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Abstract: The tooth root crack fault is a common fault type of the spiral bevel gear pair (SBGP).
Affected by the strong bearing capacity, the early crack fault of the SBGP cannot be found in time. In
this study, a finite element (FE) model of the SBGP is established and assembled through the tooth
contact analysis. The maximum tooth root stress is analyzed considering the variation of assembly
errors. Meanwhile, this study simulates the tooth root crack fault of the bevel pinion with different
crack degrees. The initial position of the crack is located where the maximum tooth root stress
appears. The time-varying mesh stiffness (TVMS) of the SBGP considering different degrees of the
pinion tooth root crack fault is obtained. The TVMS and the non-load transmission error are brought
into a hybrid FE dynamic model, and steady responses are solved. Based on this, the sensitivities of
various statistical indicators for identifying the tooth root crack fault of SBGP under the influence of
assembly errors are verified. This paper can provide the necessary theoretical basis for the analysis
and diagnosis of tooth root crack faults in the SBGP transmission system.

Keywords: time-varying mesh stiffness; spiral bevel gear pair; tooth root crack fault; statistical
indicator; assembly error

1. Introduction

The transmission system of the SBGP has a strong load-bearing capacity, and minor
cracks are not easy to be found in time, resulting in broken teeth after the cracks expand
to the strength limit. From the example of the broken tooth fault shown in Figure 1, at
the tooth root of the active flank, the crack is initiated in the middle position along the
tooth width. The propagation path of the crack has different characteristics in different
directions. Kim et al. [1] and Park [2] pointed out that in the tooth thickness direction, the
crack propagates toward the gear foundation first, and when the crack propagates beyond
the tooth centerline, the propagation direction turns to the root of the opposite flank. In
the tooth width direction, the crack propagations towards the heel and toe directions have
different performance characteristics. For the toe side, the propagation direction of the
crack almost does not change along the propagation direction of the early crack. For the
heel direction, the propagation direction keeps unchanged at first, then after a certain
degree, the crack propagation direction turns towards the top of the tooth. Spievak et al. [3]
proved this phenomenon by the principle of fracture mechanics. Based on this, Levicki
et al. [4] studied the effect of moving the tooth load on the crack propagation path of bevel
gears. Vukelic et al. [5] studied the fractured SBGP of a shipyard crane. They pointed out
that gear crack failure may be caused by misalignments. Ural et al. [6] used the fracture
mechanics method to accurately simulate the crack propagation direction of the SBGP
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compared with the actual broken tooth morphology of the OH-58 Kiowa Helicopter. In
this paper, the FE method of the SBGP is established, and the influences of the assembly
errors on the tooth root stress of the SBGP are analyzed. Meanwhile, based on the crack
propagation law proposed by the previous literature, the crack fault at the tooth root of
the pinion is simulated and the TVMS curves of the SBGP under different crack degrees
considering the assembly errors are calculated.
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The complex space surface structure of the SBGP makes it different from the spur gear
pair or the helical gear pair, which can obtain the TVMS by the energy method [8,9]. The
general research on the TVMS of the SBGP are mainly divided into the loaded tooth contact
analysis method [10–13] and the FE method. The loaded tooth contact analysis method
simplifies the gear local contact relationship and is obtained by the linear programming
method [14]. The efficiency of this method is much higher than that of the FE method.
Through this method, scholars have carried out research on gear pair machining parameter
optimization [15–17], machining error influence analysis [18], assembly error influence
analysis [19], system-level modelling [20] and so on. However, there were few studies
about gear tooth fault simulation and tooth bending stress analysis by using this method.
Due to the robustness of the contact analysis of the FE method, scholars have conducted
many studies on the static and dynamic characteristics of the SBGP based on it. Bibel
et al. [21] analyzed the tooth surface contact stress of SBGP by the FE method. Argyris
et al. [22] analyzed the contact stress and bending stress of the SBGP by the FE method.
Gonzalez-Perez et al. [23] established a FE model of the SBGP by reverse engineering, which
well restored the designer’s intention. They simulated the tooth surface contact pattern
and contact stress accurately through the FE model. Hou et al. [24] proposed the vector
form intrinsic FE method, and based on this method, the static contact stress and bending
stress of the SBGP were analyzed. They pointed out that when dealing with dynamic
problems and strong nonlinear problems, the efficiency of the proposed model will be
greatly improved. Gan et al. [25] studied the temperature distribution of the SBGP under
the mixed electrohydrodynamic lubrication state based on the FE method. Fu et al. [26]
established a FE model of the SBGP and analyzed the influence of input torque on the
tooth bending stress, tooth surface contact stress and transmission error. Hou et al. [27]
analyzed the contact stress and tooth bending stress changes of the SBGP considering
different torques and different modulus by the FE method. They pointed out that under the
influence of edge contact, the contact stress of the tooth surface will surge at the edge. Wang
et al. [28] simulated the dynamic contact and impact phenomena of an SBGP based on an
FE model. The maximum resonance frequency of the system was analyzed. Guo et al. [29]
analyzed the tooth surface contact stress distribution before and after tool optimization
by the FE method. This method can be used to eliminate edge contact and reduce the
maximum contact stress under heavy load conditions. Wang et al. [30] established a coupled
thermo-elastic 3D FE model to improve the thermal behavior of SBGP by adjusting the
machine setting parameters. Yang et al. [31] considered the broken tooth fault of the SBGP,
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the TVMS was calculated by the FE method, and the dynamic response of the system is
obtained by bringing it into the pure torsional dynamic model.

Through the above survey, it is found that the FE method is a common method used
to analyze the bending stress and the contact stress of the SBGP. Hence, this paper analyzes
the tooth root stress considering the variation of assembly errors to locate the initial crack
position. Meanwhile, the TVMS curve of the SBGP under the pinion tooth crack fault
condition is obtained by introducing a simple space crack into the FE model. Through the
dynamic analysis, the system responses under different crack degrees are obtained. Based
on this, the sensitivity of some statistical indicators for monitoring the crack fault of SBGP
under the influence of assembly errors is verified.

2. FE Model Description
2.1. Tooth Contact Analysis Considering the Assembly Error

In this section, the teeth surfaces of the bevel pinion and the bevel gear are derived by
the generation method and the tile method, respectively. The blank parameters can be seen
in Table 1 and the machine tooth setting parameters of the bevel pinion and the bevel gear
can be seen in Tables 2 and 3, respectively.

Table 1. Blanks parameters.

Parameter Bevel Pinion Bevel Gear

Tooth number z1/z2 17 81
Modulus m (mm)/Shaft angle
Σ (◦)/Mean spiral angle β (◦) 5.6/90/35

Direction of rotation Left-handed Right-handed
Face width b (mm) 60

Mean cone distance R (mm) 201.741
Pitch angle δ (◦) 11.8530 78.1470
Root angle δf (◦) 10.9321 76.1944
Face angle δa (◦) 13.8056 79.0679

Addendum height ha (mm) 6.8480 2.6720
Dedendum height hf (mm) 3.7250 7.9010

Table 2. Machine tool settings of bevel pinion.

Parameter Concave Convex

Cutter point radius r01 (mm) 226.47 230.86
Pressure angle α01 (◦) −18.75 21.25

Root fillet radius ρ01 (mm) 1 1
Machine center to back X1 (mm) −5.237 8.545

Sliding base XB1 (mm) 15.217 13.183
Blank offset E1 (mm) 3 3.5

Radial distance Sr1 (mm) 197.762 209.634
Machine root angle γm1 (◦) 7.7936 10.05

Cradle angle q1 (◦) 71.6258 67.3267
Tilt Angle i (◦) 2.7343 3

Swivel angle j (◦) 286.2802 227.2839
Velocity ratio i1 4.6799 5.2574
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Table 3. Machine tool settings of bevel gear.

Parameter Value

Cutter point radius r02 (mm) 229.975(concave)/227.225(convex)
Pressure angle α02 (◦) −19(concave)/21(convex)

Root fillet radius ρ02 (mm) 1.6
Machine center to back X2 (mm) 0

Sliding base XB2 (mm) 0
Blank offset E2 (mm) 0

Radial distance Sr2 (mm) 200.091
Machine root angle γm2 (◦) 76.1944

Cradle angle q2 (◦) 69.3682
Velocity ratio i2 1.0212

Through the local synthesis method [32,33], the tooth surface points r1 and r2, and
the tooth surface normal directions n1 and n2 of the pinion and the gear are obtained,
respectively. The detail of the tooth surface derivation can refer to Appendix A. The
following coordinate transformations are used to assemble the two gears into the same
mounting coordinate system:{

rhi(ψci, si, θi) = Mhiri(ψci, si, θi)
nhi(ψci, si, θi) = Lhini(ψci, si, θi)

, (1)

where i = 1, 2 represent the pinion and the gear, respectively; Mhi is the transformation
matrix from the cutter head coordinate system to the blank coordinate system; Lhi is the
first three-order sub-matrix of Mhi; ψci, si and θi are the rotation angle of the cradle, the
distance from the point on the theoretical tool tip to the tool profile, and the rotation angle
of the cutter head, respectively. Mhi can be expressed as:{

Mh1 = TRSZ
(
∆Ap

)
·ROTZ(− ϕ1)

Mh2 = TRSY(∆E)·ROTY(∆Σ− Σ)·TRSZ
(
∆Ag

)
·ROTZ(ϕ2)

(2)

where ∆E is the offset error; ∆Σ is the shaft angle error; ∆Ap is the pinion axial error; ∆Ag is
the gear axial error. The assembly errors are expressed in Figure 2. ϕ1 and ϕ2 are the initial
installation angles of the pinion and the gear, respectively; Σ is the shaft angle.
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In the assembly coordinate system O-xh-yh-zh, the two meshing gear teeth should
have collinear normal vectors and the same coordinate values at the contact point:

rh1(ψc1, s1, θ1, ϕ1) = rh2(ψc2, s2, θ2, ϕ2)
nh1(ψc1, s1, θ1, ϕ1) = nh2(ψc2, s2, θ2, ϕ2)(

∂r1
∂s1
× ∂r1

∂θ1

)
· ∂r1

∂ϕ1
= 0(

∂r2
∂s2
× ∂r2

∂θ2

)
· ∂r2

∂ϕ2
= 0

(3)
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There are seven independent equations in the above equation system, including eight
unknown parameters. Given the rotation angle of the pinion ψ1, other variables can be
determined. Then, the contact trajectory and the non-load transmission error (NLTE) of
the SBGP in the rotation range of ψ1 = (−π/z1, π/z1) are obtained. The transmission error
between the two gears can be expressed as:

∆φ = φ2 − φ20 − (φ1 − φ10)
z1

z2
(4)

where φ10 and φ20 are the initial rotation angles of the pinion and the gear, respectively; φ1
and φ2 are the real-time rotation angles of the pinion and the gear, respectively; z1 and z2
are the numbers of teeth of the pinion and the gear, respectively.

It is known that for the SBGP, the NLTE is one of the main sources of vibration and
noise. The smaller the NLTE is, the smoother the gear system operates. Based on the
parameters of the SBGP listed in Ref. [34], the NLTEs and contact trajectories of the SBGP
under different assembly error states are illustrated in Figure 3. Influenced by assembly
errors, both the NLTE values and the contact trajectories of the SBGP have changed. For the
parameters of the SBGP in this study, the larger the value of ∆E, ∆Σ and ∆Ag become, the
larger the value of NLTE becomes, and the smaller the value of ∆Ap becomes, the larger the
value of NLTE becomes. Therefore, in the process of assembling the SBGP, it is necessary to
control these errors to obtain a smaller value of ∆E, ∆Σ and ∆Ag, and a larger value of ∆Ap
to ensure that the NLTE values are as small as possible.

Machines 2022, 10, x FOR PEER REVIEW 5 of 32 
 

 

( ) ( )
( ) ( )
ψ θ ϕ ψ θ ϕ
ψ θ ϕ ψ θ ϕ

θ ϕ

θ ϕ

 =


=

 ∂ ∂ ∂

× ⋅ = ∂ ∂ ∂ 
 ∂ ∂ ∂ × ⋅ =  ∂ ∂ ∂ 

h1 c1 1 1 1 h2 c2 2 2 2

h1 c1 1 1 1 h2 c2 2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

, , , , , ,

, , , , , ,

0

0

s s

s s

s

s

r r

n n

r r r

r r r

 

(3) 

There are seven independent equations in the above equation system, including eight 
unknown parameters. Given the rotation angle of the pinion ψ1, other variables can be 
determined. Then, the contact trajectory and the non-load transmission error (NLTE) of 
the SBGP in the rotation range of ψ1 = (−π/z1, π/z1) are obtained. The transmission error 
between the two gears can be expressed as: 

( ) 1
2 20 1 10

2

z
z

φ φ φ φ φΔ = − − −  (4) 

where ϕ10 and ϕ20 are the initial rotation angles of the pinion and the gear, respectively; ϕ1 
and ϕ2 are the real-time rotation angles of the pinion and the gear, respectively; z1 and z2 
are the numbers of teeth of the pinion and the gear, respectively. 

It is known that for the SBGP, the NLTE is one of the main sources of vibration and 
noise. The smaller the NLTE is, the smoother the gear system operates. Based on the pa-
rameters of the SBGP listed in Ref. [34], the NLTEs and contact trajectories of the SBGP 
under different assembly error states are illustrated in Figure 3. Influenced by assembly 
errors, both the NLTE values and the contact trajectories of the SBGP have changed. For 
the parameters of the SBGP in this study, the larger the value of ΔE, ΔΣ and ΔAg become, 
the larger the value of NLTE becomes, and the smaller the value of ΔAp becomes, the 
larger the value of NLTE becomes. Therefore, in the process of assembling the SBGP, it is 
necessary to control these errors to obtain a smaller value of ΔE, ΔΣ and ΔAg, and a larger 
value of ΔAp to ensure that the NLTE values are as small as possible. 

×10−4 (rad)

Mesh cycle

N
LT

E

−0.1 0.10

0 1 2
−2

−1.5

−1

−0.5

0

0 1 2

−1.5

−1

−0.5

0

N
LT

E

×10−4 (rad)

Mesh cycle

ΔE= 0.1  mm
ΔE= 0     mm
ΔE= −0.1 mm

ΔΣ = 0.1 °
ΔΣ= 0     °
ΔΣ= −0.1 °

−0.1 0.10

(a) (b)  

Machines 2022, 10, x FOR PEER REVIEW 6 of 32 
 

 

×10−4 (rad)

Mesh cycle

N
LT

E

−0.10.1
0

N
LT

E

×10−4 (rad)

Mesh cycle

ΔAp= 0.1 mm
ΔAp= 0    mm
ΔAp= −0.1mm

(c) (d)

−0.1 0.10

0 1 2
−2

−1.5

−1

−0.5

0 ΔAg= 0.1 mm
ΔAg= 0    mm
ΔAg= −0.1mm

0 1 2

−1.
5

−1

−0.5

0

Figure 3. Contact trajectories and NLTEs variation due to the assembly errors: (a) ΔE; (b) ΔΣ; (c) 
ΔAg; (d) ΔAp. 

2.2. FE Modelling of the SBGP 
The FE model of the SBGP is illustrated in Figure 4. 

Driving node

Gear bottom surface 

Pinion inner hub

Rigid 
surface

Rigid 
surface

Rigid 
surface

Rigid 
surface

 
Figure 4. FE model of the SBGP. 

Since the FE model established in this paper is a five-tooth model and the actual gears 
foundation structures are not fully established (see Figure 4), a master node is used to 
constrain the nodes on the inner hub and the rigid surfaces of both sides of the pinion. 
The nodes on the bottom surface and the rigid surfaces of the gear are fully constrained. 
Five contact pairs are established among the mating tooth surfaces by the Conta 174 and 
Target 170 element pairs. A mesh cycle is divided into 20 positions. At each position, the 
rotation of the SBGP must meet the requirement of the transmission ratio; meanwhile, the 
pinion must rotate with an angle to close the NLTE. The nonlinear contact iteration is 
performed to complete the static analysis of the gear pair. After that, the equivalent static 
rotation angle θp1 of the master node along the rotation direction is obtained. The mesh 
stiffness value of the SBGP can be obtained by the following equation: 

Figure 3. Contact trajectories and NLTEs variation due to the assembly errors: (a) ∆E; (b) ∆Σ; (c) ∆Ag;
(d) ∆Ap.



Machines 2022, 10, 929 6 of 25

2.2. FE Modelling of the SBGP

The FE model of the SBGP is illustrated in Figure 4.
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Since the FE model established in this paper is a five-tooth model and the actual gears
foundation structures are not fully established (see Figure 4), a master node is used to
constrain the nodes on the inner hub and the rigid surfaces of both sides of the pinion. The
nodes on the bottom surface and the rigid surfaces of the gear are fully constrained. Five
contact pairs are established among the mating tooth surfaces by the Conta 174 and Target
170 element pairs. A mesh cycle is divided into 20 positions. At each position, the rotation
of the SBGP must meet the requirement of the transmission ratio; meanwhile, the pinion
must rotate with an angle to close the NLTE. The nonlinear contact iteration is performed
to complete the static analysis of the gear pair. After that, the equivalent static rotation
angle θp1 of the master node along the rotation direction is obtained. The mesh stiffness
value of the SBGP can be obtained by the following equation:

k =
T

θp1r2
p

(5)

where T is the driving torque applied on the pinion; rp is the pitch circle radius of the SBGP.
It is worth noting that the TVMS obtained in this paper is entirely caused by the contact
deformation of the SBGP, so the changing of NLTE should be considered additionally in
the subsequent dynamic analysis.

The TVMS of the SBGP in the healthy state can be seen in Figure 5.
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2.3. Tooth Root Crack Fault Simulation

According to the results of Ref. [3], it can be seen that on the active tooth side, the crack
originated at the midpoint along the tooth width of the tooth root. The crack propagation
can be explained in two directions. In the tooth thickness direction, the crack expands to
the foundation first, and after reaching the middle of the tooth, the expanding direction
turns towards the root of the opposite flank. In the tooth width direction, the early cracks
propagate parallel to the tooth width direction (see the shaded part in Figure 6). In
this paper, the early tooth root crack fault of the pinion is simulated through the node
replacement method (see Figure 7). Through the tooth root stress analysis, the position
where the maximum tooth root stress of the pinion occurs is obtained. The crack initial
position is usually happening where the maximum tooth root stress appears due to the lack
of strength. The distance from the toe end to the crack initial position is set as λ. According
to the simplified fault morphology, taking the initial position as the intermediate position,
on the tooth root surface, the width of the crack along the tooth width direction is δ. The
crack depth is specified as χ. The crack width gradually narrows with depth.

Machines 2022, 10, x FOR PEER REVIEW 7 of 32 
 

 

θ
= 2

p1 pr
Tk  (5) 

where T is the driving torque applied on the pinion; rp is the pitch circle radius of the 
SBGP. It is worth noting that the TVMS obtained in this paper is entirely caused by the 
contact deformation of the SBGP, so the changing of NLTE should be considered addi-
tionally in the subsequent dynamic analysis. 

The TVMS of the SBGP in the healthy state can be seen in Figure 5. 

0 1 22.8
3

3.2
3.4
3.6
3.8

4 ×108

TV
M

S 
(N

/m
)

Mesh cycle  
Figure 5. TVMS of the SBGP in a healthy state. 

2.3. Tooth Root Crack Fault Simulation 
According to the results of Ref. [3], it can be seen that on the active tooth side, the 

crack originated at the midpoint along the tooth width of the tooth root. The crack prop-
agation can be explained in two directions. In the tooth thickness direction, the crack ex-
pands to the foundation first, and after reaching the middle of the tooth, the expanding 
direction turns towards the root of the opposite flank. In the tooth width direction, the 
early cracks propagate parallel to the tooth width direction (see the shaded part in Figure 
6). In this paper, the early tooth root crack fault of the pinion is simulated through the 
node replacement method (see Figure 7). Through the tooth root stress analysis, the posi-
tion where the maximum tooth root stress of the pinion occurs is obtained. The crack ini-
tial position is usually happening where the maximum tooth root stress appears due to 
the lack of strength. The distance from the toe end to the crack initial position is set as λ. 
According to the simplified fault morphology, taking the initial position as the intermedi-
ate position, on the tooth root surface, the width of the crack along the tooth width direc-
tion is δ. The crack depth is specified as χ. The crack width gradually narrows with depth. 

FE method
ExperimentBEM

FE method

Experiment

BEM

Heel
Toe

 
Figure 6. Bevel pinion crack propagation path [6]. Figure 6. Bevel pinion crack propagation path [6].

Machines 2022, 10, x FOR PEER REVIEW 8 of 32 
 

 

Crack implant

1
2

3
4

1
2

3
4

6
5

δ

χ 

λ

(a) (b)  
Figure 7. Node replacement method to generate crack section: (a) Node replacement example; (b) 
Crack characterization parameters. 

  

Figure 7. Node replacement method to generate crack section: (a) Node replacement example;
(b) Crack characterization parameters.

The flow chart of the FE modelling process is shown in Figure 8.
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3. Results and Discussion
3.1. Influence of the Assembly Errors on the Tooth Root Stress Distribution

The direct cause of tooth root crack fault is that the root stress exceeds the material
bearing limit. Therefore, the position where the crack initiates should be where the root
stress is the largest. Affected by the assembly errors, the maximum tooth root stress value
and its position are volatile. In order to explore the influences of assembly errors on the
maximum root stress value and its position, the following research is carried out.

After the static analysis, the von Mises stress cloud contour of the pinion in the error-
free condition is shown in Figure 9. Based on the mesh layer where the maximum von
Mises stress of the tooth root is located (the red line in the figure), all nodes on the red
line are extracted and the relative von Mises stress is obtained. After three meshing cycles
(a single tooth goes through the entire cycle of meshing in and out), the contour plots of
the stress variation of the selected nodes under different assembly error conditions are
analyzed below.
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3.1.1. Offset Error

As shown in Figure 10, with the increase in ∆E, the maximum von Mises stress of
the tooth root of the pinion increases gradually. When ∆E raises in the positive direction,
the maximum stress value increases faster, which indicates that to avoid the excessive
maximum stress value of the tooth root of the pinion, it should avoid the too large positive
value of ∆E. The position of the maximum root stress will gradually change towards toe
with the increase in ∆E because the contact trajectory will gradually move towards toe with
the increase in ∆E. In general, to reduce the maximum value of the root stress of the pinion,
the variation of ∆E should not be too large.
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Figure 10. Variation of tooth root stress in three mesh cycles considering the variation of offset error. 
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3.1.2. Shaft Angle Error

The influence of ∆Σ on the maximum root stress value and its position is shown in
Figure 11. It can be seen from the figure that with the gradually increase in ∆Σ, the maximum
root stress shows a gradually increasing trend. However, in the range of ∆Σ varying from
−0.1◦ to 0.1◦, the position variation of the maximum root stress is not obvious, which indicates
that the position of the maximum root stress is not sensitive to the changing of ∆Σ.
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3.1.3. Pinion Axial Error

The influence of ∆Ap on the maximum root stress value and its position is illustrated
in Figure 12. It can be seen from the figure that the smaller the value of ∆Ap, the greater the
maximum root stress. However, no matter how much ∆Ap changes, it does not affect the
position where the maximum root stress occurs.
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3.1.4. Gear Axial Error

Figure 13 illustrates the influence of ∆Ag on the maximum root stress value of the
pinion and its position along the tooth width. It can be seen from the figure that with the
increase in ∆Ag, the position of the maximum tooth root stress of the pinion moves towards
the toe direction. However, within the range of ∆Ag = −0.1 mm to 0.1 mm, the maximum
tooth root stress value only increased by 6.5 MPa. This indicates that the maximum root
stress of the pinion is insensitive to the change in ∆Ag.
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In general, among all the assembly errors, ∆E has the greatest influence on the position
of the maximum root stress of the pinion, whereas ∆Ag has the least. Within the scope
of ensuring the reasonable root stress of the mating gear, the changes of ∆E, ∆Σ and ∆Ap
should be especially controlled. The smaller the value of ∆E and ∆Σ are, the better it is
to obtain a small root stress value. The larger the value of ∆Ap becomes, the better it is
to obtain a small root stress value. No matter how the assembly error changes in this
study, the maximum root stress always appears around the middle of the tooth width and
deviates from the toe side. This shows that the root crack fault of the pinion is most likely
to occur around this zone.

3.2. Crack Fault Analysis of the SBGP
3.2.1. TVMS Due to the Crack Fault

The early cracks propagated nearly parallel to the tooth width direction. In this study,
the tooth root crack of the SBGP is divided into four working cases. The crack cross-section
morphology is shown in Figure 14. Through the above results of the root stress distribution
in the healthy state, it is assumed that the initial crack of the tooth root occurs at the position
of the maximum stress (λ = 29.2 mm). Case 1 represents the initial crack. Case 2 and Case
3 represent the further aggravation of the crack fault, in which the crack morphology
increases in both length δ and depth χ. Finally, Case 4 indicates that the crack has crossed
the centerline of the tooth and has begun to turn its direction and propagate towards the
root of the opposite side. The location and the morphology parameters of the four cases are
listed in Table 4 and Figure 14.
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Table 4. Crack location and morphology parameters.

Case 1 Case 2 Case 3 Case 4

λ (mm) 29.2 29.2 29.2 29.2
δ (mm) 4.43 8.46 12.48 16.51
χ (mm) 1.78 4.45 6.23 8.02

Based on the method described in Section 2, Figure 15a shows the TVMS curves
of the SBGP under different degrees of crack faults. It can be seen from the figure that
when a tooth root crack fault occurs, two meshing cycles of the TVMS curves are affected.
Figure 15b illustrates the initial gaps of all five tooth pairs over two meshing cycles. It
is worth noting that the root crack fault is artificially implanted at the tooth root of the
pinion of tooth pair 3. Here, the two meshing cycles are divided into three parts according
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to the change of the tooth pair with the smallest initial gap. The first part is when tooth
pair 2 has the smallest absolute initial gap value. During this period, tooth pair 1 exits the
meshing state, the absolute value of the initial gaps of tooth pair 3 decreases gradually,
and the absolute value of the initial gaps of tooth pair 2 increases gradually. For tooth
pair 3, the crack is not directly below the contact ellipse currently, so the TVMS is less
affected by the crack fault. When the absolute value of the initial gaps of tooth pair 3
among all the tooth pairs is the smallest, tooth pair 2 gradually exits the meshing state, and
tooth pair 4 gradually enters the meshing state. At this time, the contact force is mostly
endured by tooth pair 3, and the contact ellipse is above the root crack. Therefore, the
TVMS in this period is mostly affected by the crack fault. The stiffness value of Case 4 in
this region can reach a maximum relative difference of 5.45% compared with the healthy
condition. When the minimum initial gap exists on the tooth pair 4, the tooth pair 3 is
about to leave or has already left the meshing state, and the tooth pair 5 is about to enter
or has entered the meshing state. During this period, the contact force endured by tooth
pair 3 decreases gradually, and the contact ellipse leaves the tooth surface above the crack
gradually. Therefore, the TVMS values of crack fault condition in this region tend to the
curves of the healthy state.
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initial gaps during two meshing cycles.

3.2.2. Dynamic Simulation

A schematic of the SBGP and shafts system is established (see Figure 16). In this
system, the driving torque and the slave torque are applied on the drive node and the
slave node, respectively. The dimensions of the input shaft and the intermediate shaft, the
supporting stiffnesses and damping coefficients of the gear, the supporting bearings B1, B2,
B3, and B4, and the mass of the gear are referenced in Ref. [34].
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mb1
..
xb1 + kb1xxb1 + kb1b2(δ
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b1b2 = 0
mb1
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yb1 + kb1yyb1 + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ2

b1b2 = 0
mb1
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b1b2 = 0
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b1b2 = Tb1
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..
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T
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T
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b1b2 = 0
mb2

..
yb2 + kb2yyb2 + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ8

b1b2 = 0
mb2

..
zb2 + kb2zzb2 + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ9

b1b2 = 0
Ib2x

..
θb2x + kb2θxθb2x + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ10

b1b2 = 0
Ib2y

..
θb2y + kb2θyθb2y + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ11

b1b2 = 0
Ib2z

..
θb2z + kb2θzθb2z + kb1b2(δ

T
b1b2qb1b2 − NLTE)δ12

b1b2 = Tb2

, (7)

where mbi, Ibix, Ibiy and Ibiz are the mass and moments of inertia of the gear i (i = 1,2
represents the bevel pinion and bevel gear, respectively). kbix, kbiy, kbiz, kbiθx, kbiθy and kbiθz
are the supporting stiffness of gear i in six directions, respectively. kb1b2 is the TVMS of the
SBGP and NLTE is the NLTE of the SBGP accordingly. Considering the NLTE in the system
means that only when the dynamic projected displacement of the SBGP exceeds the value
of NLTE, the contact of the SBGP can occur. The derivation of the projection displacement
vector of the SBGP δb1b2 can be seen in Ref. [34]. The superscript k of δk

b1b2 denotes the
k-th element of vector δb1b2. qb1b2 is the displacement vector consisting of 12 degrees of
freedom of the two gears. Due to the introduction of the shaft components, the driving
torque Tb1 originally added to the rotation direction of the pinion is transferred to the
drive node of the input shaft. At the same time, the slave torque Tb2 originally added in
the rotation direction of the gear is transferred to the slave node of the intermediate shaft.
The schematic of the grouping of the system stiffness matrix and the damping matrix is
illustrated in Figure 17.
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The damping matrices of the input shaft-bevel pinion structure (with footnote “1”)
and the damping matrices of the intermediate shaft-bevel gear structure (with footnote “2”)
are described as:

Ci = αi·Mi + βi·Ki, (i = 1, 2) (8)

where αi and βi are the damping coefficients of the structure i; Mi and Ki are the mass
matrix and stiffness matrix of the structure i, which are solved by the Timoshenko beam
theory. The damping of the supporting bearings is considered as contact values. The mesh
damping of the SBGP is described as:

Cb1b2 = 2ξ

√
kb1b2

1/mb1 + 1/mb2
, (9)

where ξ denotes the damping ratio of the gear pair, mb1 and mb2 are the mass of the bevel
pinion and the bevel gear, respectively.

The system level equation of motions can be constructed as the matrix form:

M
..
x+C

.
x+Kx=F (10)

In the simulation process, being as the excitation source, kb1b2 and NLTE are inter-
polated according to the time series relationship to obtain the mesh stiffness and NLTE
values under each Newmark integration step. After solving for a whole sampling time, the
dynamic response of the system is obtained.

3.2.3. Response Analysis Due to the Crack Fault of the SBGP

Figures 18 and 19 illustrate the time-domain waveforms and amplitude spectrums of
the pinion in the healthy condition and cracked Case 4 condition, respectively. It can be
seen from the figures that in the healthy state, the acceleration time-domain waveforms
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of all meshing cycles are identical, and the components in the amplitude spectrums are
only the meshing frequency f m and its harmonics. Under the crack fault condition, every
time the pinion revolts one period Tbp, the faulty tooth participates in meshing for two
mesh periods. There are fluctuations at intervals of Tbp in the time-domain waveform of
Case 4. The fault causes the mutation waveform of three meshing cycles. In the faulty
amplitude spectrum, under the influence of the crack fault, sidebands with the rotation
frequency of the pinion f bp as the interval appear on both sides of the meshing frequency
and its harmonics.
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3.2.4. Sensitivity Analysis of Statistical Indicators under Healthy Condition

Based on the acceleration signal of bearing B3 in the y-direction, the time-domain
statistical indicators are validated for detecting the crack fault and its severity. The statistical
indicators [35] can be seen in Table 5.

It can be seen from the variation trends of multiple time-domain statistical indicators
(see Figure 20) that when a tooth crack fault occurs, the values of the indicators A, SMR,
P, C, I and L have monotonic changing trends relative to the health condition. So, these
indicators can be used to monitor the severity of crack degrees.
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Table 5. Time-domain statistical indicators.

Name Equation Name Equation

Average
(A) x = 1

N

N
∑

n=1
x(n)

Crest
(C) C =

xp
xrms

Standard deviation
(STD) σx =

√
1

N−1

N
∑

n=1
[x(n)− x]2

Impulse
(I) I = xp

x

Square mean root
(SMR) xr =

(
1
N

N
∑

n=1

√
|x(n)|

)2 Clearance
(L) L =

xp
xr

Root mean square
(RMS) xrms =

√
1
N

N
∑

n=1
x2(n)

Peak-to-peak
(PP)

PP =
max(x(n))−min(x(n))

Peak
(P) xp = max

∣∣x(n)∣∣ Skewness
(S) S =

N
∑

n=1
[x(n)−x]3

(N−1)σ3
x

Waveform
(W) W = xrms

x
Kurtosis

(K) K =

N
∑

n=1
[x(n)−x]4

(N−1)σ4
x
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Figure 21 illustrates the change of the frequency-domain indicators for the accelera-
tion signal of bearing B3 in the y-direction under different crack degrees. The name and 
the expression of each indicator in the frequency domain can be referred to in Table 6. 

Figure 20. Fluctuations of time-domain indicators relative to the healthy condition for different
crack degrees.

Figure 21 illustrates the change of the frequency-domain indicators for the acceleration
signal of bearing B3 in the y-direction under different crack degrees. The name and the
expression of each indicator in the frequency domain can be referred to in Table 6.
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Table 6. Frequency-domain statistical indicators.

Name Equation Name Equation

F12 F12 = 1
K

K
∑

k=1
s(k) F18 F18 =

√
K
∑
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f 2
k s(k)/

K
∑

k=1
s(k)

F13 F13 =

√
1

K−1

K
∑

k=1
[s(k)− F12]

2 F19 F19 =

√
K
∑

k=1
f 4
k s(k)/

K
∑

k=1
f 2
k s(k)

F14 F14 =
K
∑

k=1
[s(k)− F12]

3/(K− 1)F3
13

F20 F20 =
K
∑

k=1
f 2
k s(k)/

√
K
∑

k=1
s(k)

K
∑

k=1
f 4
k s(k)

F15 F15 =
K
∑

k=1
[s(k)− F12]

4/(K− 1)F4
13

F21 F21 = F17
F16

F16 F16 =
K
∑

k=1
fks(k)/

K
∑

k=1
s(k) F22 F22 =

K
∑

k=1
( fk − F16)

3s(k)/(K− 1)F3
17

F17 F17 =

√
1

K−1

K
∑

k=1
( fk − F16)

2s(k) F23 F23 =
K
∑

k=1
( fk − F16)

4s(k)/(K− 1)F4
17

As can be seen from Figure 21, when there is a crack fault at the tooth root of the
pinion, the values of the frequency-domain indicators F12, F14, F15, F17, F18, F19, F22 and
F23 have monotonic changes compared with the healthy ones, which indicates that the
above frequency-domain indicators can clearly distinguish the severity of the crack degrees
in the SBGP system. Therefore, these frequency-domain indicators can be used to diagnose
root crack faults in the SBGP system.

3.2.5. Crack Fault Detection under the Influence of the Offset Errors

Assembly errors are unavoidable during the SBGP operation. To explore the sensitivity
of the upper-mentioned indicators in diagnosing the crack fault of the SBGP under the
influence of assembly errors, the following analysis is performed.
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Through the analysis of Section 3.1, it is known that the offset error affects the position
of the maximum tooth root stress the most. Therefore, the following discussion deals with
the effectiveness of the indicators for diagnosing the crack fault under the influence of the
offset error. First, the crack severities are still classified as four cases. The crack sizes remain
unchanged (i.e., δ and χ follow the values of Case 1–Case 4 in Table 4). Under the influence
of the offset error, the maximum root stress position has changed, so the position parameter
of the cracks λ has changed (see Table 7).

Table 7. Crack location considering various offset errors.

∆E = −0.1 mm ∆E = −0.05 mm ∆E = 0 mm ∆E = 0.05 mm ∆E = 0.1 mm

λ (mm) 27.2 28.0 29.2 30.4 30.8

The TVMS curves are shown in Figure 22. First, it can be seen from the healthy
condition diagram (see Figure 22a) that as ∆E changes from −0.1 mm to 0.1 mm, the TVMS
curves of the SBGP show an overall upward trend. Compared with the condition of ∆E
= −0.1 mm, the maximum stiffness value increased by 5.09% and the minimum stiffness
value increased by 3.47% under the condition of ∆E = 0.1 mm.
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Figure 22. TVMS curves of SBGP considering assembly errors and crack faults: (a) TVMS in health 
conditions with offset errors; (b) TVMS curves in the condition of ΔE = −0.1 mm with different crack 
degrees; (c) TVMS curves in the condition of ΔE = −0.05 mm with different crack degrees; (d) TVMS 
curves in the condition of ΔE = 0 mm with different crack degrees; (e) TVMS curves in the condition 
of ΔE = 0.05 mm with different crack degrees; (f) TVMS curves in the condition of ΔE = 0.1 mm with 
different crack degrees. 

Figure 22. TVMS curves of SBGP considering assembly errors and crack faults: (a) TVMS in health
conditions with offset errors; (b) TVMS curves in the condition of ∆E = −0.1 mm with different crack
degrees; (c) TVMS curves in the condition of ∆E = −0.05 mm with different crack degrees; (d) TVMS
curves in the condition of ∆E = 0 mm with different crack degrees; (e) TVMS curves in the condition
of ∆E = 0.05 mm with different crack degrees; (f) TVMS curves in the condition of ∆E = 0.1 mm with
different crack degrees.

The effect of crack degrees on TVMS is analyzed for different offset errors. For ∆E
varies from −0.1 mm to 0.1 mm, compared to the health condition, the max/min relative
differences under various crack degrees are listed in Table 8. It can be seen from the table
that with the increase in ∆E, the max/min relative differences values show an overall
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upward trend as the crack severity increases, which indicates that a higher offset error
value may aggravate the meshing state of the SBGP with crack fault.

Table 8. The max/min relative differences of TVMS under various crack degrees and offset errors.

∆E = −0.1 mm ∆E = −0.05 mm ∆E = 0 mm ∆E = 0.05 mm ∆E = 0.1 mm

Relative Error Max/Min (%)

Case 1 0.02/1.31 0.03/1.20 0.03/1.02 0.07/0.95 0.09/1.34
Case 2 0.14/2.13 0.18/2.06 0.35/2.06 0.40/2.22 1.23/1.63
Case 3 0.30/3.46 0.31/3.50 0.75/3.75 0.71/4.14 1.79/3.60
Case 4 0.60/5.23 0.65/5.34 1.25/5.89 1.29/6.52 2.53/5.97

The system response is obtained by substituting the above TVMSs and the correspond-
ing time-varying NLTE into the proposed dynamic model. It is already known that six
time-domain indicators and eight frequency-domain indicators are sensitive to the tooth
root crack fault of SBGP under the assembly error-free condition. They are A, P, SMR,
C, I, and L in the time-domain, and F12, F14, F16, F17, F18, F19, F20, F21, F22 and F23
in the frequency-domain. Based on this, we will continue to analyze the sensitivity of
these indicators to the SBGP tooth root crack fault under the influence of the offset error.
According to the acceleration signal in the y direction of the bearing B3, the sensitivity of
these indicators is obtained.

In Figures 23 and 24, under the interference of offset error, the time-domain indicators
A, P, C, I and L, and the frequency-domain indicators F12, F18 and F19 still maintain a good
judgment threshold for fault information, so these indicators can be used as the indicators
for diagnosing crack faults of the SBGP in the presence of offset error.
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Figure 23. Under the influence of offset error, the fluctuation of time-domain indicators relative to 
their respective healthy condition values under different degrees of cracks. 
Figure 23. Under the influence of offset error, the fluctuation of time-domain indicators relative to
their respective healthy condition values under different degrees of cracks.
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4. Conclusions

In this paper, the meshing model of the spiral bevel gear pair (SBGP) is established by
the finite element (FE) method. The maximum tooth root stress value of the pinion and its
position are studied considering the influence of assembly errors. The time-varying mesh
stiffness (TVMS) of the SBGP under different degrees of tooth root crack fault of the pinion
is derived. Meanwhile, the sensitivity of different statistical indicators to the crack fault of
the pinion is verified by the dynamic simulation of the SBGP system. Through the analysis,
some conclusions are summarized as follows:

(1) Through static analysis, the value of the maximum tooth root stress and its position
is discussed considering the assembly errors. It is found that the position of the
maximum tooth root stress appears in the middle of the tooth width. The value is
influenced by the assembly errors. To avoid excessive tooth root stress of the pinion,
the changes in errors ∆E, ∆Σ and ∆Ap should be strictly controlled. A smaller ∆E, ∆Σ,
and a larger ∆Ap are preferred to ease the pinion tooth root stress.

(2) The dynamic response of the SBGP with the pinion tooth root crack fault is obtained
by introducing the faulty TVMS curve as the excitation. When a crack fault occurs on
the pinion, every time the pinion revolves one cycle, the faulty tooth participates in
meshing for two meshing periods. There are fluctuations at intervals of the pinion
rotation period in the time-domain waveform. Each time the faulty tooth participates
in meshing, there are three meshing cycle mutations in the time-domain waveform.
In the faulty amplitude spectrum, under the influence of the crack fault, sidebands
with the rotation frequency of the pinion as the interval appear on both sides of the
meshing frequency and its harmonics.

(3) Through the analysis of statistical indicators. The sensitive indicators for identifying
the root crack of the pinion are obtained. They are the A, P, SMR, C, I, and L in
the time-domain, and F12, F14, F16, F17, F18, F19, F20, F21, F22 and F23 in the
frequency-domain. These indicators can be used to monitor and diagnose crack
faults in the SBGP system under the assembly error free condition. Moreover, under
the interference of offset error, the time-domain indicators A, P, C, I and L, and
the frequency-domain indicators F12, F18 and F19 still maintain a good judgment
threshold for fault information, so these indicators can be used as the indicators for
diagnosing crack faults in the presence of offset errors.
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In the future, the research will focus on the simulation of the real tooth root crack fault
morphology. The loaded tooth contact analysis will be carried out to solve the efficiency
issues. Moreover, an experiment will be carried out in the future to validate the fault
indicators for diagnosing the tooth root crack fault of SBGP.
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Appendix A

The machine tool coordinate for machining bevel gear by the generating method is
illustrated in Figure A1; any point of the cutter in the cutter coordinate system Og-xg-
yg-zg can be expressed in the blank coordinate system through the following coordinate
transformation:

M2g(ψc2, θg, ψ2) = ROTZ(−ψ2)·TRNZ(−X2)·ROTY(γm2 − π/2)
·TRNY(E2)·TRNZ(−XB2)·ROTZ(−ψc2)
·TRNX(Sr2 cos q2)·TRNY(Sr2 sin q2)·ROTZ(−θg),

(A1)

where θg is the rotation angle of the cutter; Sr2 is radial distance; q2 is the cradle angle;
XB2 is the sliding base; E2 is the blank offset; γm2 is the machine root angle; X2 is the
machine center to back; ψ2 is the blank rotation angle; ψc2 is the cradle rotation angle; and
ψc2 = ψ2/i2, i2 is the velocity ratio. The detail of the coordinate transformation matrix
ROTY(θ), ROTZ(θ), TRNX(δ), TRNY(δ), and TRNZ(δ) are expressed as:

ROTY(θ) =


cos θ 0 sinθ 0

0 1 0 0
−sinθ 0 cos θ 0

0 0 0 1

, ROTZ(θ) =


cos θ −sinθ 0 0
sinθ cos θ 0 0

0 0 1 0
0 0 0 1

,

TRNX(δ) =


1 0 0 δ

0 1 0 0
0 0 1 0
0 0 0 1

, TRNY(δ) =


1 0 0 0
0 1 0 δ

0 0 1 0
0 0 0 1

, TRNZ(δ) =


1 0 0 0
0 1 0 0
0 0 1 δ

0 0 0 1

.

(A2)
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Figure A1. The layout of the machine tool coordinate for machining bevel gear by the generating 

method: (a) Front view; (b) General view. 

  

Figure A1. The layout of the machine tool coordinate for machining bevel gear by the generating
method: (a) Front view; (b) General view.

The machine tool coordinate for machining bevel pinion by the tilt method is illustrated
in Figure A2; any point of the cutter in the cutter coordinate system Op-xp-yp-zp can be
expressed in the blank coordinate system through the following coordinate transformation:

M1p(ψc1, θp, ψ1) = ROTZ(−ψ1)·TRSZ(−X1)·ROTY(γm1 − π/2)
·TRSZ(−XB1)·TRSY(E1)·ROTZ(−q1)
·ROTZ(ψc1)·TRSX(Sr1)·ROTZ(j + π/2)
·ROTY(i)·ROTZ(−θp),

(A3)

where θp is the rotation angle of the cutter; i is the tilt angle; j is the swivel angle; Sr1 is
radial distance; q1 is the cradle angle; XB1 is the sliding base; E1 is the blank offset; γm1 is
the machine root angle; X1 is the machine center to back; ψ1 is the blank rotation angle; ψc1
is the cradle rotation angle; and ψc1 = ψ1/i1, i1 is the velocity ratio.
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Figure A2. The layout of the machine tool coordinate for machining bevel pinion by the tilt method:
(a) Front view; (b) General view.

The schematic of the cutter is illustrated in Figure A3. The inner blade (IB) mills the
convex side of the gear, and the outer blade (OB) mills the concave side of the blade.
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In the coordinate of the cutter Oi-xi-yi-zi, (i = p, g denotes cutter machining the bevel 
pinion and the bevel gear, respectively), the flank and the transition zone can be expressed 
by: 

α
τ α ρ ρ γ

α
τ γ

τ α
ρ γ

 ± + 
 −  − + 
   
   = =   −
   − −
    

  

0
0 0 0 0 0

0

a b
0

0

1 sin
sin sin

cos
0

( ) , ( ) ,0cos
(1 cos )

1
1

j
j i j j j j j

j

i i i i
i j

j j

r r

r r  (A4) 

where j = I, O represents the inner blade and the outer blade, respectively; τi is the distance 
from the tooth flank to the tooth tip; the “±” corresponds to the concave side and the con-
vex side, respectively; γj is the central angle between any point on the transition arc and 
T0j, where T0j is the point of tangent between the tooth surface and the transition zone. 
When machining the concave surface of the gear, the value range of γj is [0, π/2 + α0j], and 
when machining the convex surface of the gear, the value range of γj is [−π/2 + α0j, 0]. 
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When machining the bevel gear, the tooth surface coordinate r2 satisfies the following 
relation： 
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Figure A3. Schematic of the cutter.

In the coordinate of the cutter Oi-xi-yi-zi, (i = p, g denotes cutter machining the bevel
pinion and the bevel gear, respectively), the flank and the transition zone can be expressed by:

rai(τi) =


r0j − τi sin α0j

0
−τicosα0j

1

, rbi(γi) =


r0j − ρ0j

±1+sin α0j
cos α0j

+ ρ0j sin γj

0
−ρ0j(1− cos γj)

1

, (A4)

where j = I, O represents the inner blade and the outer blade, respectively; τi is the distance
from the tooth flank to the tooth tip; the “±” corresponds to the concave side and the
convex side, respectively; γj is the central angle between any point on the transition arc
and T0j, where T0j is the point of tangent between the tooth surface and the transition zone.
When machining the concave surface of the gear, the value range of γj is [0, π/2 + α0j], and
when machining the convex surface of the gear, the value range of γj is [−π/2 + α0j, 0].

In the coordinate of the blank Oi-xi-yi-zi, (i = 1, 2 denotes the blank of the bevel pinion
and the bevel gear, respectively), the tooth surface equation can be expressed as:{

r2(θg, ψ2, τg) = M2grag
r1(θp, ψ1, τp) = M1prap

. (A5)

When machining the bevel gear, the tooth surface coordinate r2 satisfies the following
relation:

∂r2

∂τg
× ∂r2

∂θg
· ∂r2

∂ψ1
= 0 (A6)

On the gear rotation projection surface, the coordinate M (xM, yM) of any point (see
Figure A4) satisfies the following equations:{

r2(3) = xM

[r2(1)]
2 + [r2(2)]

2 = y2
M

(A7)
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In the process of machining the bevel pinion by the tilt method, the tooth surface 
coordinate rm1 satisfies the following relation: 
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The relative rotation vector νc1,1 
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Combining Equations (A6) and (A7), the spatial position of any surface point can
be obtained.

When machining the bevel pinion, in the coordinate of the machine Om1-xm1-ym1-zm1,
the position of the cutter can be expressed as:

rm1(θp, ψ1, τp) = ROTZ(−q1)·ROTZ(ψc1)·TRSX(Sr1)
·ROTZ(j + π/2)·ROTY(i)·ROTZ(−θp)·rap,

(A8)

In the process of machining the bevel pinion by the tilt method, the tooth surface
coordinate rm1 satisfies the following relation:

nm1·νc1,1
m1 = 0, (A9)

where the direction of the tooth surface point in the coordinate of the machine can be
expressed as:

nm1 =

(
∂rm1

∂τp
× ∂rm1

∂θp

)
/
∣∣∣∣∂rm1

∂τp
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∂θp
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The relative rotation vector νc1,1
m1 can be expressed as:

νc1,1
m1 =

(
ωc1

m1 −ω1
m1

)
× rm1 −O1Om1 ×ω1

m1 (A11)

where, 
ωc1

m1 = [ 0 0 1 ]
T

ω1
m1 = i01·[ cosγm1 0 sin γm1 ]

T

O1Om1 = [ X1cosγm1 −E1 XB1 + X1sinγm1 ]
T

. (A12)

On the pinion rotation projection surface, the coordinate M (xM, yM) of any point (see
Figure A4) satisfies the following equations:{

r1(3) = xM

[r1(1)]
2 + [r1(2)]

2 = y2
M

. (A13)

Combining Equations (A10) and (A13), the spatial position of any surface point can
be obtained.
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