding

temperature of generators
◦C

Tf q
Generator non-drive-end

bearing temperature
◦C Tf w

Average value of W-phase winding
temperature of generators

◦C

Tgo Gearbox oil temperature ◦C T Average value of torque feedback N•m

Tg
Gearbox high-speed
bearing temperature

◦C Pa Average gearbox oil pressure bar

3. Prediction of State Evaluation Parameters
3.1. LSTM-Based Fusion of SCADA and CMS Feature Parameters

SCADA data can provide comprehensive operational state information, while CMS
vibration data contain the more accurate state information. In order to improve the accu-
racy of fault monitoring and detect abnormalities earlier, it is necessary to integrate the
characteristic information contained in the data source.

Neural network, which is a model with multiple nonlinear mapping levels, can abstract
the input variables layer by layer and extract their features. Therefore, the information of
different feature parameters can be fused and a deeper underlying mode can be explored
by neural network models [37]. LSTM is a kind of temporal recurrent neural network
which is composed of a series of memory cells. It can choose to memorize the time series
information and mine the relationship features before and after the time series data. It has
some advantages in processing the temporal data. LSTM networks have better prediction
results compared to other methods [38]. Therefore, the Long Short Term Memory network
(LSTM) was selected to fuse SCADA and CMS feature information.

LSTM network is a variant of the recurrent neural network, and its core concepts are
cell state and channel structure. Its three channels are forget, input, and output channels,
which can retain and delete the data information in the sequence [39]. Ct and Ct−1 denote
cell state information at moments t and t − 1, and ht, ht−1 are the hidden layer state
information.

Among them, the forget channel is used to determine whether information will be
removed from the memory cell based on ht−1 and Ct−1. The output equation of the forget
channels is:

ft = σ
(

W f x•[ht−1, xt] + W f c•Ct−1 + b f

)
(6)

The input channel is used to perform updates to the cell state. ht−1 and xt are passed
to the activation function σ to update the information. Meanwhile, ht−1 and xt are passed
to the function tanh to get the candidate vectors. Then, the function S value is used to
determine whether information will be removed in the candidate vectors. The output
equation of input channels is:

it = σ(Wi•[ht−1, xt] + bi) (7)

∼
Ct = tanh(WC•[ht−1, xt] + bc) (8)
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Ct = Ct × ft +
∼
Ct × it (9)

The output channel is used to determine the next hidden state. The output equation of
out channels is:

ot = σ(Wo•[ht−1, xt] + bo) (10)

ht = ot × tanh(Ct) (11)

where W f x, Wi, WC, Wo are the weights of the connection input information and the hidden
layer input information, W f c is the weight of connecting the previous cell state, b f , bi, bC, bo
are the biases corresponding to forget channels, input channels, candidate vector, and
output channels.

The LSTM network is used to fuse SCADA and CMS feature parameters information.
The time series information of each parameter and the coupling relationship between pa-
rameters are mined. The prediction model of the main transmission system state evaluation
parameters is established as shown in Figure 5. First, the LSTM network input layer is
the first layer, and the selected SCADA and CMS feature parameters are used as model
inputs. The time step is used to construct SCADA and CMS input time series data. Then,
the LSTM network hidden layer was used to fuse and learn from the input SCADA and
CMS data information. Time series features will be passed between parameters by LSTM
cells, meanwhile, the time series information and coupling relationship of each parameter
will be mined. Finally, the last layer of the prediction model is the output layer, which
is mainly connected to the hidden layer through a fully connected layer. The fully con-
nected layer is used to fuse the features learned by the multilayer LSTM to obtain the final
prediction results.
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3.2. Prediction of State Evaluation Parameters on Feature-Level Fusion

According to the selected SCADA and CMS feature quantities and predicted quantities
in Section 2, the prediction model of the main transmission system state evaluation param-
eters is established. We tuned the LSTM model hyperparameters based on the empirical.
Its specific hyperparameters are shown in Table 5.

Table 5. LSTM network parameters setting.

Hyperparameters Values

Hidden layers 3
Time step 20

Iteration cycle 500
Batch size 64

Loss function MSE
Optimizer Adam

Learning rate 0.005
Dropout setting value 0.25

The prediction model for SCADA and CMS data fusion was trained and tested by
using wind turbine data from November 2021 to March 2022. A total of 75,216 data sets
were used, with 66,859 training data samples and 8357 test data samples. The prediction
results and prediction residuals are shown in Figure 6. As can be seen from Figure 6, the
fusion of SCADA and CMS data has a good prediction effect for the selected six state
evaluation parameters of the main transmission system. The prediction residuals are
basically smooth regardless of the operational state of the wind turbine. These will be
able to meet the needs of monitoring and early warning of the main transmission system.
In order to demonstrate the superiority of the fusion, the results of the prediction using
SCADA data alone are used for comparison. The prediction results using only SCADA
data are shown in Figure 7. Its prediction residuals have large fluctuations compared to
the prediction results of SCADA and CMS fusion. It would be detrimental to monitor the
operational state of the main transmission system.

In order to quantify the difference, the mean relative error (MRE) and the coefficient
of determination (R2) are used as evaluation indicators to evaluate our prediction model.
Its calculation formula is as follows:

MRE =
1
N

N

∑
i=1
| (yi − ŷi

yi
) | (12)

R2 = 1−

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − yi)

2
(13)

where yi is the actual measured value, ŷi is the predicted value, and the average value is yi,
N is the sample size.

The accuracy of the two models is compared through the evaluation indicators, as
shown in Figure 8. The MRE represents the error between the prediction values and
actual values, and the smaller the MRE, the more the prediction values correspond to the
actual values. R2 characterizes the goodness of fit of the prediction model, while the closer
its value is to 1, the better the goodness of fit for the prediction results. As can be seen
from Figure 8, the MRE values of the predictions using SCADA and CMS data fusion
are smaller than using SCADA data alone, meanwhile, the R2-values are higher for the
former than for the latter. This also indicates that the prediction accuracy is higher by using
data fusion, and this will also help to improve the accuracy of main transmission system
anomaly monitoring.



Machines 2022, 10, 1018 13 of 21

Machines 2022, 10, x FOR PEER REVIEW 13 of 22 
 

 

Dropout setting value 0.25 

The prediction model for SCADA and CMS data fusion was trained and tested by 
using wind turbine data from November 2021 to March 2022. A total of 75,216 data sets 
were used, with 66,859 training data samples and 8357 test data samples. The prediction 
results and prediction residuals are shown in Figure 6. As can be seen from Figure 6, the 
fusion of SCADA and CMS data has a good prediction effect for the selected six state 
evaluation parameters of the main transmission system. The prediction residuals are ba-
sically smooth regardless of the operational state of the wind turbine. These will be able 
to meet the needs of monitoring and early warning of the main transmission system. In 
order to demonstrate the superiority of the fusion, the results of the prediction using 
SCADA data alone are used for comparison. The prediction results using only SCADA 
data are shown in Figure 7. Its prediction residuals have large fluctuations compared to 
the prediction results of SCADA and CMS fusion. It would be detrimental to monitor the 
operational state of the main transmission system. 

 
Figure 6. Prediction results based on SCADA and CMS data fusion. 

3-02 3-04 3-06 3-08 3-10
-20

0

20

40

60

80

100

3-02 3-04 3-06 3-08 3-10
-20

0

20

40

60

80

100

3-02 3-04 3-06 3-08 3-10
-20

0

20

40

60

80

3-02 3-04 3-06 3-08 3-10
-20

0

20

40

60

80

100

3-02 3-04 3-06 3-08 3-10
-20

0

20

40

60

80

100

3-02 3-04 3-06 3-08 3-10
-1500
-1000

-500
0

500
1000
1500
2000
2500

 (a)Prediction of gearbox low−speed bearing temperature  (b)Prediction of gearbox high−speed bearing temperature

 (d)Prediction of generator non−drive−end bearing temperature (c)Prediction of generator drive−end bearing temperature

Time Time

Time

 Actual
 Predicted
 Residuals

 Actual
 Predicted
 Residuals

 Actual
 Predicted
 Residuals

G
ea

rb
ox

 o
il 

te
m

pe
ra

tu
re
/
o C

G
en

er
at

or
 d

riv
e −

en
d 

be
ar

in
g 

te
m

pe
ra

tu
re

/o C
G

ea
rb

ox
 lo

w
−s

pe
ed

 
be

ar
in

g 
te

m
pe

ra
tu

re
/o C

G
en

er
at

or
 n

on
−d

riv
e−

en
d 

be
ar

in
g 

te
m

pe
ra

tu
re

/o C
G

ea
rb

ox
 h

ig
h −

sp
ee

d 
be

ar
in

g 
te

m
pe

ra
tu

re
/o C

A
ct

iv
e 

po
w

er
/K

W

Re
sid

ua
ls

 Actual
 Predicted
 Residuals

 Actual
 Predicted
 Residuals

 Actual
 Predicted
 Residuals

-2000

0

2000

4000

6000

8000

TimeTime

Time

 (e)Prediction of gearbox oil temperature  (f)Prediction of active power

Figure 6. Prediction results based on SCADA and CMS data fusion.
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Figure 7. Prediction results based on SCADA data.
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Figure 8. Evaluation of model prediction accuracy.

4. Early Fault Warning Method
4.1. Multiple Residual Fusion Analysis

The main transmission system of the wind turbine is a multi-part coupling and
complex structure system. When a single residual variation is used as an evaluation
index, it cannot accurately evaluate the operational state of the main transmission system.
Meanwhile, considering the complexity and variability of SCADA and CMS data, the
prediction residuals will fluctuate, as shown in Figure 9a. These six residual indicators
show large fluctuations in the normal operation of the main transmission system, but on
the whole, the trends are not obvious. If the prediction residuals are directly selected as
the standard of operational state evaluation, it may lead to the false alarm. Therefore, an
early fault warning method with multi-residual fusion analysis by the Analytic Hierarchy
Process (AHP) was proposed.

Firstly, we addressed the problem of fluctuations in forecast residual indicators. The
sliding window smoothing method was used to smooth the prediction residuals. The
results of smoothing the prediction residuals of the six condition evaluation parameters are
shown in Figure 9b. It can be seen that, compared with the raw residuals plot, the trend of
residuals is stable after smoothing, and the fluctuation of residuals is reduced. These can
effectively avoid false alarm problems caused by residual fluctuations. Then, according
to the influence degree of the six state evaluation parameters on the operational state of
the main transmission system, the corresponding weights for each parameter are obtained
by using AHP. In order to prevent the influence of artificial subjective scoring in AHP, the
correlation coefficient (MIC) between each evaluation parameter and the main transmission
system is used as the scoring basis of the 1–9 scale. The corresponding weights for each
parameter are shown in Table 6.
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Table 6. Weight of each parameter.

State evaluation Parameters Weights

Active power 0.290
Generator drive-end bearing temperature 0.149

Generator non-drive-end bearing temperature 0.134
Gearbox oil temperature 0.077

Gearbox low-speed bearing temperature 0.177
Gearbox high-speed bearing temperature 0.173

Combining the weights of each parameter, the fusion residuals representing the op-
erational state of the main transmission system are introduced. Its fusion residual X is
defined as:

X =
n

∑
i=1

Riωi (14)

where Ri is the smoothed value of the residuals for the ith predicted parameter, and ωi
is the weight corresponding to the ith predicted parameter. The fusion residuals contain
information about the operational state of main transmission system from the six selected
evaluation parameters.

4.2. Monitoring Thresholds

According to the fusion residual index X, it is necessary to determine the appropriate
alarm threshold to monitor the operation of the main transmission system. The kernel
density estimation (KDE) method is used to set the threshold limits. A kernel density
function K(x) needs to be determined. For the fusion residuals X = {x1, x2, . . . . . . , xn,},
the probability density function f̂ (x) based on the sample data xi is defined as:

f̂ (x) =
1

nh

n

∑
i=1

K(
x− xi

h
) (15)

where h denotes the bandwidth in the kernel density estimation.
According to the theory of interval estimation in statistics, the confidence level δ is

determined if it satisfies P{−∞ ≤ x ≤ Xlim} =δ, and the interval [−∞, Xlim] is called the
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confidence interval of the fused residual X with a confidence level of δ. When the given
δ is a larger value, it is a small probability event that the fusion residual indicator X falls
outside the interval. It is almost impossible for the normal operating of the wind turbine
to have abnormal operating conditions outside the interval [12]. The upper limit of the
interval Xlim can be solved by the integral formula of the probability density function f̂ (x).
Its calculation formula is as follows:∫ Xlim

−∞
f̂ (x)d(x) = δ (16)

The Gaussian function is chosen as the kernel density function. The confidence interval
of 99.7% confidence level is used as the control limit for the normal operation of the main
transmission system. Real-time predicted fusion residuals versus threshold limits are used
to determine the operational state of the main transmission system. When the threshold
limit is exceeded, it means that the main transmission system is operating abnormally, and
then the fault will be warned. Figure 10 shows the probability distribution of the fusion
residuals under normal operation. The upper and lower threshold limits are calculated
from the confidence level of the set interval as [0.485,0.535].
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5. Case Verification Analysis

The monitoring method proposed in this paper was verified by using SCADA and
CMS data of 2WM wind turbines in one wind farm. Among them, SCADA data were
obtained directly from the SCADA monitoring system of the wind turbine, which has a
sampling period of 1 min. CMS vibration data were obtained from experiments conducted
at the wind turbine. The QA-4G wireless acceleration sensor was used in vibration data
collection experiments. This experiment mainly monitored the vibration information of
four positions, as shown in Figure 11a: the main shaft bearing, the gearbox low-speed shaft,
the gearbox high-speed shaft, and the nacelle vibration. Meanwhile, in order to reduce data
loss during wireless transmission, the sampling frequency of CMS vibration data was set to
500 HZ because of the need for long-term monitoring and the lower engagement frequency.

The data in March 2022 were used as the validation set data, totaling 21,700 sets of
data. During this period, the wind turbine had a high-temperature alarm on the Drive-end
bearing of the generator set at 19:01 on 24 March 2022 (Figure 11b). Then, the wind farm
staff shut down the wind turbines for maintenance. We applied the proposed method
to the abnormal monitoring of the wind turbine, and the monitoring results are shown
in Figure 12.



Machines 2022, 10, 1018 17 of 21

Machines 2022, 10, x FOR PEER REVIEW 17 of 22 
 

 

main transmission system. Real-time predicted fusion residuals versus threshold limits 
are used to determine the operational state of the main transmission system. When the 
threshold limit is exceeded, it means that the main transmission system is operating ab-
normally, and then the fault will be warned. Figure 10 shows the probability distribution 
of the fusion residuals under normal operation. The upper and lower threshold limits are 
calculated from the confidence level of the set interval as [0.485,0.535]. 

 
Figure 10. Fusion of residual probability density distribution histograms with KDE plots. 

5. Case Verification Analysis 
The monitoring method proposed in this paper was verified by using SCADA and 

CMS data of 2WM wind turbines in one wind farm. Among them, SCADA data were 
obtained directly from the SCADA monitoring system of the wind turbine, which has a 
sampling period of 1 min. CMS vibration data were obtained from experiments conducted 
at the wind turbine. The QA-4G wireless acceleration sensor was used in vibration data 
collection experiments. This experiment mainly monitored the vibration information of 
four positions, as shown in Figure 11a: the main shaft bearing, the gearbox low-speed 
shaft, the gearbox high-speed shaft, and the nacelle vibration. Meanwhile, in order to re-
duce data loss during wireless transmission, the sampling frequency of CMS vibration 
data was set to 500 HZ because of the need for long-term monitoring and the lower en-
gagement frequency. 

2022-3-24  
19:01:26 

 Generator 
bearing high 
temperature 

warning

(b)  Wind turbine operation logs

the main shaft bearing 
measurement point

gearbox low-speed shaft 
measurement point

nacelle vibration 
measurement point

gearbox high-speed shaft
 measurement point

(a)Test site

 
Figure 11. Field test and wind turbine operation logs. (a) Text site; (b) Wind turbine operation logs. 

0.48 0.49 0.5 0.51 0.52 0.53 0.54
Fused residuals

0

20

40

60

80

100
Histogram
KDE

Figure 11. Field test and wind turbine operation logs. (a) Text site; (b) Wind turbine operation logs.

Machines 2022, 10, x FOR PEER REVIEW 18 of 22 
 

 

The data in March 2022 were used as the validation set data, totaling 21,700 sets of 
data. During this period, the wind turbine had a high-temperature alarm on the Drive-
end bearing of the generator set at 19:01 on 24 March 2022 (Figure 11b). Then, the wind 
farm staff shut down the wind turbines for maintenance. We applied the proposed 
method to the abnormal monitoring of the wind turbine, and the monitoring results are 
shown in Figure 12. 

3-13 3-15 3-17 3-19 3-21 3-23 3-25
0.45

0.50

0.55

0.60

0.65

0.70

Fu
si

on
  r

es
id

ua
ls

Time

 Fusion residuals
 Upper threshold
 Lower threshold

2022-3-21 18:03
 Abnormal alarm

 
Figure 12. Graph of monitoring results. 

It can be seen from Figure 12 that the fusion residual exceeded the set threshold at 
the green dotted line position for the first time. The wind turbine main transmission sys-
tem’s operational state was monitored for abnormal operation, and the specific time was 
21 March 2022, 18:03. The fusion residuals returned to within the threshold over time. 
However, at 16:40 on 22 March, it exceeded the threshold for the second time, and the 
fusion residuals returned to the threshold range again shortly afterward. It was not until 
after 11:31 on 24 March that the residuals substantially exceeded the set threshold. During 
the monitoring process, there was a phenomenon of residual fallback. The wind speed 
fluctuated above and below the cut-in wind speed range during these two time periods, 
which was found when analyzing SCADA data. These made the wind turbine return to 
the shutdown state soon after startup, which led to the residual fallback phenomenon. It 
is found that at 19:01 on 24 March 2022, the SCADA system issued a high-temperature 
warning for the generator drive-end bearing temperature by reviewing the operating log 
of the wind turbine (Figure 11b). This proves that the method proposed in this paper can 
be realized as the fault warning. 

Figure 13 shows the prediction results of each condition evaluation parameter during 
this period. The prediction residuals of each condition evaluation parameter fluctuate less 
when there is no fault in the main transmission system. This also proves that the predictive 
model using SCADA and CMS data fusion has good generalization capability. When the 
main transmission system operates abnormally, only the prediction residuals of the gen-
erator’s drive-end bearing temperature (Figure 13c) and active power (Figure 13f) show 
large fluctuations, while the prediction parameters of other evaluation parameters change 
smoothly. This is also evidence that it is not enough to accurately grasp the operational 
state of the main transmission system by using a single index, and using multiple metrics 
fusion will lead to more accurate monitoring results. 

Figure 12. Graph of monitoring results.

It can be seen from Figure 12 that the fusion residual exceeded the set threshold at
the green dotted line position for the first time. The wind turbine main transmission
system’s operational state was monitored for abnormal operation, and the specific time
was 21 March 2022, 18:03. The fusion residuals returned to within the threshold over time.
However, at 16:40 on 22 March, it exceeded the threshold for the second time, and the
fusion residuals returned to the threshold range again shortly afterward. It was not until
after 11:31 on 24 March that the residuals substantially exceeded the set threshold. During
the monitoring process, there was a phenomenon of residual fallback. The wind speed
fluctuated above and below the cut-in wind speed range during these two time periods,
which was found when analyzing SCADA data. These made the wind turbine return to
the shutdown state soon after startup, which led to the residual fallback phenomenon. It
is found that at 19:01 on 24 March 2022, the SCADA system issued a high-temperature
warning for the generator drive-end bearing temperature by reviewing the operating log of
the wind turbine (Figure 11b). This proves that the method proposed in this paper can be
realized as the fault warning.
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Figure 13 shows the prediction results of each condition evaluation parameter during
this period. The prediction residuals of each condition evaluation parameter fluctuate less
when there is no fault in the main transmission system. This also proves that the predictive
model using SCADA and CMS data fusion has good generalization capability. When
the main transmission system operates abnormally, only the prediction residuals of the
generator’s drive-end bearing temperature (Figure 13c) and active power (Figure 13f) show
large fluctuations, while the prediction parameters of other evaluation parameters change
smoothly. This is also evidence that it is not enough to accurately grasp the operational
state of the main transmission system by using a single index, and using multiple metrics
fusion will lead to more accurate monitoring results.
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Figure 13. Prediction results of each condition evaluation parameter.

Furthermore, to verify the superiority of the proposed method, the monitoring results
using only SCADA data were used for comparison, as shown in Figure 14. As seen in
Figure 14a, the operation abnormal of the main transmission system using SCADA data
alone is monitored at 15:34 on 24 March 2022. However, an operational abnormal warning
of the main transmission system was issued at 18:03 on 21 March by adopting the SCADA
and CMS data fusion method. In fact, at 19:01 on 24 March, the SCADA system prompted
a high-temperature warning for the drive-end bearing of the generator set. Compared with
the existing SCADA system, these two monitoring methods can monitor the abnormal
operation of the main transmission system in advance. However, the monitoring method
based on the fusion of SCADA and CMS data can detect the abnormalities of the main
transmission system earlier. This method can realize early warning function 73 h earlier
than the existing SCADA system, and the abnormality can be found 69 h in advance
compared with the fault monitoring method only with SCADA.



Machines 2022, 10, 1018 19 of 21Machines 2022, 10, x FOR PEER REVIEW 20 of 22 
 

 

 
Figure 14. Comparison of monitoring results. 

6. Conclusions 
To accurately obtain the operational state of the main transmission system and detect 

its operation abnormal as soon as possible, an early fault warning method of the wind 
turbine main transmission system based on SCADA and CMS was proposed. The method 
is applied to an actual wind turbine to verify its feasibility, and the experimental results 
showed that： 

(1) The state evaluation parameters have good prediction results under normal and 
fault conditions of the main transmission system. The prediction model established by the 
fusion of SCADA and CMS data has good generalization performance. Meanwhile, its 
prediction accuracy is higher than the prediction results using SCADA data alone. These 
will lead to a higher degree of confidence in the final main transmission system operating 
condition monitoring results. 

(2) The main transmission system is a complex coupled system with multiple com-
ponents. When the operation is abnormal, not all the prediction residuals of the state eval-
uation parameters fluctuate greatly. Using a single indicator is not enough to accurately 
characterize the operational state of the main transmission system. We should consider 
multiple dimensions and use the fusion of multiple indicators to get a more accurate pic-
ture of its operational state. 

(3) This method can take full advantage of SCADA and CMS data by fusing their 
characteristic information. The actual monitoring of wind farm turbines revealed that it 
can monitor the main transmission system operation abnormality earlier compared with 
the existing SCADA system. 

To sum up, the proposed method in this study can effectively and accurately monitor 
the operational state of the main transmission system. It can provide effective support for 
the safe and efficient operation of wind turbines and prevent deterioration of turbine fail-
ures. However, at present, the method is only applied to 2WM wind turbines in wind 
farms, and there are few fault samples. Therefore, in future work, this method will be 
applied to more fault modes of the wind turbine. Meanwhile, we will carry out the divi-
sion of wind turbine groups and establish a digital and remote intelligent monitoring sys-
tem for wind turbine clusters. 

Author Contributions: Conceptualization, H.C., J.C. and J.D.; methodology, H.C. and J.D.; valida-
tion, J.C.; formal analysis, X.W.; investigation, J.C. and X.W.; resources, J.D.; data curation, Hanyu 
Tao; writing—original draft preparation, J.C. and H.T.; writing—review and editing, H.C. and J.D.; 

3-13 3-15 3-17 3-19 3-21 3-23 3-25
0.45

0.50

0.55

0.60

0.65

0.70

3-13 3-15 3-17 3-19 3-21 3-23 3-25
0.45

0.50

0.55

0.60

0.65

0.70

Fu
sio

n 
re

sid
ua

ls

Time

 Fusion residuals
 Upper threshold
 Lower threshold

2022-3-24 15:34
 Abnormal alarm 

 (a)Monitoring results based on SCADA data   

Fu
sio

n 
re

sid
ua

ls

Time

 Fusion residuals
 Upper threshold
 Lower threshold

2022-3-21 18:03
Abnormal alarm 

(b) Monitoring results based on SCADA and CMS data fusion

Figure 14. Comparison of monitoring results.

6. Conclusions

To accurately obtain the operational state of the main transmission system and detect
its operation abnormal as soon as possible, an early fault warning method of the wind
turbine main transmission system based on SCADA and CMS was proposed. The method
is applied to an actual wind turbine to verify its feasibility, and the experimental results
showed that:

(1) The state evaluation parameters have good prediction results under normal and
fault conditions of the main transmission system. The prediction model established by the
fusion of SCADA and CMS data has good generalization performance. Meanwhile, its
prediction accuracy is higher than the prediction results using SCADA data alone. These
will lead to a higher degree of confidence in the final main transmission system operating
condition monitoring results.

(2) The main transmission system is a complex coupled system with multiple com-
ponents. When the operation is abnormal, not all the prediction residuals of the state
evaluation parameters fluctuate greatly. Using a single indicator is not enough to accurately
characterize the operational state of the main transmission system. We should consider
multiple dimensions and use the fusion of multiple indicators to get a more accurate picture
of its operational state.

(3) This method can take full advantage of SCADA and CMS data by fusing their
characteristic information. The actual monitoring of wind farm turbines revealed that it
can monitor the main transmission system operation abnormality earlier compared with
the existing SCADA system.

To sum up, the proposed method in this study can effectively and accurately monitor
the operational state of the main transmission system. It can provide effective support
for the safe and efficient operation of wind turbines and prevent deterioration of turbine
failures. However, at present, the method is only applied to 2WM wind turbines in wind
farms, and there are few fault samples. Therefore, in future work, this method will be
applied to more fault modes of the wind turbine. Meanwhile, we will carry out the division
of wind turbine groups and establish a digital and remote intelligent monitoring system
for wind turbine clusters.
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