
����������
�������

Citation: Xiong, X.; Zhou, Y.; Wang,

Y. Influences of Randomly Uncertain

Factors on Dynamic Coefficients of

an Interlocking Labyrinth Seal-Rotor

System. Machines 2022, 10, 39.

https://doi.org/10.3390/

machines10010039

Academic Editor: Davide Astolfi

Received: 8 December 2021

Accepted: 30 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Influences of Randomly Uncertain Factors on Dynamic
Coefficients of an Interlocking Labyrinth Seal-Rotor System
Xin Xiong 1,2,* , Yanfei Zhou 1 and Yiqun Wang 1

1 School of Mechatronic and Automation Engineering, Shanghai University, Shanghai 200444, China;
YanfeiZhou@shu.edu.cn (Y.Z.); wdzaa@shu.edu.cn (Y.W.)

2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200444, China
* Correspondence: xxiong@shu.edu.cn

Abstract: Many randomly uncertain factors inevitably arise when gas flows through a labyrinth seal,
and the orbit of the rotor center will not rotate along a steady trajectory, as previously studied. Here,
random uncertainty is considered in an interlocking labyrinth seal-rotor system to investigate the
fluctuations of dynamic coefficients. The bounded noise excitation is introduced into the momentum
equation of the gas flow, and as a result, the orbit of the rotor center is expressed as the combination of
an elliptic trajectory with the bounded noise perturbation. Simulation results of the coefficients under
randomly uncertain perturbations with various strengths are comparatively investigated with the
traditional predictions under ideal conditions, from which the influences of random uncertain factors
on dynamic coefficients are analyzed in terms of the rotor speed, pressure difference, and inlet whirl
velocity. It is shown that the deviation levels of the dynamic coefficients are directly related to the
random perturbations and routinely increase with such perturbation strengths, and the coefficients
themselves may exhibit distinct variation patterns against the rotor speed, pressure difference, and
inlet whirl velocity.

Keywords: dynamic coefficient; labyrinth seal; random uncertainty; orbit motion; rotordynamics

1. Introduction

The labyrinth seal is a significant constitutional part of rotating machinery which
primarily reduces internal flow leakage and isolates high- and low-pressure regions. When
fluid flows through the seal cavities, an inhomogeneous pressure distribution is formed
at the outlet, and thereby a resultant force acting on the rotor, i.e., the sealing force, is
generated. If the seal fails to work properly, leakage will occur and can result in accidents,
threatening the safety of the equipment [1,2].

Many research works have been carried out to improve the rotordynamic stability
of the seal-rotor system. The effects of the layout of anti-stagnation nozzles on rotordy-
namic characteristics are investigated for a novel anti-stagnation labyrinth seal, using a
computational fluid dynamics (CFD) method [3]. The influences of inlet preswirls on the
static and dynamic stability of the labyrinth seal with different blade numbers are studied
based on experimental data and numerical simulations [4]. Swirl brakes have also received
attention in the research field. Related works are concerned with the relation between
rotordynamic performance and the various lengths, clearances, numbers, rotation angles,
and axial arrangement of swirl brakes [5,6]. Operation conditions are also considered in
the existing literature, including the maximum pressure loads of labyrinth seal’s teeth [7],
the rotor eccentricity [8], the rotating speed [9], the inlet pressure [3], and tooth bending
damage [10].

However, due to the complexity of seal structure, the gas flow in a seal usually turns
out to be turbulent but not laminar, causing difficulties when calculating sealing forces.
Most of the previous studies only satisfy the ideal state assumption and ignore the uncertain
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factors arising from the gas flow. Furthermore, to simplify the computation process, these
studies hypothesize that the orbit of the rotor center is circular or elliptic in shape. However,
as the shaft spins eccentrically, the gas flow forces usually turn out to be nonuniform in
the circumferential direction, and some spiral flow is formed in multiple directions in
the cavities due to the friction between gas flows and the inlet preswirl [11]. Besides, the
gas flow will constantly collide with the tooth and wall, and leakage flow will inevitably
disturb the main flow, causing changes in the state of the main flow [12]. The strong
impact, shear, vortex, and transient evolution all occur within the gas flow, causing random
effects of sealing forces on the rotor and bringing great difficulty in estimating dynamic
coefficients [12–14]. Besides, parameters coupled with the uncertain structural model from
a subjective geometric transformation (e.g., the flow coefficient and the dynamic load factor)
cannot be accurately estimated, enlarging the errors between the theoretical results and the
experimental ones.

Random uncertainties will interfere with the stability of the gas flow and bring random
variations to the orbit of the rotor center. Thus, the orbit will become irregular, with
large errors compared with the traditional one [15–17]. To this end, researchers use some
alternative methods in solving the dynamic equation to obtain a more accurate trajectory
expression in the study of the characteristics of a seal-rotor system [15,18–20]. Nevertheless,
these methods are applicable only when the model parameters are provided or can be
estimated with comprehensive knowledge of the system and flow state. Moreover, most
methods only consider the data uncertainties but cannot solve the natures of the model
uncertainties. To overcome the shortcomings of the above methods, the nonparametric
modeling technique was introduced, in which both types of uncertainties can be included
in the study of structural dynamics [21]. After that, the nonparametric modeling technique
was extended to solve the rotordynamic problems of the uncertain symmetric rotor, and
the effects of random uncertain factors on the dynamic performance of the rotor were
investigated in detail [22,23].

In the following content, the aforementioned uncertain gas flow is taken as the random
excitations introduced into the momentum equation, and the orbit motion is represented
by combining an elliptic trajectory with the bounded noise perturbation to estimate the
dynamic characteristic coefficients, from which the disturbance clearance function, cavity
coefficients, and sealing forces are rederived in the case of random uncertain orbit. Finally,
several numerical examples are employed to illustrate the present procedure.

2. Mathematical Models

Two main types of labyrinth seals are applied in engineering practice, with one being
the see-through style (including the seal teeth on the stator (TOS) and the seal teeth on the
rotor (TOR)) and the other one being the interlocking style, which has its teeth both on the
rotor and the stator (ILS). The ILS is considered in the present study, in which its geometry
is illustrated in Figure 1. Detailed explanations regarding its dimensions can be found in
Ref. [13].

Figure 1. Geometry of an interlocking labyrinth seal.
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In a typical cavity, the fluid dynamics are governed by the continuity equation and the
circumferential momentum equation. When the concentric rotor rotates with a constant
speed with no eccentricity, gas flow in the labyrinth seal is steady, axial-symmetric, and
time-independent. Under this steady state, the continuity equation implies that the mass
flow rate from one cavity to the next equals the constant

.
m0, i.e.,

.
m1 = · · · = .

mi = · · · =
.

mN =
.

m0, (i = 1, 2, · · · , N), (1)

where
.

mi represents the mass flow rate through the clearance of the ith tooth. According
to the generalized Neumann’s equation [1,13], the value of

.
mi depends on the geometry,

temperature, and pressure difference between two adjacent cavities, which can be written as

.
mi =

.
m0 = C1iC2i(2πRsCr)

√
P2

i−1 − P2
i

RgTi
. (2)

In Equation (2), the orifice contraction coefficient C1i is determined by Chaplygin’s
formula [2,13]:

C1i =
π

π + 2− 5Si + 2S2
i

with Si =

(
Pi−1

Pi

)(γ−1)/γ

− 1, (3)

where γ represents the specific heat ratio.
The kinetic energy carry-over coefficient C2i equals to unity for the first cavity, while

C2i =

√
N

(1− Ji)N + Ji
with Ji = 1−

(
1 + 16.6

Cr

L

)−2
(4)

gives its estimations for other teeth [2,13].
Geometric parameters in Equation (2) include the rotor radius Rs and the radial

clearance Cr. The gas in each seal cavity is assumed to obey the ideal gas law. Thus, its
pressure distribution can be written as

Pi = ρiRgTi, (5)

where ρi, Rg, and Ti are the gas density, gas constant, and gas temperature, respectively.
Usually, the isenthalpic flow results in an isothermal process for gas flows, which means a
constant gas temperature is preserved among all the cavities (Ti = T, i = 1, 2, · · · , N).

Once the parameters in Equations (1)–(5) are provided, e.g., the gas temperature T,
inlet pressure Pin, and outlet pressure Pout, the flow rate

.
mi and pressure distribution Pi in

each cavity can be calculated by coupling these equations iteratively.
The randomness of the flow may generate randomly uncertain excitations, which

will affect the stability and reliability of the seal-rotor system in practice. Thus, the ran-
domly uncertain factors should be considered in establishing the circumference momentum
equation [24], which is rewritten as

∂

∂t

∫
ρiVidṼ +

∫
Viρi AdS = ∑ Fθ + Fr(t), (6)

where Ṽ is the volume of each cavity and S is the surface of the control volume. Circumfer-
ential force Fθ within the control volume of each cavity includes the pressure component
and the shear force component, with both acting along the circumferential direction, while
Fr(t) represents the random excitation due to the uncertainty of the gas flow.

For the system shown in Figure 1, a specific form of Equation (6) is given by

ρi A
∂Vi
∂t

+
ρiVi A

Rs

∂Vi
∂θ

+
.

mi(Vi −Vi−1) = −
A
Rs

∂Pi
∂θ

+ (τriar − τsias)L +
Fr(t)

Rs
H, (7)



Machines 2022, 10, 39 4 of 19

where A = L(B + H) represents the cross-section area of a cavity and H is the non-
asymmetric clearance. Both A and H vary with (t, θ). The dimensionless shear stress
lengths in Equation (7) are defined as

ar = as = (B + L)/L. (8)

For simplicity, we assume that the randomly uncertain perturbation is weak compared
with the actions of the main gas flow, i.e.,

Fr(t) = ε0 f0ξ0(t), (9)

where f 0 is a constant and 0 ≤ ε0 � 1. The bounded noise excitation is expressed as [25]:

ξ0(t) = cos[ω0t + σB(t) + Γ], (10)

where ω0 is the central frequency, B(t) is the standard Wiener process with strength σ, and
Γ is a random phase uniformly distributed in the interval [0, 2π), which renders the process
correlation-stationary at all times. The mean of the bounded noise is zero and

E[ξ0(t1)ξ0(t2)] =
1
2

cos ω0(t1 − t2) exp
(
−σ2

2
|t1 − t2|

)
(11)

gives the correlation function. Moreover, the two-sided spectral density of this random
process can be computed as [25]

Sξ0(Ψ) =
σ2

2π

[
1

4(Ψ−ω0)
2 + σ4

+
1

4(Ψ + ω0)
2 + σ4

]
, (12)

and the shape of the power spectrum rests with ω0 and σ. In general, it has two peaks
symmetrically located in the positive and negative frequency domains. When ω0/σ2 � 1,
ξ0(t) becomes a narrow-band random process, which provides a good simulation for
the Dryden spectrum of wind turbulence and the von Karman spectrum of vibration
transmitted through the ground by changing the values of ω0 and σ [24].

Except for the pressures and velocities, many other parameters in the continuity
equation and the circumferential momentum equation need to be determined. According to
work by Eser [24], Equations (1) and (6) can be transformed by employing the perturbation
method and neglecting the terms of order ε2 and their higher-order counterparts as

G1

(
∂P1i
∂t

+
V0i
Rs

∂P1i
∂θ

+
P0i
Rs

∂V1i
∂θ

)
+ G2iP1i−1 + G3iP1i + G4iP1i+1 = −G5i

(
∂H1

∂t
− V0i

Rs

∂H1

∂θ

)
(13)

and

X1i

(
∂V1i
∂t

+
V0i
Rs

∂V1i
∂θ

)
+

A0

Rs

∂P1i
∂θ

+ X2iV1i −
.

m0V1i−1 + X3iP1i−1 + X4iP1i = Xr
5i H1. (14)

The parameters involved in Equations (13) and (14) can refer to Ref. [24], except that
the form of Xr

5i has now been changed to

Xr
5i = X5i +

ε0 f0ξ0(t)
Rs

, (15)

where X5i has the same meaning as that in Ref. [24].
A new term ε0 f0ξ0(t)/Rs in Equation (15), resulting from the random uncertainties,

will affect the estimations of the cavity parameters. To calculate the sealing force, most
of the intermediate parameters embedded in these equations should be determined in
advance, which can only be obtained with the orbit of the rotor center.
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3. Estimations of the Dynamic Coefficients

In the process of solving the first-order continuity equation and circumferential mo-
mentum equation, the orbit motion should be provided, which is primarily assumed to be
a standard elliptic trajectory in the existing literature. However, random excitation from
the uncertainty of gas flow causes the rotor center not to rotate along the elliptic trajectory.
Therefore, taking the randomly uncertain factors into account, the horizontal and vertical
position function of the rotor center A to cavity center O (see Figure 2) can be written as{

xA = λ1 cos Ωt + λ2 sin Ωt + εξx(t)
yA = λ3 sin Ωt + λ4 cos Ωt + εξy(t)

, (16)

where 
λ1
λ2
λ3
λ4

 =


Kxx −M Cxx Kxy Cxy
−Cxx Kxx −M −Cxy Kxy
Kyx Cyx Kyy −M Cyy
−Cyx Kyx −Cyy Kyy −M


−1

Mε
0
0

Mε

.

Figure 2. Randomly uncertain orbit of the rotor center.

Randomly uncertain perturbations in x- and y- directions can again be expressed by
the bounded noises ξx(t) and ξy(t). Assuming that the perturbations come from the same
resources and have the same center frequency ωr but with different strengths (σx and σy)
and random phases (Γx and Γy), their formation can be written as{

ξx(t) = fx cos(ωrt + σxBx(t) + Γx)
ξy(t) = fy cos(ωrt + σyBy(t) + Γy)

. (17)

According to Shinozuka’s work [26], each physical realization of the bounded noises
can be generated by a series of cosine functions with random frequencies, i.e.,

ξ0(t) ≈
N0

∑
k=1

Λk cos(ωkt + Γk), (18)

where Λk =
√

2Sξ0 ∆ω represents the amplitude, ωk is the non-negative random frequency
independently distributed in the range [ωl , ωu], Γk is the random phase uniformly dis-
tributed in the interval [0, 2π), N0 is a positive integer with large enough value, and
∆ω = (ωu −ωl)/N0 is the frequency increment. As each physical realization of the
bounded noises ξ0(t) is approximated by the sum of N0 harmonic functions, it can be
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considered a deterministic one. Physical realization from Equation (18) is almost ergodic
for a large enough value of N0 [26].

Similarly, the physical realizations of ξx(t) and ξy(t) can be generated by
ξx(t) ≈

N1
∑

g=1
fx,g cos(ωgt + Γx,g)

ξy(t) ≈
N1
∑

g=1
fy,g cos(ωgt + Γy,g)

, (19)

where fx,g and fy,g are the amplitudes in the x- and y-directions, ωg is the non-negative
independent random frequency, Γx,g and Γy,g are the random phases, and N1 is a positive
integer with large enough value.

A sample function generated by Equation (18) is displayed in Figure 3a, where
ω0 = 2π, σ = 10, and N0 = 2000. When N0 approaches a large value, as shown in
Figure 3b, its spectral density is almost consistent with the theoretical one, indicating that
the sample function is a good approximation of random bounded noise and can ensure the
ergodicity of each physical realization.

Figure 3. The bounded noise, where (a) is a sample function and (b) is its spectral density.
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In Figure 2, the dashed ellipse is the idealized trajectory, while the solid red orbit
represents its realistic counterpart with an uncertain bounded noise perturbation. The
disturbance clearance function is defined by the distance between point B on the rotor and
point C on the stator, written as

H(t, θ) = Rs + Cr −OB. (20)

As each sample of the bounded noise is simulated by a series of cosine functions, the
perturbation analysis can be appreciably used to express the length of OB as

OB = Rs − εH1(t, θ) + · · · .

When the perturbation analysis is performed, the eccentricity of the disturbed rotor is
characterized by the perturbation parameter ε = e/Cr, where e is the deviation distance of
the rotor center from the cavity center. The flow variables are then expanded as

H = Cr + εH1(t, θ) + · · ·
Pi = P0i + εP1i(t, θ) + · · ·
Vi = V0i + εV1i(t, θ) + · · ·
.
qi =

.
q0i + ε

.
q1i(t, θ) + · · ·

ρi = ρ0i + ερ1i(t, θ) + · · ·
τri = τr0i + ετr1i(t, θ) + · · ·
τsi = τs0i + ετs1i(t, θ) + · · ·

. (21)

Consequently, the coordinates of point B are derived as{
xB = OB cos θ = Rs cos θ − εH1(t, θ) cos θ + · · ·
yB = OB sin θ = Rs sin θ − εH1(t, θ) sin θ + · · · . (22)

Since A and B are located at the center and edge of the rotor, respectively, the distance
between them equals to the radius Rs, i.e.,

(xB − xA)
2 + (yB − yA)

2 = Rs
2. (23)

Substituting Equations (16) and (22) into Equation (23), we can obtain that

[Rs cos θ − εH1(t, θ) cos θ − εa cos(Ωt + ϕAx)− εξx(t)]
2

+
[
Rs sin θ − εH1(t, θ) sin θ − εb sin(Ωt + ϕAy)− εξy(t)

]2
= Rs

2,
(24)

where  a =
√

λ2
1 + λ2

2/ε

b =
√

λ2
3 + λ2

4/ε
and

{
ϕAx = arctan(−λ2/λ1)
ϕAy = arctan(λ4/λ3)

.

Neglecting the terms of ε2 and the higher-order counterparts, H1(t, θ) can be derived as

H1(t, θ) = −
[
a cos(Ωt + ϕAx) cos θ + b sin

(
Ωt + ϕAy

)
sin θ

]
−
[
ξx(t) cos θ + ξy(t) sin θ

]
.

(25)

According to Equation (19), its exponential form is

H1(t, θ) = −Re
{[

1
2 (a− b)ej(θ+Ωt+ϕAx) + 1

2 (a + b)ej(θ−Ωt−ϕAy)
]

+
N1
∑

g=1

[
1
2
(

fx,g − fy,g
)
ej(θ+ωgt) + 1

2
(

fx,g + fy,g
)
ej(θ−ωgt)

]}
.

(26)
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The solutions of the first-order continuity equation and momentum equation can be
given by substituting Equation (26) into Equations (13) and (14) as

P1i = Re

{
Pi

+ej(θ+Ωt+ϕAx) + Pi
−ej(θ−Ωt−ϕAy) +

N1

∑
g=1

[
P+

i,g
ej(θ+ωgt) + P−

i,g
ej(θ−ωgt)

]}
, (27)

V1i = Re

{
Vi

+ej(θ+Ωt+ϕAx) + Vi
−ejj(θ−Ωt−ϕAy)

+
N1

∑
g=1

[
V+

i,gej(θ+ωgt) + V−i,gej(θ−ωgt)
]}

. (28)

where the parameters P+
i ,P+

i,g,V+
i , and V+

i,g with the superscript ‘+’ represent the coefficients

of the terms ej(θ+Ωt+ϕAx) and ej(θ+ωgt), while the parameters P−i ,P−i,g,V−i , and V−i,g with the

superscript ‘−’ represent the coefficients of the terms ej(θ−Ωt−ϕAy) and ej(θ−ωgt).
It can be found from the expressions of H1, P1i, and V1i that the intermediate pa-

rameters are comprised of two parts under the uncertain perturbations. The former part
corresponds to the ideal elliptic orbit, and the second part corresponds to the fluctuation
caused by the weak bounded noise. During a certain iteration process, the fluctuations of
the intermediate parameters are different from each other among the various samples.

Substituting Equations (26)–(28) into Equations (13) and (14) yields

jG1

[(
V0i
Rs
±Ω

)
P±i +

P0i
Rs

V±i

]
+ G2iP±i−1 + G3iP±i + G4iP±i+1 = −jG5i

a± b
2

(
Ω∓ V0i

Rs

)
, (29)

jX1i

(
V0i
Rs
±Ω

)
V±i + j A0

Rs
P±i + X2iV±i −

.
m0V±i−1 + X3iP±i−1 + X4iP±i

= −
[

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

](
a∓b

2

)
,

(30)

Ng

∑
g=1

{
jG1

[(
V0i
Rs
±ωg

)
P±i,g +

P0i
Rs

V±i,g
]
+ G2iP±i−1,g + G3iP±i,g + G4iP±i+1,g

}
= −jG5i

[
N1
∑

g=1

(
ωg ∓ V0i

Rs

)
fx,g± fy,g

2

]
,

(31)

and

Ng

∑
g=1

{
jX1i(

V0i
Rs
±ωg)V±i,g + j A0

Rs
P±i,g + X2iV±i,g −

.
m0V±i−1,g + X3iP±i−1,g + X4iP±i,g

}
,

= −
[

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

]
N1
∑

g=1

fx,g∓ fy,g
2

(32)

where the parameters with a subscript ‘g’ represent the fluctuation components due to the
bounded noise.

In previous studies, only Equations (29) and (30) were investigated, and the additional
term (ε0 f0/Rs)∑

N0
k=1 (Λk cos ωk + Γk) in Equation (30) was not included. Equations (31)

and (32) are introduced here due to the random uncertainty in the orbit motion. Obviously,
compared with the traditional ellipse case, more parameters and additional equations are
involved during the solution process. For the convenience of analysis, we define the vectors
as follows:

{Yi} =
[
P+

i , P−i , V+
i , V−i

]T, (33)

{Zi} =
[

P+
i,g, P−i,g, V+

i,g, V−i,g
]T

, (34)

and Equations (29)–(32) can be transformed into their matrix forms as[
C−1

i

]
{Yi−1}+

[
C0

i

]
{Yi}+

[
C+1

i

]
{Yi+1} = {Ai}, (35)
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[
Ĉ−1

i

]
{Zi−1}+

[
C0

i

]
{Zi}+

[
C+1

i

]
{Zi+1} =

{
Âi
}

, (36)

where

[
C−1

i

]
=


jG1

(
V0i
Rs

+ Ω
)
+ G3i 0 jG1

P0i
Rs

0

0 jG1

(
V0i
Rs
−Ω

)
+ G3i 0 jG1

P0i
Rs

j A0
Rs

+ X4i 0 jX1i

(
V0i
Rs

+ Ω
)
+ X2i 0

0 j A0
Rs

+ X4i 0 jX1i

(
V0i
Rs
−Ω

)
+ X2i

, (37)

[
Ĉ−1

i

]
=



jG1

(
V0i
Rs

+
N1

∑
g=1

ωg

)
+ G3i 0 jG1

P0i
Rs

0

0 jG1

(
V0i
Rs
−

N1

∑
g=1

ωg

)
+ G3i 0 jG1

P0i
Rs

j A0
Rs

+ X4i 0 jX1i

(
V0i
Rs

+
N1

∑
g=1

ωg

)
+ X2i 0

0 j A0
Rs

+ X4i 0 jX1i

(
V0i
Rs
−

N1

∑
g=1

ωg

)
+ X2i


, (38)

[
C0

i

]
=


G2i 0 0 0
0 G2i 0 0

X3i 0 − .
m0 0

0 X3i 0 − .
m0

, (39)

[
C+1

i

]
=


G4i 0 0 0
0 G4i 0 0
0 0 0 0
0 0 0 0

, (40)

{Ai} =
[
−jG5i

a−b
2

(
Ω− V0i

Rs

)
,−jG5i

a+b
2

(
Ω + V0i

Rs

)
,

−
(

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

)
a−b

2 ,−
(

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

)
a+b

2

]T

,
(41)

and

{
Âi
}
=

[
−jG5i

N1
∑

g=1

fx,g− fy,g
2

(
ωg − V0i

Rs

)
,−jG5i

N1
∑

g=1

fx,g+ fy,g
2

(
ωg +

V0i
Rs

)
,

−
[

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

]
N1
∑

g=1

fx,g− fy,g
2 ,

−
[

X5i +
ε0 f0
Rs

N0
∑

k=1
(Λk cos ωk + Γk)

]
N1
∑

g=1

fx,g+ fy,g
2

]T

.

(42)

Equations (33)–(36) involve twelve unknown parameters, including P+
i , P−i , V+

i , and
V−i for the ith cavity and their counterparts for the (i− 1)th and (i + 1)th cavity. Besides,
an extra series of randomly uncertain parameters P+

i,g, P−i,g, V+
i,g, and V−i,g is also included.

Considering a labyrinth seal with (N − 1) cavities, a system of four linear equations can be
written for each cavity as
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...
...

...
...

...[
C−1

i−1

] [
C0

i−1

] [
C+1

i−1

]
0 0

0
[
C−1

i

] [
C0

i

] [
C+1

i

]
0

0 0
[
C−1

i+1

] [
C0

i+1

] [
C+1

i+1

]
...

...
...

...
...





...
{Yi−1}
{Yi}
{Yi+1}

...


=



...
{Ai−1}
{Ai}
{Ai+1}

...


, (43)



...
...

...
...

...[
Ĉ−1

i−1

] [
C0

i−1

] [
C+1

i−1

]
0 0

0
[
Ĉ−1

i

] [
C0

i

] [
C+1

i

]
0

0 0
[
Ĉ−1

i+1

] [
C0

i+1

] [
C+1

i+1

]
...

...
...

...
...





...
{Zi−1}
{Zi}
{Zi+1}

...


=



...{
Âi−1

}{
Âi
}{

Âi+1
}

...


, (44)

resulting in an 8(N − 1)× 8(N − 1) banded system with linear equations to determine
the unknowns. The above equations can be solved by applying the Gaussian elimination
method.

Since asymmetric forces exist during operation, rotor performances characterized
by the direct and cross-coupled stiffness and damping coefficients should be changed
accordingly. The equation of motion of the seal-rotor system can then be written as [24]:[

Cxx Cxy
−Cyx Cyy

]{ .
x
.
y

}
+

[
Kxx Kxy
−Kyx Kyy

]{
x
y

}
= −

{
Fx
Fy

}
, (45)

where Fx and Fy are the total net forces generated by the gas leakage in x- and y-directions, re-
spectively. The influence coefficients in the damping and stiffness matrix satisfy Cxx = Cyy,
Cxy = Cyx, Kxx = Kyy, and Kxy = Kyx. It should be noted that the coefficients in
Equation (45) originate only from one sample of the randomly uncertain trials, and 32
or more samples are required to ensure ergodicity.

The total net forces can be obtained by integrating the disturbance pressure and
disturbance shear stress along the rotor surface as follows:

F = Fx + jFy = −εRsL
N

∑
i=1

∫ 2π

0

[
P1iejθ − j

(
1 +

B
L

)
τr1iejθ

]
dθ. (46)

Substituting the pressure component, the shear force component, and the intermediate
parameters into Equation (46), we obtain that,

F = −2πεRsL
N
∑

i=1

{{
P−i
[
1− j

(
1 + B

L

)
τr0i
P0i

]
− j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

−
i + 0.125τr0i Dh0

(B+Cr)
2

a+b
2

]}
ej(Ωt+ϕAx)

+

{
P+

i

[
1− j

(
1 + B

L

)
τr0i
P0i

]
− j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

+
i + 0.125τr0i Dh0

(B+Cr)
2

a−b
2

]}
e−j(Ωt+ϕAy)

+
N1
∑

g=1

{
P−i,g
[
1− j

(
1 + B

L

)
τr0i
P0i

]
− j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

−
i,g +

0.125τr0i Dh0
(B+Cr)

2
fx,g+ fy,g

2

]}
ejωgt

+
N1
∑

g=1

{
P+

i,g

[
1− j

(
1 + B

L

)
τr0i
P0i

]
− j
(

1 + B
L

) [
1.75τr0i
|V0i−ωRs |V

+
i,g +

0.125τr0i Dh0
(B+Cr)

2
fx,g− fy,g

2

]}
e−jωgt

}
,

(47)

where the randomly uncertain factors caused by the gas excitation is also included. Simi-
larly, substituting the randomly uncertain orbit expression Equation (19) into Equation (45),
the total net forces can be written as.
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F = Fx + jFy = − ε
2

{[(
Kxx + CxyΩ

)
− j
(
Kxy − CxxΩ

)]
(a + b)ej(Ωt+ϕAx)

−
[(

Kxx − CxyΩ
)
− j
(
Kxy + CxxΩ

)]
(a− b)e−j(Ωt+ϕAy)

+
N1
∑

g=1

[(
Kxx + Cxyωg

)
− j
(
Kxy − Cxxωg

)](
fx,g + fy,g

)
ejωgt

+
N1
∑

g=1

[(
Kxx − Cxyωg

)
− j
(
Kxy + Cxxωg

)](
fx,g − fy,g

)
e−jωgt

}
.

(48)

Comparing Equation (48) with Equation (47) by defining

M+ = πRsL
N
∑

i=1

{
P+

i

[
1− j

(
1 + B

L

)
τr0i
P0i

]
−j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

+
i + 0.125τr0i Dh0

(B+Cr)
2

a+b
2

]}
2

a+b ,
(49)

M− = πRsL
N
∑

i=1

{
P−i
[
1− j

(
1 + B

L

)
τr0i
P0i

]
−j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

−
i + 0.125τr0i Dh0

(B+Cr)
2

a−b
2

]}
2

a−b ,
(50)

N+ = πRsL
N
∑

i=1

N1
∑

g=1

{
P+

i,g

[
1− j

(
1 + B

L

)
τr0i
P0i

]
−j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

+
i,g +

0.125τr0i Dh0
(B+Cr)

2
fx,g+ fy,g

2

]}
2

fx,g+ fy,g
,

(51)

and

N− = πRsL
N
∑

i=1

N1
∑

g=1

{
P−i,g
[
1− j

(
1 + B

L

)
τr0i
P0i

]
−j
(

1 + B
L

)[
1.75τr0i
|V0i−ωRs |V

−
i,g +

0.125τr0i Dh0
(B+Cr)

2
fx,g− fy,g

2

]}
2

fx,g− fy,g
,

(52)

the dynamic coefficients are derived as
Kxx = 1

2 Re{M+ + M− + N+ + N−}
Kxy = − 1

2 Im{M+ + M− + N+ + N−}
Cxx = 1

2Ω Im{M+ −M− + N+ − N−}
Cxy = 1

2Ω Re{M+ −M− + N+ − N−}

. (53)

As previously mentioned, the external random excitation will disturb the gas flow in a
labyrinth seal, and in return, the variation of the gas flow brings about an unstable sealing
force acting on the rotor to cause further unpredictable variations of the rotor position.
The parameters of each cavity, such as P±i andV±i , will change with the random excitation,
which can directly affect the values of M± and N±. Therefore, all the above factors are
closely linked with each other during the calculation process, and the dynamic coefficients
will deviate from the ideal ones, which can be seen from Equation (53).

Although each sample of a random process can be recognized as a deterministic
realization once it is generated by some approximation method, even faint noisy factors
may bring about obvious change and affect the stability of the rotor system. To show the
impact of random uncertainty on the dynamic coefficients, several numerical examples are
illustrated in the following section for a more detailed discussion of the results.

4. Illustrating Examples

Unless otherwise indicated, the geometry parameters and working conditions applied
for the simulations of the presented system are all listed in Table 1. Assume that an airflow
exists in the ILS, and the geometric parameters remain unchanged in the axial direction.
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The dynamic coefficients are calculated for the elliptic orbits with and without ran-
domly uncertain perturbation. Therefore, we define a proportional coefficient as δF =
|Fr(t)|/|Fθ | to control the strength of the bounded noise among all of the simulations.
Similarly, another proportional coefficient is defined as δR = fx/a = fy/b for the randomly
uncertain perturbation on the orbit motion. Since the orbit fluctuation results from the
random excitation of the airflow, we discuss the specific case as δF = δR, while similar
analysis can be performed for other cases.

Table 1. Geometry parameters and operating conditions of the ILS-rotor system.

Geometric Parameter Value Working Condition Value

Tooth number N 12 Gas temperature T 540 K
Cavity length L 3.2 mm Gas constant Rg 461.53 J · kg−1 ·K
Tooth height B 3.2 mm Rotating speed ω 3000/6000/9000/12,000 rpm
Rotor radius Rs 77 mm Inlet pressure Pin 5.33 × 105 Pa
Steady radial
clearance Cr

0.3 mm Outlet pressure Pout
5.33, 4.93, 4.53, 4.13, 3.73
(× 105 Pa)

Circumferential vel. V0 10, 20, 30, 40, 50 m · s−1

4.1. Calculation of the Orbit Motion

As mentioned in Section 1, the randomly uncertain perturbation in the gas flow
will result in random excitation acting on the rotor, and the sealing force calculated by
Equation (47) is unstable due to the random excitation and the fluctuation of parameters
of each cavity. In the present work, the proposed nonparametric method is employed to
show the effects of randomly uncertain factors on the sealing force, see Figure 4, where
the coefficient δR is set to be 0 (ideal state), 0.02, 0.08, and 0.20 for comparison. To be
noticed is that the sudden phase shifts shown in 10.05, 10.1, and 10.15 sec result from ωg
(see Equation (47)), which is a non-negative random frequency independently distributed
in a certain range (see Equation (19)) and is used to periodically control the rhythm of a
stochastic process. Besides, the different amplitude fluctuations shown in the figures are
controlled by fx,g and fy,g, which are determined by the coefficient δR.

Figure 4. Sealing force under the ideal and three other randomly uncertain states, where (a) is the
ideal results and (b–d) are the results with δR = 0.02, 0.08, and0.20, respectively.
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It can be seen from Figure 4 that the variation pattern of the sealing force for all three
randomly uncertain cases has small differences to that of the ideal state. However, as δR
increases, the fluctuation of the peak values is becoming gradually stronger, resulting in
stronger randomness of the orbit motion. Correspondingly, the orbit motion is no longer a
regular ellipse but fluctuates with the random excitation.

The orbit shown in Figure 5 is not obtained directly from Equation (16) but is cal-
culated by substituting the results from the dynamic coefficients and the sealing forces
into Equation (45). This calculation process objectively describes the effect of random
uncertainty.

Figure 5. The orbit motion under the ideal and three other randomly uncertain states, where (a) is
the ideal results and (b–d) are the results with δR = 0.02, 0.08, and 0.20, respectively.

It is easy to infer from Equation (16) that the orbit motion under random noise exci-
tation should be an ellipse with fluctuations, which follows the analysis of M± and N±

affected by the random excitation in Equation (53), see Figure 5b–d. Furthermore, another
obvious phenomenon is that the orbit fluctuation becomes increasingly stronger as δR
increases, which is consistent with the previous analysis.

4.2. Parameter Influences on the Dynamic Coefficients

The influence of the rotating speed, pressure difference, and whirl velocity on the
dynamic coefficients are extensively discussed in the following content. In total, 32 samples
are generated for each case of random uncertainty to ensure the ergodicity of the results.
The statistical properties from these samples are also compared with the deterministic ones
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from the ideal elliptic orbit. Besides, the samples from a certain simulation trial are also
listed for the comparisons with the statistical and theoretical results.

Dynamic coefficients under the three cases δR = 0.02, 0.08, and 0.20 are given in
Figures 6–8 for several values of the rotating speed, pressure difference, and inlet whirl
velocity, respectively. It shows that the coefficients under the three cases deviate to some
extent from the theoretical ones, which are the combined effects of the random excitation
term in Equation (30) and the randomly uncertain perturbation of the orbit motion in
Equation (16). It also can be seen that the deviation level is directly related to the intensity
of the random uncertainty, which is consistent with the results obtained in the previous
subsection.

Figure 6. The envelopes of dynamic coefficients against rotor speed for δR = 0.02, 0.08, and 0.20,
where (a) is Kxx, (b) is Kxy, (c) is Cxx, and (d) is Cxy.

More specifically, for each value of δR, the four dynamic coefficients show completely
different variation patterns as the rotating speed increases. Figure 6a shows that Kxx
increases monotonically as the rotating speed increases. Simultaneously, its deviation
levels from the theoretical values remain unchanged through the whole speed range. In
Figure 6b, although Kxy basically decreases with the rotating speed, its deviation level under
the case δmax

0.20 shows a large fluctuation at 6000–10,500 rpm, making Kxy slightly increase
in this speed range. As for the damping coefficient, the envelopes of Cxx in Figure 6c
show a downward trend against the rotating speed, whereas the deviation under the case
δmax

0.20 only illustrates some smaller negative slopes at 6000–9000 rpm, not affecting the
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monotonicity of the envelope. Figure 6d depicts a monotonically increasing Cxy whose
deviations from the theoretical value gradually shrink. Besides the envelope trends, the
deviation levels from their corresponding theoretical values are positively related to the
random uncertainty intensity. For the samples on the other side, their values may illustrate
significant fluctuations from the theoretical ones, e.g., Kxx and Cxy. Considering that the
intensity of random uncertainty in each of the three cases is relatively weak compared
to the airflow and that the operating conditions are even more complex in practice, great
difficulties will undoubtedly be encountered in estimating these coefficients.

Figure 7. The envelopes of dynamic coefficients against pressure difference for δR = 0.02, 0.08, and
0.20, where (a) is Kxx, (b) is Kxy, (c) is Cxx, and (d) is Cxy.

Figure 7 shows the trends of the four coefficients over the pressure difference between
the inlet and outlet pressures. Obvious changes appear for the first three coefficients Kxx,
Kxy, and Cxx among the various pressure differences, indicating that pressure difference
is one of the main parameters affecting the dynamic coefficients. Figure 7a,b display an
opposite trend for the two stiffness coefficients. A monotonically increased Kxx and a
monotonically decreased Kxy are observed for an enlarged pressure difference. On the
other hand, the two damping coefficients under the various pressure differences also have
distinct envelope trends. Cxx in Figure 7c shows a remarkable reduction, while Cxy in
Figure 7d remains almost unchanged. For all of the four coefficients, their deviation levels
remain unchanged and are positively correlated with the intensity of random uncertainty,
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regardless of the pressure difference. Unlike the statistical results of the 32 samples, the
envelope of a single sample exhibits large fluctuations, e.g., Kxx and Cxy.

Figure 8. The envelopes of dynamic coefficients against inlet whirl velocity for δR = 0.02, 0.08, and
0.20, where (a) is Kxx, (b) is Kxy, (c) is Cxx, and (d) is Cxy.

Variations of the four coefficients against the inlet whirl velocity are illustrated in
Figure 8, in which the monotonically increasing Kxx (see Figure 8a) and the decreasing Kxy,
Cxx, and Cxy (see Figure 8b–d) are observed for a larger inlet whirl velocity. It is worth
noting that Kxy and Cxx go through a short period of increase (see the inlet whirl velocity
range 10–20 m/s for δmax

0.20 in Figure 8b,c) before decreasing monotonically (corresponding to
the inlet whirl velocity range 20–50 m/s for δmax

0.20 in Figure 8b,c). Simultaneously, the values
of Kxx and Cxy for the single sample case fluctuate greatly due to the changes in inlet whirl
velocity and the stochastic nature of a certain trial simulation. However, the fluctuations
are smoothed as the number of sample cases becomes larger. Besides the envelope trends,
the deviation levels of Kxx and Cxy remain unchanged throughout the velocity range, and
those of Kxy and Cxx slightly shrink for a larger inlet whirl velocity. Moreover, the larger
the intensity of the random uncertainty for the inlet whirl velocity, the larger the deviation
levels are, as shown by the envelopes of Kxx and Cxy under different randomly uncertain
factors δR.

From Figures 6–8, we found that the influence of pressure difference on Cxy (see
Figure 7d) and that of inlet whirl velocity on Kxx (see Figure 8a) are considerably mild, but
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the randomly uncertain factors can bring a higher deviation level of the two coefficients.
On the other hand, the four dynamic coefficients turn out to be sensitive to the change
in rotating speed, and the effect of randomly uncertain factors may be concealed to some
extent (see Cxy in Figure 6d, for example). As for the effects of pressure difference and
inlet whirl velocity on the four coefficients, each coefficient shows completely different
responses, see Kxy in Figures 7b and 8b and Cxx in Figures 7c and 8c. Moreover, the effects
of the randomly uncertain factors on Kxx and Cxy exhibit stronger deviations than those on
Kxy and Cxx.

Indeed, random excitation effects on the rotor and randomly uncertain perturbation on
the orbit motion interrelate with each other. Thus, it is reasonable to consider the coupled
influence of the two kinds of random uncertainty. From the analysis in Section 3 and the
results shown in Figures 6–8, it is inferred that the coupled influence sometimes enlarges
the deviations but may reduce them at other times. In brief, the random uncertainty effect
on dynamic coefficients is obvious, and if trials are made to ignore its role, large errors will
undoubtedly occur.

5. Conclusions

In field applications, random uncertainties (e.g., turbulent gas flow, nonuniform
gas flow forces, multi-direction spiral flow, and leakage) inevitably exist when gas flows
through the labyrinth seal, causing random excitations to be generated and irregular
deviations of the orbit motion from an elliptic trajectory. From this point of view, the
rotordynamic coefficients of a seal-rotor system are investigated in our work by adopting the
random uncertainty method and are rederived sequentially by adding the corresponding
stochastic terms into the solving model. The orbit of the rotor center is assumed to be
made up of two parts, i.e., a regular ellipse and a bounded noise perturbation, from which
the disturbance clearance function, the corresponding coefficients of each cavity, and the
sealing force acting on the rotor are rederived. Through the random uncertainty modeling
technique, not only can the experimental deviations of dynamic coefficients be proved
by the statistical analysis results of their theoretical values, but rules can also be made
to guide the field design works rather than relying on some theoretical results from the
deterministic models.

In total, 32 samples of the randomly uncertain orbit are generated for different rotating
speeds, pressure differences, and inlet whirl velocities. The orbits are compared with their
theoretical ones corresponding to the regular elliptic orbits. Numerical results show that
differences exist among the effects of rotating speed, pressure difference, and inlet whirl
velocity. Generally speaking, strong deviations in the direct stiffness and cross-coupled
damping coefficients arise under the randomly uncertain factors. More specifically, Kxx
monotonically increases and Kxy decreases as the rotating speed increases. The envelopes
of Cxx show a downward trend, and Cxy monotonically increases against the rotating speed.
Pressure difference also significantly affects the dynamic coefficients. A monotonically
increased Kxx and a decreased Kxy are observed for an enlarged pressure difference. On
the other hand, Cxx shows a remarkable reduction while Cxy remains almost unchanged.
As for the inlet whirl velocity, a monotonically increasing Kxx and a decreasing Kxy, Cxx,
and Cxy are observed for a larger inlet whirl velocity. To be noted is that Kxy and Cxx go
through a short period of increase before decreasing monotonically. Deviation levels of
the dynamic coefficients are directly related to randomly uncertain perturbations and are
usually positively related to such perturbation strengths.

Thus, the running status of the rotor cannot be accurately revealed by the previous
models under ideal conditions. It is necessary to take the uncertain factors into considera-
tion to have an insight into the system behavior. We believe that the present work can help
others to study the effects of uncertain factors on the dynamic coefficients of large rotating
machinery from a practical point of view.
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Nomenclature

A Unsteady cross-sectional area of the cavity Rg Gas constant
B Tooth height T Gas temperature

Unsteady/steady/perturbed
C1i Orifice contraction coefficient of the ith cavity Vi, V0i, V1i tangential velocity in the ith cavity
C2i Kinetic energy carry-over coefficient of the ith cavity ar, as Dimensionless length of the rotor and stator
Cr Steady radial clearance a, b Major/minor semiaxis of elliptical orbit motion
Cxx, Cyy Direct damping coefficients in x- and y-direction e Deviation distance of the rotor center
Cxy, Cyx Cross-coupled damping coefficients in x- and y-direction f 0 Amplitude of the random excitation

Dh, Dh0
Unsteady/steady hydraulic diameter of

fx, fy
Randomness of the amplitude of the orbit

the cross-sectional area of the cavity in x- and y-direction
F Total reaction force acting on the rotor

.
mi,

.
m0 Unsteady/steady mass flow rate in the ith orifice

Fx, Fy Component forces in x- and y- direction qi, q0i, q1i Unsteady/steady/perturbed leakage flow rate per unit length in the ith cavity
Fr Random excitation Γ Random phase of the bounded noise
Fθ Circumferential force Ω Rotor whirling speed
H, H1 Unsteady/perturbed radial clearance δ Proportional coefficient to control the strength of the bounded noise
Kxx, Kyy Direct stiffness coefficients in x- and y-direction ε Perturbed parameter normalized by steady radial clearance
Kxy, Kyx Cross-coupled stiffness coefficients in x- and y-direction θ Azimuthal position
L Cavity length ξ Bounded noise
N Tooth number ρi, ρ0i, ρ1i Unsteady/steady/perturbed gas density of the ith cavity
Pi, P0i, P1i Unsteady/steady/perturbed pressure in the ith cavity τri, τr0i, τr1i Unsteady/steady shear stresses of the ith cavity at the rotor wall
Pin, Pout Inlet/outlet pressure τsi, τs0i, τs1i Unsteady/steady/perturbed shear stresses of the ith cavity at the stator wall
Rs Rotor radius ω Rotor rotating speed
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