Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades
Abstract
:1. Introduction
2. Design and Numerical Calculation of Swept Blades
2.1. Preliminary Swept Blade Design
2.2. Numerical Calculation
3. Experimental Setup
3.1. Test Setup and Test Model
3.2. Experimental Procedure
4. Results of the Wind Turbine with Swept Blades
4.1. Analysis of Power Characteristics
4.2. Analysis of Wake Velocity Characteristics
4.3. Analysis of Wake Turbulence Intensity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.; Stine, H.; Lars, O. Catching up through green windows of opportunity in an era of technological transformation: Empirical evidence from the Chinese wind energy sector. Ind. Corp. Change 2021, 29, 1277–1295. [Google Scholar] [CrossRef]
- ASEAN Centre for Energy and China Renewable Energy Engineering Institute. Research on Applications of Low Wind Speed Power in ASEAN. Available online: https://aseanenergy.org/research-on-applications-of-low-wind-speed-power-in-asean/ (accessed on 17 September 2022).
- Hua, X.; Zhang, C.H.; Wei, J.D.; Hu, X.J.; Wei, H.L. Wind turbine bionic blade design and performance analysis. J. Vis. Commun. Image R. 2019, 60, 258–265. [Google Scholar] [CrossRef]
- Tian, C.Y.; Liu, X.M.; Wang, J.H.; Wu, L.M.; Wang, W. Study on Aerodynamic Performance of the Cross Flow Fan Using Bionic Blade with Bird Wing-Like Thickness Distribution. J. Xi’An. Jiaotong. Univ. 2022, 56, 84–93. [Google Scholar]
- Khalafallah, M.G.; Ahmed, A.M.; Emam, M.K. CFD study of some factors affecting performance of HAWT with swept blades. Int. J. Sustain. Energy 2015, 36, 489–501. [Google Scholar] [CrossRef]
- Khalafallah, M.G.; Ahmed, A.M.; Emam, M.K. The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Adv. Mech. Eng. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Amano, R.; Avdeev, I.; Malloy, R.; Shams, M.Z. Power, structural and noise performance tests on different wind turbine rotor blade designs. Int. J. Sustain. Energy 2013, 32, 78–95. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, X.; Du, Z. The influence of the swept and leaned blade to the aerodynamic performance of horizontal axis wind turbine. J. Eng. Thermophys. 2011, 32, 1481–1484. [Google Scholar]
- Kaya, M.N.; Kose, F.; Ingham, D.; Ma, L.; Pourkashanian, M. Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades. J. Wind Eng. Ind. Aero. 2018, 176, 166–173. [Google Scholar] [CrossRef]
- Chattot, J.J. Effects of blade tip modifications on wind turbine performance using vortex model. Comput. Fluids 2009, 38, 1405–1410. [Google Scholar] [CrossRef]
- Kong, F.; Wu, T.; Hu, J. Study of swept and curved blade influences on HAWT performance. In Proceedings of the 2009 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, 24–26 September 2009. [Google Scholar]
- Chen, H.; Shi, K.; Xu, J. Stall delay effect of aft-swept blade of horizontal axis wind turbine. Acta. Energy Sol. Sin. 2014, 35, 1311–1318. [Google Scholar]
- Ding, Y.; Zhang, X. An optimal design method of swept blades for HAWTs. J. Renew. Sustain. Energy 2016, 8, 463–471. [Google Scholar] [CrossRef]
- Pavese, C.; Kim, T.; Murcia, J.P. Design of a wind turbine swept blade through extensive load analysis. Renew. Energy 2017, 102, 21–34. [Google Scholar] [CrossRef]
- Sessarego, M.; Feng, J.; Ramos-García, N.; Horcas, S.G. Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow. Renew. Energy 2020, 146, 1524–1535. [Google Scholar] [CrossRef]
- Li, A.; Gaunaa, M.; Pirrung, G.R.; Ramos-García, N.; Horcas, S.G. The influence of the bound vortex on the aerodynamics of curved wind turbine blades. J. Phys. Conf. Ser. 2020, 1618, 052038. [Google Scholar] [CrossRef]
- Gözcü, O.; Kim, T.; Verelst, D.R.; McWilliam, M.K. Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine. Energies 2022, 15, 3005. [Google Scholar] [CrossRef]
- Ashwill, T.D.; Kanaby, G.; Jackson, K.; Zuteck, M. Development of the sweep-twist adaptive rotor (STAR) blade. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
- Zhang, S.; Tian, S.Y.; Zhang, X.M.; Li, H.X.; Xi, D.K.; He, W.Q.; Zhang, A.C. Research Progress of Skew and Sweep Aerodynamic Technology for Turbomachinery Blades. J. Propuls. Tech. 2021, 42, 2417–2431. [Google Scholar]
- Wadia, A.R.; Szucs, P.N.; Crall, D.W. Inner workings of aerodynamic sweep. J. Turbomach. 1998, 120, 671–682. [Google Scholar] [CrossRef]
- Govardhan, M.; Kumar, O.G.K.; Sitaram, N. Investigations on low speed axial compressor with forward and backward sweep. J. Therm. Sci. 2007, 16, 121–133. [Google Scholar] [CrossRef]
- Benini, E.; Biollo, R. Aerodynamics of swept and leaned transonic compressor rotors. Appl. Energy 2007, 84, 1012–1027. [Google Scholar] [CrossRef]
- Lubitz, W.D. Impact of ambient turbulence on performance of a small wind turbine. Renew. Energy 2014, 61, 69–73. [Google Scholar] [CrossRef]
- Talavera, M.; Shu, F. Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel. Renew. Energy 2017, 109, 363–371. [Google Scholar] [CrossRef]
- Kosasih, B.; Hudin, H.S. Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model. Renew. Energy 2016, 87, 154–167. [Google Scholar] [CrossRef]
- Ashwill, T. Sweep-Twist Adaptive Rotor Blade: Final Project Report, SANDIA Report; Sandia National Laboratories: Albuquerque, NM, USA; San Diego, CA, USA, 2010. [Google Scholar]
- Hansen, M.H. Aeroelastic Properties of Backward Swept Blades. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Oriando, FL, USA, 4–7 January 2011. [Google Scholar]
- Sessarego, M.; Ramos-Garcia, N.; Yang, H.; Shen, W.Z. Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique. Renew. Energy 2016, 93, 620–635. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal two equation k-w turbulence models for aerodynamic flows. In Proceedings of the 24th Fluid Dynamics Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 2012, 32, 1598–1605. [Google Scholar] [CrossRef][Green Version]
- Bastankhah, M.; Fernando, P.-A.; Blaabjerg, F. A new miniature wind turbine for wind tunnel experiments. Part I: Design and performance. Energies 2017, 10, 908. [Google Scholar] [CrossRef]
- Boorsma, K.; Schepers, J.; Gomez-Iradi, S.; Herraez., I.; Lutz, T.; Weihing, P.; Oggiano, L.; Pirrung, G.; Madsen, H.; Shen, W.; et al. Final Report of IEA Wind Task 29 Mexnext (Phase 3); ECN-E-18-003 ECN; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Li, Q.; Murata, J.; Endo, M.; Maeda, T.; Kamada, Y. Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics). Energy 2016, 113, 1304–1315. [Google Scholar] [CrossRef]
- Li, Q.; Murata, J.; Endo, M.; Maeda, T.; Kamada, Y. Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance). Energy 2016, 113, 713–722. [Google Scholar] [CrossRef]
- Matsuda, H.; Tanaka, M.; Osako, T.; Yamazaki, K.; Oryu, Y. Plasma actuation effect on a MW class wind turbine. J. Eng. Gas Turb. Power 2017, 9, 47–52. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Movahhedi, M. Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators. Energ. Convers. Manag. 2017, 146, 96–106. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.J. Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions. Renew. Energy 2019, 136, 383–392. [Google Scholar] [CrossRef]
Blade No. | Sweep Direction | Sweep Starts (rs/R) | Tip Offset (z/R) |
---|---|---|---|
1 | Backward | 0.2 | 0.1 |
2 | Backward | 0.2 | 0.2 |
3 | Backward | 0.4 | 0.1 |
4 | Backward | 0.4 | 0.2 |
5 | Forward | 0.2 | 0.1 |
6 | Forward | 0.2 | 0.2 |
7 | Forward | 0.4 | 0.1 |
8 | Forward | 0.4 | 0.2 |
Rotation Domain (Million) | Stationary Domain (Million) | CP (%) | |
---|---|---|---|
Coarse | 427 | 614 | 18.169 |
Middle | 782 | 614 | 18.186 |
Fine | 782 | 975 | 18.198 |
Blade No. | Swept Blade | ΔCP (%) | ΔCT (%) |
---|---|---|---|
1 | b2010 | 0.497 | 0.384 |
2 | b2020 | −1.605 | −3.113 |
3 | b4010 | −0.113 | −1.998 |
4 | b4020 | −2.433 | −5.384 |
5 | f2010 | 2.167 | 2.478 |
6 | f2020 | −1.481 | −3.064 |
7 | f4010 | 0.064 | −1.605 |
8 | f4020 | −1.998 | −4.675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yang, J.; Gao, Z.; Sha, C.; Yang, H. Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades. Machines 2022, 10, 876. https://doi.org/10.3390/machines10100876
Huang X, Yang J, Gao Z, Sha C, Yang H. Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades. Machines. 2022; 10(10):876. https://doi.org/10.3390/machines10100876
Chicago/Turabian StyleHuang, Xiaoxi, Junwei Yang, Zhiying Gao, Chenglong Sha, and Hua Yang. 2022. "Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades" Machines 10, no. 10: 876. https://doi.org/10.3390/machines10100876