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Abstract: The annular seal between stator and rotor substantively acts as a bearing that affects
the rotordynamic characteristic of the turbomachinery rotor system. The rotor wake turbulence
in a canned motor Reactor Coolant Pump (RCP) will lead to inflow pressure distortion at the
annular seal entrance, thus further affecting the seal rotordynamic characteristics and threatening the
stable operation of RCP. In order to obtain the seal rotordynamic coefficients, a transient numerical
method applies the mesh deformation technique to simulate the multiple-frequency elliptical rotor
whirling orbit model. The transient solutions were proposed to solve the unsteady reaction forces
of annular seals at five excitation frequencies for each case. The inflow pressure distortion patterns
were simplified as harmonic functions, including two important influence parameters that are
impeller blades number m and pressure fluctuation ratio λ. The numerical results showed that with
nonuniform time-averaged pressure distribution at the entrance of the annular seal in Case 2, the
inflow distortion significantly affects the seal rotordynamic coefficients, while the rotational spinning
speed in Case 3 can weaken the time-averaged nonuniformity and accordingly make a dent in the
influence. Increasing impeller blades number m and pressure fluctuation λ both result in a sharp
diminution of the negative stiffness Ke f f , as well as an obvious increase in the effective damping Ce f f ,
which will strengthen rotor misalignment and system stability. In addition, the larger impeller blades
number m and higher pressure fluctuation λ will make the effective damping Ce f f more independent
of the whirling frequency. These results provide theoretical guidance for the operation safety of RCP.

Keywords: rotordynamic coefficient; CFD; inflow distortion; canned nuclear coolant pump; annular seal

1. Introduction

Turbomachinery has been commonly used in modern industry to meet stringent cost-
effectiveness, high energy conversion efficiency, high power to weight ratio, high reliability
and rigid safety requirements. Especially in terms of safety requirements during its long-
time service, the canned motor Reactor Coolant Pump (RCP) has attracted more attention.
In the 1970s, when NASA tested aero-engines, it was found that the turbopump rotor part
of the airplanes’ main engine would suffer from whirl instability under extreme working
conditions. Afterward, the researchers conducted a lot of research on the leakage of the
smooth ring and the labyrinth seal ring and found that the excitation force generated by the
internal flow has a significant impact on the dynamic characteristics of the rotor. During the
first endurance test of the AP series nuclear reactor canned motor main pump designed by
the EMD company (Chicago, IL, USA) in 2009, the bearing failure occurred on account of the
interaction between the complex internal flow field of the canned motor main pump and the
rotor, which affects the rotor stability. It is believed that the annular seal between the stator
and rotor substantively acts as a bearing, which affects the rotordynamic characteristic of
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the turbomachinery rotor system [1,2]. Therefore, the rotordynamic instability problems of
high-performance turbomachines have received more attention among designers [3,4].

At present, the numerical methods used by researchers to predict the dynamic char-
acteristics of the sealed rotor are mainly divided into the bulk-flow model and the CFD
method. In the 1960s, Thomas [4] published research about rotordynamic instability prob-
lems caused by destabilizing forces of the noncontact annular seals and tried to model
the rotordynamic coefficients. Thereafter, Black [5] carried out further research about
the effects of hydraulic forces on the rotor’s vibrations of the centrifugal pump and at-
tempted to describe the rotordynamic coefficients of smooth annular seals. Childs [6] and
Antunes et al. [7] developed “bulk-flow theory” that was raised by Hirs [8], which utilizes
the simplified empirical functions to conclude the relationship between shear stresses.
Later, researchers [9,10] utilized the “bulk-flow theory” to analyze the rotordynamic charac-
teristics of turbomachines. Nelson [9] derived the governing equations for the compressible
flow based on the bulk-flow model and analyzed the influence of the convergent taper of
annular seals on rotordynamic characteristics.

Though the bulk-flow model has the advantages of inexpensive computational cost
and moderate computational accuracy, the three-dimensional computational fluid dynamics
(CFD) method provides more accurate results through solving the full Navier–Stokes
equations with fewer assumptions. In addition, the CFD method allows for wider operating
conditions in various seal constructions and provides deep insight into the details of the
inner flow field [11–13]. Recently, Moore [14], Chochua [15] and Li et al. [16] employed
numerical computation for obtaining the rotordynamic coefficients of the assorted seals.
Cao [17] applied the numerical method to study the effects of leakage vortexes and the
depth–width ratio of seal cavity on the steam-exciting force caused by rotor eccentricity.
Moore [14] adopted the steady-state CFD method, which applies a transformation of
coordinative systems to solve the transient problem in stationary frames to predict the
rotordynamic coefficients of artificially roughened stator gas annular seals. Although
the steady-state CFD method avoids a transient solution with mesh deformation using
the reference transformation, there is a limitation for this method that the seal geometry
requires axisymmetric structure and the predicted rotordynamic coefficients are frequency-
independent. Hence, the transient-state CFD method [15] was provided, which adopts
moving mesh techniques to simulate the rotor of the seal whirling periodically. For the
purpose of reducing computational cost, further extension of the transient-state CFD
method [16,18,19] was achieved through applying the multiple-frequency whirling method
instead of the single-frequency whirling method.

From the prior study [20–23], it is obvious that the majority of researchers focused
on inlet preswirl, pressure ratio, whirling eccentricity and so on for investigating the
influencing factors on the rotordynamic characteristics of the seals with uniform inlet
conditions. Subramanian S [20] employed a computational framework developed based on
combined 3-D-FE/CFD methodology for solving rotordynamic characteristics of a rotating
labyrinth gas turbine seal. For a given seal clearance and eccentricity, various flow and
operating conditions are investigated, covering a range of pressure ratios and rotational
speeds. To evaluate the effect of the position of brush and clearance of brush seal on the
rotordynamic coefficients, Lee [24] used the steady-state CFD method with the relative
coordinate system. Tsukuda [25] performed a study on the effect of the inlet preswirl ratio
on the rotordynamic characteristics of the labyrinth seal. In his work, it was found that
circumferential velocity and circumferential distribution of the axial mass flow rate play
key roles in generating cross-coupled forces. In addition, CFD predictions of rotordynamic
coefficients show better agreement with experimental results than the results obtained by
the bulk-flow model.

As mentioned above, little attention has been directed toward investigations of the
effects of inflow distortion on seal rotordynamic characteristics. Particularly, in real oper-
ations of the RCP, the exit flow field of the impeller varies periodically due to the wakes
shed at the blade trailing edge [26], which further diffuses into the inlet of the annular seal.
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Hence, in this paper, the main goal is to investigate the effect of inflow distortion on the
rotordynamic characteristics of a 1400-MW RCP annular seal with a transient method. The
results focus on discussing rotordynamic coefficients for different inflow distortion patterns
with two important influence factors (blade number and pressure fluctuation ratio).

2. Numerical Analysis
2.1. Seal Geometry and Computational Model

In real operational conditions, the eccentric movement of the sealed rotor will cause the
uneven distribution of the fluid pressure at the sealing gap, resulting in fluid self-excitation.
The annular seal between stator and rotor substantively acts as a bearing, which affects the
rotordynamic characteristic of the turbomachinery rotor system, as show in Figure 1.
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Figure 1. Schematic diagram of the annular seal rotordynamic characteristics.

In this work, a 3-D unsteady numerical method combined with the multiple-frequency
elliptical rotor whirling orbit model was utilized for investigating the rotordynamic char-
acteristics of the 1400-MW canned nuclear coolant pump annular seal at different inflow
distortion conditions. The seal geometry referred to the nuclear main pump scale hydraulic
model [27] (on a scale of 1:2.5) designed by the team (see Table 1).

Table 1. Seal geometry of the 1400-MW canned nuclear coolant pump scale hydraulic model [27].

Parameter Nomenclature Value

Seal clearance (mm) s 0.32
Seal radius (mm) R 140

Ratio of seal length to diameter ϕ 0.107
Rotational speed (rpm) n 1485

In this paper, the ANSYS ICEM CFD commercial software was employed to generate
the full 3-D seal structured mesh for calculation because of the nonuniform response
forces inside the annular seal. For the sake of investigating grid independence and how
fine the structured mesh density is required for precisely predicting the rotordynamic
characteristics, three types of mesh (coarse, medium and fine) were created. The number
of nodes for the coarse mesh is 1.25 × 106 with 1.15 × 106 elements, while the size of the
medium mesh and fine mesh is 2.31 × 106 nodes with 2.16 × 106 elements and 3.21 × 106

nodes with 3.13 × 106 elements, respectively. As shown in Figure 2b and in Table 2, there
is a slight difference between the response force, inlet mass flow and total outlet pressure
of the medium and fine meshes. Hence, the medium mesh was adopted for the following
numerical investigation. The numerical parameter settings in detail are provided in Table 3.
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Table 2. Mesh independence verification.

Type of Mesh Coarse Mesh Medium Mesh Fine Mesh

Inlet mass flow (kg/s) 1.205 1.194 1.193
Outlet total pressure (Pa) 57,594 56,958 56,911

Table 3. Numerical parameter settings.

Solution Type Transient

Fluid Water
Computational method Time marching method

Turbulence model Standard κ−ε model with scalable log wall function
Discretization scheme High resolution

Mesh motion Mesh deformation
Yplus ≤19

Frequency (Hz) 5, 10, 15, 20, 25
Wall properties Smooth surface
Eccentric ratio 10%
Timesteps (s) 0.0004 s

2.2. Rotor Motion

In real operational conditions, an absolutely concentric rotating never occurs. On the
contrary, the center C of the rotor usually whirls around the center O of the seal stator at
the whirling speed Ω, as shown in Figure 3. In order to predict the frequency-dependent
rotordynamic coefficients of the annular seal, the elliptical orbit whirling model for the rotor
vibration was adopted in this work. Hence, the rotor is supposed to whirl around the center
O in a periodic elliptical orbit. At the same time, the rotor is spinning around the rotor center
C. Therefore, for the rotor surface, the speed is the assembly of the rotor spinning speed ω
and whirling speed Ω. Though the whirling orbit model with a single frequency is widely
utilized to solve the annular seal rotordynamic coefficients, the multiple-frequency whirling
orbit model is more suitable for obtaining the real rotordynamic characteristics. Moreover,
the multiple-frequency whirling orbit model can greatly reduce the computational time
compared to the single-frequency vibration. Therefore, for predicting a series of the
frequency-dependent rotordynamic coefficients of the nuclear coolant pump annular seal,
the multiple-frequency elliptical rotor whirling orbit motion was utilized as the motion
model in the present numerical analysis. The major axis of the elliptical whirling orbit is
defined as the excitation direction. The rotor whirling motion Equations (1) and (2) are
defined as harmonic functions with specific whirling amplitudes a and b, and multiple
whirling frequencies Ωi = 2π fi. For each frequency component, the whirling amplitudes
are equally constant values and related to the seal clearance, a = 0.02 × s and b = 0.01 × s.
The whirling frequencies fi were defined in the frequency range between 5 and 25 Hz.



Machines 2022, 10, 65 5 of 19

Therefore, the fundamental frequency f1 = 5 Hz and the number of elliptical whirling orbit
frequencies is N = 5. Figure 4 illustrates the multiple-frequency elliptical whirling orbit
with a maximum peak vibration amplitude 3.2 × 10−5 m, which is 10% of the annular seal
clearance. In this way, the solutions will capture the linear motion characteristics based on
the small motion theory.
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Equations of elliptical whirling orbit motion for the x-direction excitation:

X = a ·
N

∑
i=1

cos(Ωit), Y = b ·
N

∑
i=1

sin(Ωit) (1)

Equations of elliptical whirling orbit motion for the y-direction excitation:

X = b ·
N

∑
i=1

cos(Ωit), Y = a ·
N

∑
i=1

sin(Ωit) (2)
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2.3. Rotordynamic Coefficients Solution Method

Based on the small motion theory, ignoring the added mass terms, the fluid-induced
forces can be defined by the response force/seal motion model [28], as presented in
Equation (3), which generates the relationship between the reaction-force and the rotor mo-
tion through direct force coefficients (Kxx, Kyy, Cxx, Cyy) and cross-coupled force coefficients
(Kxy, Kyx, Cxy, Cyx).

−
[

Fx
Fy

]
=

[
Kxx(Ω) Kxy(Ω)
Kyx(Ω) Kyy(Ω)

]
·
[

X
Y

]
+

[
Cxx(Ω) Cxy(Ω)
Cyx(Ω) Cyy(Ω)

]
·
[ .

X
.

Y

]
(3)

Through the fast Fourier transform (FFT) method, Equation (3) can be derived in
another form, as given in Equation (4), where Fij and Dij are the FFT of the time-dependent
reaction-force and rotor whirling motion. Note that Fij, Dij and Hij are all complex numbers.
Frequency-dependent force impedances Hij in Equations (5)–(8) are determined from
Equation (5). The frequency-dependent rotordynamic coefficients Kij and Cij are solved by
separating Hij into real and imaginary components, as defined in Equations (9)–(12).

−
[

Fxx Fyx
Fxy Fyy

]
=

[
Hxx Hyx
Hxy Hyy

]
·
[

Dxx Dyx
Dxy Dyy

]
(4)

Direct and cross-coupled force impedance for x-direction excitation:

Hxx =
(−Fxx) · Dyy − (−Fyx) · Dxy

Dxx · Dyy − Dyx · Dxy
(5)

Hxy =
(−Fxx) · Dyx − (−Fyx) · Dxx

Dxy · Dyx − Dyy · Dxx
(6)

Direct and cross-coupled force impedance for y-direction excitation:

Hyy =
(−Fyy) · Dxx − (−Fxy) · Dyx

Dxx · Dyy − Dyx · Dxy
(7)

Hyx =
(−Fyy) · Dxy − (−Fxy) · Dyy

Dxy · Dyx − Dyy · Dxx
(8)

Direct stiffness and damping coefficients for x-direction excitation:{
Kxx = Re(Hxx)

Cxx = Im(Hxx)/Ω
(9)

Cross-coupled stiffness and damping coefficients for x-direction excitation:{
Kxy = Re(Hxy)

Cxy = Im(Hxy)/Ω
(10)

Direct stiffness and damping coefficients for y-direction excitation:{
Kyy = Re(Hyy)

Cyy = Im(Hyy)/Ω
(11)

Cross-coupled stiffness and damping coefficients for y-direction excitation:{
Kyx = Re(Hyx)

Cyx = Im(Hyx)/Ω
(12)
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Keff and Ceff are used to illustrate the rotordynamic performance of the seal, defined as
Equation (13). {

Ke f f = Kxx + Cxy · Ω
Ce f f = Cxx − Kxy/Ω

(13)

Figure 5 shows a schematic diagram of the overall framework for solving the rotordy-
namic coefficients of the annular seal.
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2.4. Numerical Method Validations

The reliability of the research results in this paper lies in whether the transient numeri-
cal calculation method can accurately obtain the fluid-exciting force when rotor whirling is
simulated. The parameter data of seal geometries and operational conditions used for prov-
ing the numerical method available were provided by Marquette [29]. The seal clearance
and radius were 0.1013 m and 38.15 m, respectively. The ratio of seal length to diameter
was 0.457. In this operation, the pressure drops between inlet and out outlet was 4.17 MPa,
with the seal rotor spinning at 105,520 rpm. Water supplied at 55.3 ◦C was used as the
working medium. By using the ANSYS CFX11.0 commercial software, an unsteady solution
combined with the moving mesh of the single-frequency whirling method was applied to
obtain the time-varying exciting forces on the rotor surface. The standard κ-ε turbulence
model was utilized to simulate the transient turbulence conditions of the entire annular
seal flow. Moreover, the scalable logarithmic wall function was chosen to solve the flow
characteristics near the wall. In addition to this, the high-resolution scheme was applied
for the spatial discretization with the second-order backward Euler scheme adopted for
transient term discretization. Static pressure and 5% turbulence intensity were defined at
the entrance boundary with the averaged static pressure applied at the seal exhaust. In
addition to its rotational speed specified at the rotor surface, the periodic circular whirling
motion (Figure 3a) for x and y-directions of excitation displacements, shown in Figure 6
were also added in the transient solution. For the rotor, the eccentricity was selected to be
10% of the sealing clearance. The desirable convergence target of the transient solutions is
that the RMS residuals of the momentum and mass equations and turbulence equations
attain below 10−5, in addition, the response forces (Fx, Fy) on the rotor surface approaches
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steady periodical oscillation and the difference value between two adjoining vibration
periods is desired to be less than 0.4%.

Fr
e = −K − c · Ω

ω + M ·
(

Ω
ω

)2

Ft
e = k − C · Ω

ω − m ·
(

Ω
ω

)2 (14)
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transient solutions. The response forces are solved by integrating surface pressure and 

shear stresses in each timestep. The frequency-independent rotordynamic coefficients 

were solved by the curve-fitting method based on Equation (14). Figure 8 depicts exper-

iment data and numerical prediction results of tangential impedance and radial imped-

ance versus the precessional frequency ratio. Compared to experimental data published 

Figure 6. Single-frequency circular vibration displacement of the rotor (PFR = 1).

Figure 7 shows the response forces (Fx, Fy, Fr, Ft) for the rotor surface during the
transient solutions. The response forces are solved by integrating surface pressure and
shear stresses in each timestep. The frequency-independent rotordynamic coefficients were
solved by the curve-fitting method based on Equation (14). Figure 8 depicts experiment data
and numerical prediction results of tangential impedance and radial impedance versus the
precessional frequency ratio. Compared to experimental data published by Marquette [29],
the cross-coupling stiffness, direct damping and cross-coupling damping listed in Table 4
are over predicted, while the direct stiffness is under predicted. In general, the agreement
of the numerical results with the experimental data is reasonably good. It is verified that
the transient numerical method combined with the moving mesh technology can effectively
predict the rotordynamic characteristics of the seal.
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Table 4. Rotordynamic coefficients of experimental data and numerical results.

K(MN/m) k(MN/m) C(MNs/m) c(MNs/m)

Experiment 18.7 9.62 20.5 5.37
CFD 17.9 12.3 25.4 6.17

2.5. Inflow Distortion

The majority of researchers investigated the effect of inlet preswirl, pressure ratio
and whirling eccentricity on the rotordynamic characteristics of a seal system but ignored
the effect of inflow distortion caused by blade loading and wake turbulence. Actually, as
shown in Figure 9, the phenomenon of nonuniform pressure distribution at the outlet of the
impeller is mostly caused by wake turbulence when the work medium flows through the
blades. Subsequently, the nonuniform pressure distribution spreads through the chamber,
finally inducing the inflow distortion of the annular seal, which affects the frequency-
dependent rotordynamic characteristics. The exhaust flow from the impeller presents
periodic nonuniformity in the circumferential direction. Previously, researchers [26] uti-
lized harmonic functions to characterize the wake turbulence. In this paper, the inflow
distortion patterns were defined as harmonic functions, including two important influence
parameters that are impeller blades number m and pressure fluctuation ratio λ. Three
cases were designed for investigating the effect of inflow distortion on the rotordynamic
coefficients of a 1400-MW canned nuclear coolant pump annular seal, as shown in in Table 5.
Among these cases, Case 1 was commonly utilized in the research work about rotordynamic
characteristics. Case 2 described the pressure fluctuation invariant with time, where the
number of impeller blades is determined as m and the θ is a coordinate variable in cylindri-
cal coordinates with the axis of impeller rotation determined as the Z-axis. Case 3 provided
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the time-varying inflow distortion, which is closer to the actual operational situation, where
ω means the spinning speed of the rotor. Although the pressure distribution at the inlet of
each case is different, the magnitude of average pressure is the same.
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3. Results and Discussions
3.1. Rotordynamic Coefficients Results for Different Cases

In practice, there is a nonuniform pressure distribution instead of an even flow field
with a constant pressure parameter at the entrance of the annular seal. In order to investigate
the effect of inflow distortion patterns on the rotordynamic characteristics of the RCP
annular seal, three transient computational cases were projected in the frequency range
of 5–25 Hz with a 1485 rpm rotor speed. Figure 10 shows that the damping coefficients
Cxx, Cxy and Ce f f predicted by the present transient numerical method increase with the
increasing whirling frequency, but the direct stiffness Kxx, the cross-coupling stiffness
Kxy and the effective stiffness Ke f f decrease. In addition, the rotordynamic coefficients
predicted in Case 3 are almost equal to that in Case 1, while there is a larger difference
between Cases 1 and 2. Generally, the rotordynamic coefficients obtained in Case 2 are
less than that in Case 1, except for the direct damping Cxx at the low frequency and the
effective damping Ce f f in the full frequency domain. In Figure 10e,f, the predicted effective
coefficients in Cases 1 and 3 have similar variation trends and values, in comparison to
the results in Case 2. The authors suggest that the small distinction between numerical
results in Case 1 and Case 3 could be partly attributed to the constant term ∆P and the
spinning speed ω in Case 3. Similar to that in Case 1, the two parameters in Case 3 lead to
the time-averaged pressure distribution in each node at the entrance of the annular seal.
Consequently, the approximate rotordynamic coefficients are solved in Cases 1 and 3 based
on the similar response forces by integrating pressure over the rotor surface.
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Figure 10. (a) Direct stiffness Kxx, (b) direct damping Cxx, (c) cross-coupling stiffness Kxy, (d) cross-
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with impeller blades number m = 5.

The above discussion shows that the spinning speed ω makes a dent in the effect of in-
flow distortion on the rotordynamic coefficients of the annular seal. With a higher spinning
speed, there is smaller effects of the inflow distortion. In the limiting situations when the
spinning speed ω = 0 is akin to Case 2 or when the time-averaged pressure distribution
at the entrance of the annular seal is extremely nonuniform, the inflow distortion has an
important effect on the rotordynamic characteristics of the RCP seal. In this work, the
magnitude of the positive effective stiffness Ke f f and damping Ce f f decrease because of the
inflow distortion of the annular seal, which may result in a risk of high vibration or even
rotor stability. From the rotordynamic stability point of view, more attention should be
focused on investigating the effect of inflow distortion on the rotordynamic characteristics
of the seal system.

3.2. Effects of Impeller Blades Number

The above section has discussed the significant effect of inflow distortion on the
rotordynamic characteristics of the annular seal. This section focuses on one of the inflow
distortion factors, i.e., the impeller blades number m, which affects the rotordynamic
characteristics of the annular seal. In these present numerical solutions, the number of
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impeller blades m is within the range [3,7] frequently selected to design the nuclear coolant
pump.

Figure 11 depicts the predicted rotordynamic coefficients with five different blade
numbers for the annular seal in Case 2. It is observed that there is an obvious trend
of direct stiffness Kxx, cross-coupling stiffness Kxy, effective stiffness Ke f f and effective
damping Ce f f versus impeller blade number m. The stiffness coefficients decrease with
the increase of impeller blade number m, while the effective damping Ce f f increases.
For each impeller blade number, the stiffness coefficients decrease with the increasing
whirling frequency, while the effective damping Ce f f increases. Compared to the evident
trend of the stiffness coefficients versus whirling frequency and impeller blade number,
Figure 11b,d,f shows a more complex trend of the damping coefficients. As shown in
Figure 11b, the direct damping Cxx increases with the increasing whirling frequency when
the impeller blade number m is below 5. However, with the impeller blade number
increased above m = 5, the direct damping Cxx gives gentle variation versus whirling
frequency, which begins to show a trend independent of the whirling frequency. At the
frequency of 25 Hz, the direct damping Cxx decreases with the increasing impeller blade
number m, while at the frequencies smaller than 25 Hz, the increasing blade number has
a significant effect on the chaotic variation trend, especially at 5 Hz. Figure 11d gives the
dependence of rotordynamic coefficients versus whirling frequency for the annular seal.
For the frequencies larger than 10 Hz, the cross-coupling damping Cxy decreasing with the
increasing impeller blade number m presents a steady trend. Compared to these trends
shown in Figure 11b, the results of effective damping Ce f f in Figure 11f present a more
obvious trend: it is independent of the whirling frequency when blade number m = 7.
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In general, there is a general trend that the increasing blade number will increase the
negative effective stiffness value, which significantly strengthens the rotor vibration. Apart
from this, the effective damping Ce f f increases as m increases, which can improve the rotor
stability.

3.3. Effects of Pressure Fluctuation

The pressure fluctuation ratio λ, defined in Equation (15), was used to represent the
inflow distortion intensity in this paper. In the present work, five pressure fluctuation
ratios λ = 5%, 8.33%, 12 %, 15% and 20% were chosen to investigate the effect of pressure
fluctuation in Case 2.

λ =
∆P

Pconstant
× 100% (15)

Figure 12 illustrates the rotordynamic coefficients versus whirling frequency for the
annular seals with different pressure fluctuation ratios. The comparison of force coefficients
illustrated in Figure 12 suggests that the rotordynamic coefficients decrease when the
pressure fluctuation ratio increases from 5% to 20%, except for the damping coefficients.
For each pressure fluctuation ratio λ, the stiffness coefficients decrease with the increasing
whirling frequency, while the effective damping Ce f f increases. The plots of direct damping
Cxx coefficients in Figure 12b show an interesting phenomenon that when the pressure
fluctuation ratio λ is larger than 12%, the direct damping Cxx first sharply decreases with
the whirling frequency when it increases from 5 to 10 Hz, and then slightly changes with the
increasing whirling frequency, which shows a trend independent of the whirling frequency.
For the pressure fluctuation ratios λ = 5% and λ = 8.33%, Figure 12b presents dependent
direct damping coefficient Cxx increasing with the increasing whirling frequency. The plots
of effective stiffness coefficient in Figure 12e suggest that with the increasing whirling
frequency and the increasing pressure fluctuation ratio λ, the magnitude of negative
coefficient Ke f f increases, which results in a risk of the rotor misalignment problem. In
Figure 12f, it is worthwhile noticing that the effective damping coefficient Ce f f is more
insensitive to the whirling frequency with the higher-pressure fluctuation ratio λ. Overall,
the positive effective damping increases with an increase in pressure fluctuation ratio λ,
which reduces the destabilizing forces in the rotor system.
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in Case 2 (impeller blades number m = 5).

3.4. Details of Inner Flow Field

By using the present CFD method, the entire flow field within the nuclear coolant
pump annular seal is viewed to give insight into the rotor precession phenomenon.
Figure 13 presents the whirling displacement of the rotor versus time and circumferential
pressure distributions of the rotor at different times. There are obvious phenomena that
the magnitude of overall pressure at the rotor surface in Case 2 is significantly greater than
those in Cases 1 and 3. Though there is a big difference between the import conditions of
Cases 1 and 3, the magnitude of overall pressure at the rotor surface in Case 3 is similar to
that in Case 1. The reason for this phenomenon is that in the import condition of Case 3,
the influence parameter ω (spinning speed) causes the peaks and troughs of the pressure
distribution to migrate in the circumferential direction over time, which can reduce uneven-
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ness in the circumferential direction. It can be observed from Figure 13e that when t = 0.3 s
(with the maximum displacement of the rotor), the circumferential pressure nonuniformity
caused by rotor eccentricity will be coupled with the inflow distortion, which aggravates
the nonuniformity of the pressure distribution on the rotor surface.
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distributions of the rotor at different times.

Figure 14 illustrates the transient static pressure distributions and the phasor diagram
of the reaction force at the meridional cross-section of the annular seal in three different
cases for x excitation and t = 0.2 s. In addition, the time-monitor signals of the rotor
orbit position and the whirling direction are indicated as a blue circular patterning with
a black straight arrow. As shown in Figure 14, the position of relatively higher pressure
corresponds to the direction of resp onse force F in Case 1, while the number of peak
pressures corresponds to the impeller blade number on the effect of inflow distortion in
Cases 2 and 3. For each case, the force component Fr is 180 degrees out of phase with the
rotor motion position, while the force component Ft is consistent with the rotor whirling
velocity. This illustrates the nuclear coolant pump annular seal possesses negative effective
stiffness and positive effective damping. The magnitudes of Fr and Ft in Figure 14a,c show
almost identical values. While compared to the results in Figure 14a, the magnitudes of
Fr and Ft in Figure 14b obviously increase. This can be used to explain that the effective
stiffness and effective damping in Cases 1 and 3 have almost identical values, while the
absolute value of effective coefficients for Case 2 are larger than that for Case 3. These
conclusions are consistent with the observations in Figure 10.
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4. Conclusions

The majority of researchers use uniform inlet conditions to study the dynamic char-
acteristics of seals in turbomachinery systems. However, in real operational conditions,
seal inlet conditions are not uniform due to upstream influences. In the current study, a
three-dimensional transient solution based on a multi-frequency elliptical whirling orbit
model was utilized to study the effect of inflow distortion on the rotordynamic charac-
teristics of the 1400-MW RCP seal. The rotordynamic coefficients and inner flow field
were numerically predicted for three inflow distortion pattern cases. In this paper, several
conclusions can be obtained by analyzing the numerical computational results.

The results suggest that compared with the magnitudes of negative effective stiffness
Ke f f in Case 1, those in Cases 2 and 3 both decrease, with the maximum reduction up to
169% and 8.6%, respectively. In addition, the positive effective damping Ce f f in Case 2
has a maximum increase of up to 259% compared with that in Case 1, while there is a
minor difference between that in Case 1 and Case 3. In general, the inflow distortion has a
significant effect on destabilizing the rotor system.

With the increasing impeller blade number in Case 2, an obvious decrease in the
magnitudes of the negative effective stiffness Ke f f results in a risk of rotor misalignment.
In addition, the larger impeller blade number will also lead to higher positive effective
damping Ce f f , which threatens the rotor stability. These results provide theoretical guidance
for engineers who choose impellers with as few blades as possible, which is beneficial to
the operation safety of RCP.
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Compared to the effect of impeller blade number on the rotordynamic characteristics
in Case 2, another influencing factor of inflow distortion (pressure fluctuation ratio) has a
similar effect. That is, with an increasing pressure fluctuation ratio, the negative stiffness
Ke f f decreases and the effective damping Ce f f increases compared to the whirling frequen-
cies. This suggests that the higher the pressure fluctuation ratio, the more unstable the rotor
system is. In summary, the inflow distortion plays a role in the effect on the rotor instability
of the nuclear coolant pump annular seal. The potential danger caused by inflow distortion
cannot be ignored.
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Nomenclatures

a Major axis of the elliptical orbit (m)
b Minor axis of the elliptical orbit (m)
c Cross-coupling damping (N-s/m2)
C Direct damping (N-s/m2)
Cxx Direct damping in x-direction (N-s/m2)
Cxy Cross-coupling damping in x-direction (N-s/m2)
Cyy Direct damping in y-direction (N-s/m2)
Cyx Cross-coupling damping in y-direction (N-s/m2)
Ceff Effective damping (N-s/m2)
Dxx Rotor orbit motion in x-direction for x-direction excitation (m)
Dxy Rotor orbit motion in y-direction for x-direction excitation (m)
Dyy Rotor orbit motion in y-direction for y-direction excitation (m)
Dyx Rotor orbit motion in x-direction for y-direction excitation (m)
Fxx Rotor reaction force in x-direction for x-direction excitation (N)
Fxy Rotor reaction force in y-direction for x-direction excitation (N)
Fyy Rotor reaction force in y-direction for y-direction excitation (N)
Fyx Rotor reaction force in y-direction for x-direction excitation (N)
Fr Rotor reaction force in radial direction (N)
Ft Rotor reaction force in tangential direction (N)
Hxx Direct force impedance in x-direction (N/m)
Hxy Cross-coupling force impedance in x-direction (N/m)
Hyy Direct force impedance in y-direction (N/m)
Hyx Cross-coupling force impedance in y-direction (N/m)
k Cross-coupling stiffness (N/m)
K Direct stiffness (N/m)
Kxx Direct stiffness in x-direction (N/m)
Kxy Cross-coupling stiffness in x-direction (N/m)
Kyy Direct stiffness in y-direction (N/m)
Kyx Cross-coupling stiffness in y-direction (N/m)
Keff Effective direct stiffness (N-s/m2)
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m Impeller blade number
n Rotational speed (rpm)
Pin Inlet pressure (Pa)
∆P Pressure fluctuation (Pa)
PFR Precessional frequency ratio Ω/ω

R Seal radius (mm)
e Rotor eccentricity(m)
s Sealing clearance (m)
f Rotor whirling frequency (Hz)
ω Rotor spinning speed (rad/s)
Ω Rotor whirling speed (rad/s)
λ Pressure fluctuation ratio (%)
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