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Abstract: This paper is about the magnetic field analysis of an interior permanent magnet motor
(IPM motor) by using the equivalent magnetic circuit method (EMC method), which requires a small
amount of computation time compared with the finite element method (FEM). IPM motors have
a specific shape of rotor in which the permanent magnets are embedded. Therefore, in the bridge
region, the magnetic saturation is generated due to the shape of the permanent magnet, which affects
the magnetic flux density distribution in the air gap and the characteristics of the IPM motor. Thus, to
design an IPM motor, the magnetic saturation effects should be considered along with the rotor shape.
In addition, because the rotor of the IPM rotates at a high speed directly in connection with the load,
the stress generated from the rotor must be stably distributed. Consequently, according to the rotor
shape characteristics of the IPM, the stress is concentrated in the thin bridge region during high-speed
rotation. When the stress generated in the bridge region exceeds the yield stress of the rotor iron core
material, the bridge part is destroyed. Therefore, it is important to analyze the stress that occurs in the
rotor during high-speed rotation in the rotor design stage of the IPM. In this study, we analyzed the
magnetic field characteristics of an IPM motor using its equivalent magnetic circuit while considering
the magnetic saturation in the bridge region. The stability of the rotor was determined by presenting
a safety factor based on the maximum stress generated at the rotor for each speed. We derived the
stator natural frequency to evaluate the resonance possibility between the electrical frequency and
the stator natural frequency. Finally, the validity of the constructed equivalent magnetic circuit was
verified by comparing the results with those obtained via the FEM analysis and experiments.

Keywords: equivalent magnetic circuit; magnetic field analysis; permanent magnet; interior permanent
magnet motor; stress analysis

1. Introduction

Through the development of permanent magnet manufacturing technology, the use
of permanent magnet electric motors having the advantages of high efficiency and high
output power is increasing. These permanent magnet motors can be divided into two types
depending on the shape of the rotor: surface-mounted permanent magnet (SPM) motors
and interior permanent magnet (IPM) motors. Because the permanent magnet is attached to
the surface of the rotor in SPM motors, it is necessary to fabricate a non-magnetic-material
tube for preventing the magnet from scattering during high-speed operation. On the other
hand, IPM motors could prevent the scattering of permanent magnets during high-speed
operation because the permanent magnet is embedded in the rotor. However, placing the
permanent magnet in the rotor causes it to have a magnetic polarity due to the differences
in reluctance. Therefore, IPM motors could make better use of the magnetic and reluctance
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torques during operation time, and, through field weakening control strategies, make use
of their wide output range and their advantages at high-speed operation [1,2]. The analysis
methods for permanent magnet motors can be divided into the analytical method, the finite
element method (FEM), and the equivalent magnetic circuit (EMC) method. The analytical
method consists in analyzing the magnetic field characteristics of the motor by solving its
differential equations using Maxwell’s equations [3–6]. It is able to derive high accuracy
and relatively quick analysis results compared with FEM. In order to analyze the magnetic
field, we should solve the equation derived by Maxwell equation, which has a high level
of difficulty. In the case of FEM, it is easy to analyze through commercial tools. However,
in order to obtain the accuracy of analytical results, it is necessary to have a large number
of element divisions, which leads to a long analysis time. Therefore, for having reliable
results, the FEM analysis model needs to appropriate the number of elements depending on
the experience of the analyzer. The EMC method does not consist in performing analyses
through complex mathematical equations but can be equally used to analyze the magnetic
circuit without taking into consideration the shape of the machine while considering the
magnetic saturation of the magnetic circuit [7]. In addition, if the saturation of the rotor
bridge region is not considered, the magnitude of the back-EMF derived through the
air-gap magnetic flux density becomes inaccurate. This leads to difficulty in deriving
detailed dimensions of the rotor and stator during the initial design of the IPM. Therefore,
considering the proposed saturation region, the EMC method in this paper contributes to
the fast characteristic analysis and the initial design of the bar-type IPM.

Furthermore, the IPM should identify the mechanical characteristics owing to the rotor
structure in which the permanent magnet is embedded in the rotor iron core. Therefore,
although the electromagnetic characteristics are excellent, if the maximum stress exceeds the
yield stress of the rotor core, the core may be damaged during high-speed operation. The
mechanical stability was evaluated by comparing the stress distribution and magnitude of
the maximum stress generated by the rated speed. In addition, when the resonant frequency
of the stator and rotor is close to the electromagnetic excitation frequency, the vibration
increases further. For this reason, it is necessary to analyze the structural characteristics
of the motor, namely the natural frequency and the mode shape. Therefore, this paper
performed the magnetic field characteristics of an IPM motor, which were analyzed using
the EMC method, and the rotor stability was determined by analyzing the stress generated
by the rotor when rotating at the rated speed. Furthermore, by deriving the stator mode
frequency, we evaluated the resonance. Finally, its feasibility was verified by comparison
with the results of the FEM analysis.

2. Mechanical and Magnetic Characteristics Analysis Using the Equivalent Magnetic
Circuit Method Considering the Magnetic Saturation of Bridge Region
2.1. The Analysis Model and Assumptions

The actual model and the analysis model used for our EMC analysis are shown in
Figures 1 and 2, respectively.
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Figure 2. The shape of analysis model.

They consisted of an IPM motor with a combination of four poles and six slots with
concentrated winding. For our analysis, some simplifying assumptions were required for
using the EMC method. First, the magnetic permeability of the iron core was assumed to be
infinite. Secondly, the magnetic saturation was ignored, except for the magnetic saturation
at the rib and bridge regions. Thirdly, the demagnetization of the permanent magnet was
not considered. Fourthly, the end effect in the axial direction was not considered. Fifthly,
the slot effect was ignored. The rotor geometry of the analysis model used consisted of
a barrier, a bridge, a pole piece, a rib, and a permanent magnet, while having the shape
of a typical IPM motor. The analysis model used for the EMC method after applying
the simplifying assumptions and its equivalent magnetic circuit according to the rotor
components are shown in Figures 3 and 4, respectively. Each of the resistors represents the
reluctance of a component of the motor according to our assumptions.
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2.2. The Magnetic Characteristic Analysis

To analyze the magnetic field characteristics using the EMC method, a circuit analysis
has to be performed. In this case, because the reluctances and magnetic fluxes are repre-
sented by resistances and currents in the equivalent electrical circuit, respectively, their
definition should be explained. Figure 5 shows the concept of reluctance in the bridge
region. If the angle of the bridge region from the end of the barrier to the pole piece region
increases, the magnetic saturation becomes more intense as it approaches the permanent
magnet, so that the magnitude of the reluctance of the bridge region increases from the end
of the barrier to the permanent magnet. In order to consider the magnetic saturation of
the bridge region, the reluctance of the bridge region consisted of the reluctance units, as
shown Figure 5. These units of reluctance on the bridge region can be expressed as follows
in Equations (1)–(6).
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For calculating the reluctance units of the bridge region, the nonlinear magnetic
permeability should be considered, which can be derived via curve-fitting methods. There
are parameters that need to be defined before deriving the reluctances and magnetic fluxes
using the equations.

Table 1 and Figure 6 show the parameter values required to derive the rotor’s reluc-
tance and magnetic flux. An appropriate thickness of the bridge should be chosen so as to
prevent breakage due to inertia during high-speed operation. The thickness of the bridge
depends on the size of the device, but is usually chosen to be within 0.6 mm. Therefore,
the formula for the magnetic flux of the equivalent magnetic circuit can be summarized as
shown in Equations (1)–(3).

φr = Br · APM = Br · WPM · Lstk (1)

φBri = Bsat · ABri = Bsat · TBri · Lstk (2)

φAirgap

2
=

φr

2
−

(
φPM

2
+

φBarrier
2

+ φRib

)
(3)

Here, APM is the area of the permanent magnet, ABri is the area of the bridge, and Bsat
is the saturation flux density at the bridge. The reluctance of each region can be expanded
as shown in Equations (4)–(6).

RAirgap =
g0

µ0 · AAirgap
(4)
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RPM =
HPM

µ0 · µr · APM
=

HPM
µ0 · µr · WPM · Lstk

(5)

RBarrier =
HBarrier_Avg

µ0 · WBarrier_Avg · Lstk
(6)

Here, RAirgap is the reluctance of the air gap, RPM is the reluctance of the permanent
magnet, RBarrier is the reluctance of the barrier, HBarrier_Avg is the height of the barrier,
and WBarrier_Avg is the width of the barrier. In order to derive the magnetic flux density
distribution in the air gap, the area at the center of the gap should be calculated as follows.
In our case, we considered the reluctances of the air gap having the same angle. Thus, the
reluctance of the bridge region can be expressed by Equations (7)–(9) [8–10].

AAirgap = αp ·
2π · (Rsi − g0/2)

2p
· Lstk (7)

∆Rgo =
g0

µ0 · (Rso · ∆θBridge · π/180) · Lstk
(8)

∆RBri =
(Rro · ∆θBridge · π/180)

µ0 · µr · TBridge · Lstk
(9)

λa = kw · Nph · φairgap cos(θe) (10)

ea = −dλa

dt
(11)

Through the results of the magnetic flux density distribution at the air gap, the mag-
netic flux of one phase winding can be expressed in the form of its fundamental wave. The
magnitude of the back-EMF can be derived through the linkage flux of one phase winding.
For this purpose, the basic waveform of the back-EMF can be derived from Equations (10)
and (11). Here kω is the winding coefficient and θe is the electrical angular degree. Figure 7
shows the comparison results between the waveform of the back-EMF derived through the
finite element analysis and the back-EMF derived through the proposed EMC method.

Through Figure 7, it was confirmed that the air-gap flux density of the EMC method
considering the saturation of the bridge region presented in this paper coincides with the
air-gap flux density derived from the finite element analysis.

Table 1. Parameters for the equivalent magnetic circuit method for considering the magnetic satura-
tion in the bridge region.

Parameter Value Unit

Pole number: 2 · p 4 -

Height of PM: HPM 2 mm

Length of Air gap: gAir−gap 0.5 mm

Thickness of Bridge: TBri 0.8 mm

Length of Stack: Lstk 15 mm

Outer Radius of Stator: Rso 48 mm

Pole-Arc: Parc1 45 deg

Magnet-Arc: Parc3 33.75 deg

Bridge-Arc: θBridge, (Parc2 − Parc3) 6.21 deg
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2.3. Rotor Stress Analysis

In the IPM, the design of a bridge to secure the stability of the rotor against high-speed
rotation is important, and the width is determined by the stress-limiting condition of
the rotor core. Considering only the electromagnetic characteristics, it is recommended to
narrow the width of the bridge in each barrier layer to minimize the leakage of the magnetic
flux remaining in the rotor as well as maximize the saliency ratio [11,12]. However, if
the width of the bridge is designed to be narrow, and the driving speed of the device
increases according to the requirements, the bridge of the rotor may be damaged by the
centrifugal force generated by the rotation of the motor. Therefore, a wider width and
better consideration of the mechanical strength can prevent damage to the rotor [10]. In the
motor designer’s aspect, it is essential in the design stage to select the appropriate bridge
width through electromagnetic and structural analysis of the rotor, as well as to determine
whether the rotor core is damaged at operating speed through stress distribution. In this
study, the stability was identified based on the safety factor derived from the maximum
stress generated from the rotor, and the safety rate was derived using Equation (12). Table 2
show the mechanical property of core and permanent magnet of rotor.

Sa f ety_Factor =
Tensile Yield Strength [MPa]

Maximum Stress [MPa]
≥ 1.5 (12)
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Table 2. Rotor core and magnet material properties.

Items
Value

Unit
35PN440 N35SH

Density 7700 7600 Kg/m3

Young’s modulus 195 160 GPa

Poisson’s ratio 0.25 0.24 -

Tensile Yield strength 273 80 MPa

The safety factor, which was determined to be appropriate to operate within the
operating speed of the motor, was selected as 1.5. Moreover, as illustrated in Figure 8, it
was derived through rotor structure analysis with a safety rate of approximately 43,000 rpm.
Therefore, in the case of the IPM motor in this study, it was considered that there was no
damage to the rotor core at the rated speed.
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2.4. Stator Modal Analysis

As a method for predicting the natural frequency of the stator, the natural frequency
and mode shape were predicted by viewing the stator as a simple ring and considering the
stator teeth and coil as additional mass. In addition, the stator teeth were considered as
cantilever beams connected to the stator and an analysis model was selected. The stator of
the motor is a major component of the motor and directly receives the electromagnetic exci-
tation force and has the greatest structural influence on the vibration and noise generation
of the motor, such as the resonance frequency being within the frequency range of interest.
Figure 9 shows the mode analysis results of the stator core designed using the finite element
analysis. The natural frequencies in the 2nd, 3rd and 4th modes are 2800.8 Hz, 7056.7 Hz,
and 1120.3 Hz, respectively. From the analysis result, it can be considered that there is no
effect due to resonance because there is no corresponding operating range for the electric
frequency of the motor and the natural frequency of the stator.
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3. Experimental Validation
Experimental Validation of Analysis Results

A model with the design initially presented was constructed to compare the results of
our analysis of the model initially designed (obtained via the equivalent magnetic circuit
method presented in this paper) with the measured results and to verify the validity of the
design method.

An experimental model was made for the verification of our analysis results. 35PN440
was used as the iron core material for the rotor and stator, and the permanent magnet used
was made of N35SH material. Figure 10 shows the measurement system for the no-load
back-EMF experiment. No-load back-EMF is the voltage of the motor that occurs when
the rotor of each phase of the motor is open and the rotor is rotated at an arbitrary speed
through the input driver. In this study, no-load back-EMF experiments were performed at
200 rpm steps from 600 rpm to 1400 rpm.
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Figure 10. The experiment system for validation of the equivalent magnetic circuit method through
measuring the back-EMF.

The measured values were compared with our analytical results using the equivalent
magnetic circuit method and the FEM. Figure 11 shows the results of a no-load back-
EMF measurement, showing a varying back-EMF and back-EMF constants according to
the motor speed. It can be seen that the results of the FEM analysis and the measured
waveforms are in good agreement due to the effects of the stator slot shape and the magnetic
saturation phenomenon.
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Figure 11. The results of the back-EMF measurement. (a) experiment result, (b) back-EMF constant,
and (c) back-EMF max value result.

Because of the influence of harmonics in the experiment, the results of the measure-
ments, those of the equivalent magnetic circuit, and those obtained via the FEM analysis
show differences, but these are lower than 5%.

Therefore, it can be seen that the errors of the FEM analysis and the error in the
values obtained via the equivalent magnetic circuit did not exceed 5%. Figure 12 shows a
graph comparing the changes in the back-EMF values. The errors of the back-EMF values
obtained with the proposed method can be seen by comparing them with the analytical
and measurement results of the back-EMF experiments.

Machines 2022, 10, x FOR PEER REVIEW 9 of 10 
 

 

motor speed. It can be seen that the results of the FEM analysis and the measured wave-

forms are in good agreement due to the effects of the stator slot shape and the magnetic 

saturation phenomenon. 

 

Figure 11. The results of the back-EMF measurement. (a) experiment result, (b) back-EMF constant, 

and (c) back-EMF max value result. 

Because of the influence of harmonics in the experiment, the results of the measure-

ments, those of the equivalent magnetic circuit, and those obtained via the FEM analysis 

show differences, but these are lower than 5%. 

Therefore, it can be seen that the errors of the FEM analysis and the error in the values 

obtained via the equivalent magnetic circuit did not exceed 5%. Figure 12 shows a graph 

comparing the changes in the back-EMF values. The errors of the back-EMF values ob-

tained with the proposed method can be seen by comparing them with the analytical and 

measurement results of the back-EMF experiments. 

 

Figure 12. The results of the back-EMF measurement. 

4. Conclusions 

This paper is about a magnetic characteristics analysis using the equivalent magnetic 

circuit method while considering the magnetic saturation. The analysis was performed 

considering the saturation in the bridge region. The validities of the equivalent magnetic 

circuit model and the proposed analytical method considering the saturation of the bridge 

region were verified by comparing their results with the FEM results. The experimental 

results of the back-EMF measurement of the proposed analytical model were compared 

with the results of the FEM analysis using the equivalent magnetic circuit method. We 

confirmed that the error between the analytical results obtained via the equivalent mag-

netic circuit method and the results of the FEM analysis is within 5%. In addition, the 

Figure 12. The results of the back-EMF measurement.

4. Conclusions

This paper is about a magnetic characteristics analysis using the equivalent magnetic
circuit method while considering the magnetic saturation. The analysis was performed
considering the saturation in the bridge region. The validities of the equivalent magnetic
circuit model and the proposed analytical method considering the saturation of the bridge
region were verified by comparing their results with the FEM results. The experimental
results of the back-EMF measurement of the proposed analytical model were compared
with the results of the FEM analysis using the equivalent magnetic circuit method. We
confirmed that the error between the analytical results obtained via the equivalent magnetic
circuit method and the results of the FEM analysis is within 5%. In addition, the safety
factor was derived based on the maximum stress generated in the rotor according to each
speed through analysis of the rotor structure, and the mechanical stability at the rated
speed was identified through the safety factor. Based on the results, it is possible to design
a rotor structure using the EMC method proposed in this study, and the IPM mechanical
stability can be determined through structural analysis. Finally, the resonance between the
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electrical frequency and the natural frequency of the stator was determined through the
stator modal analysis, and the effect on the vibration and noise caused by the resonance
was analyzed. This process and methodology can contribute to the design of IPM rotors.
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