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Abstract: In the vehicle composite planetary gear transmission system, nonlinear excitations such as
time-varying meshing stiffness, backlash and comprehensive error would lead to large vibration and
noise, uneven load distribution, unstable operation and other problems. To address these issues, this
work focuses on compound planetary gears and develops the bending-torsion coupling nonlinear
dynamic model of the system based on the Lagrange equation. There are internal and external
multi-source excitations applied to the system. This model is used to study the bending-torsion
coupling meshing deformation relationship of each meshing pair along with the translational and
torsional directions. The natural frequencies and vibration modal characteristics of the system
are extracted from the model, and the influence of rotational inertia and meshing stiffness on the
inherent characteristics of the system are studied. The coupling vibration characteristics of the system
under operating condition are analyzed in terms of the inherent characteristics and time—frequency
characteristics of the system. The simulation results exhibit that the planetary gear system has
three modes. The change in natural frequency trajectory has two phenomena: modal transition and
trajectory intersection. The main frequencies include engine rotating frequency, meshing frequency
and its double frequency, and the rotation frequency and harmonic frequency of the engine have
a great influence on the vibration response of the system. Finally, the virtual prototype of the
composite planetary system is used to verify the accuracy of the established model from speed,
inherent characteristics, meshing force and frequency composition.

Keywords: compound planetary gear; non-linear excitation; composite error; meshing clearance;

time-frequency characteristics; meshing force

1. Introduction

The planetary gear transmission system has, as its characteristics, a large transmis-
sion ratio, stable transmission, strong carrying capacity, high unit volume, mass power
density, coaxial input and output and strong impact resistance and power shunt, which
is widely used in various industrial fields. With the change in the number and phase of
the planetary gear, as well as the diversification of the engagement with the gear ring sun
gear, the design of the planetary gear system becomes complex and diverse. There are
some nonlinear excitations in the gear transmission system, such as time-varying meshing
stiffness, backlash and comprehensive transmission error, which cause the vibration and
noise of the system, and directly affect the reliability and safety of the system.

Many scholars have made an in-depth study of the vibration characteristics of plan-
etary systems. Ambarisha et al. [1] applied the lumped parameter and finite element
model to investigate the complex and nonlinear dynamic behavior of spur planetary gears.
Sun et al. [2-4] studied the strongly nonlinear dynamic behavior of planetary gear sys-
tems with multiple clearances. Kim et al. [5] offered the planetary gear dynamic model,
assuming that the position of the contact line is determined by the average angular motion
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of the gear. Zhou et al. [6] employed numerical methods to analyze the planetary gear
transmission system at high speed and light weight. Liu et al. [7-9] made a study of the
planetary gear dynamic model considering time-varying stiffness, gear meshing error and
gyroscopic effect. Kahraman et al. [10] established a planetary gear pure torsion dynamics
model to obtain the planetary gear’s dynamics in which the natural frequency is compared
with the dynamic model of the torsion translation planetary gear. Peng et al. [11] first
used the meshing phase to study planetary gears with faults. Qiu et al. [12] reviewed the
dynamics of the planetary gear transmission system of wind turbines from the aspects of
research status, dynamic optimization design and development direction. Xiang et al. [13]
discovered the non-linear dynamic characteristics of the system under the change in the
planetary gear’s supporting stiffness and excitation frequency. Bozca et al. [14] presented
a multi-body torsional vibration dynamic model of the rigid-flexible coupling planetary
gear system by using the state-space model and considering the influence of box flexibility.
Zhang et al. [15] raised a dynamic model of planetary transmission considering the flexibil-
ity of the ring gear and identified its inherent characteristics and relevant test verification.
Qin et al. [16] advanced the coupling dynamics model of the wind turbine gear transmis-
sion system and examined the natural frequency, vibration response, dynamic meshing
force and rolling bearing dynamic bearing force of the wind turbine gear transmission
system. Dou et al. [17,18] studied the frequency coupling and coupling resonance of the
composite planetary transmission system under complex excitations. Wang et al. [19]
studied the time—frequency characteristics of planetary gear systems by establishing a
flexible multi-body dynamics model. Li et al. [20] inspected the spectral characteristics of
vibration signals of the compound planetary transmission system. Zhu et al. [21] explored
the dynamic response characteristics of planetary transmission systems by gear modifica-
tion. Inalpolat et al. [22] investigated the influence of system input speed on the dynamic
response amplitude of multi-stage planetary gear systems and verified it through exper-
iments. Chaari et al. [23] utilized the iterative method to explore the dynamic response
characteristics of planetary transmission systems under nonlinear factors. Zhang et al. [24]
established the dynamic model of planetary gear systems with sliding bearing and flexible
structure, and the influence of different radial sliding bearings on load sharing characteris-
tics was researched. Gu et al. [25] proposed a lumped parameter model of original planetary
gear considering planetary position error and simulated their effects on quasi-static and
dynamic load sharing among planets. Li et al. [26] observed the influence law of each
excitation factor from the perspective of bifurcation characteristics, and researched whether
the change in backlash would affect whether the system was periodic or chaotic. Ryali
et al. [27] proposed a three-dimensional dynamic load distribution model of planetary gear
sets. Mo et al. [28] inspected the load-sharing characteristics of flexible support when the
sun gear is floating and normal. Sanchez-Espiga et al. [29] proposed a numerical approach
for calculating the load distribution of planetary transmission. Iglesias et al. [30] found
that the tooth load is much lower than the planetary non-uniform load in the transmission
with and without defects.

These scholars have done a large amount of work on the dynamic modeling of single-
stage planetary row, nonlinear dynamic analysis and load sharing characteristics. Few
people have studied the dynamic characteristics of multi-stage planetary gear system
under internal and external nonlinear excitation. However, these nonlinear factors bring
about self-excited motion, which has a great influence on the system. In order to study the
vibration problem caused by nonlinear excitation in the composite planetary system, this
paper establishes the bending-torsion coupling dynamic model of the composite planetary
transmission system, considering the external and internal excitations such as engine har-
monic excitation, time-varying stiffness, gear time-varying phase, comprehensive error and
dynamic backlash. The meshing deformation relationship of meshing pair in translational
and torsional directions was analyzed in detail, and the correctness of the model is veri-
fied by the virtual prototype from the aspects of rotational speed, inherent characteristics,
meshing force and frequency composition. The vibration characteristics of the nonlinear
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system are revealed by analyzing the natural frequency, which varies with stiffness and
inertial trajectory, as well as the time-frequency characteristics of the system response.

2. Dynamic Model for Compound Planetary System
2.1. Model Description

The schematic of the compound planetary system is shown in Figure 1, which includes
three pairs of planetary chains composed of sun gear s, planet carrier ¢, long planet gear 4,
short planet gear b, the small gear ring 71 and the big gear ring r,. In addition, the brakes
C; and Gy, and the clutch C3, control different gears. The meshing relations in the system
are equivalently simplified into a mass-spring-damping model, as shown in Figure 1. In
this paper, the brake C; is engaged, and the brake C, and the clutch C; are disengaged. The
small ring gear 71 sends power to the long planetary gear a, while a transmits the power to
the sun gear s and the short planetary gear b; b transfers the power to the large ring gear r,
and the planet carrier c; finally, the power is output from both ends of the planet carrier.

N

S RN\
Cl z »
Output 2 b ] Input
. ® Output
C Ef .l
c % Ed
L — R
— B
1 X &
| T e —w— cquivalent stiffness
® =2 ® | |
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& Bd bearing
\&

H: clutch/brake
Figure 1. Schematic of the compound planetary transmission system.

To describe the meshing relationship between planetary gear systems more accurately,
three coordinate systems are used in this paper: the first is the absolute coordinate system
X_0_Y, which is used to describe the vibration displacement of all central rotating parts;
the second is the involved coordinate system X;_0O;_Y;, which describes the translational
vibration displacement and which rotates synchronously with the planetary shelf; the third
is the relative coordinate system x,;_O,;_y,; of the jth planetary wheel in the planetary
row of a or b, whose origin is located in the center of each planetary wheel, and its
coordinate axis is orthogonally along the radial and circumferential directions of the
planetary carrier. In the dynamic model of the composite planetary gear system established
in this paper, the vibration displacement of planetary gear is based on their respective
relative coordinate systems x,;_O;;_y,j. The bending-torsion coupling mechanical model
of the composite planetary gear system is shown in Figure 2. kyusaj kpraj kmrpj and Kipap
are the meshing stiffness of the meshing pair in the torsional direction; 6.,6,1,8,2, and 6,
respectively, represent the torsional displacement relative to the fixed reference frame
X 0Y; 9uj and ij indicate the relative torsional displacement of the planet wheel aj
and the planet wheel b]- in the relative coordinate system x,zj_Ou]-_y,zj, xbj_Ohj_ybj, where
J =1, 2, 3; kppx, kpgx, kppy, and kyg, express the supporting stiffness of p and g in the x
direction and y direction in their respective coordinate systems, where p = s,¢,r1 and 2,
respectively, mean the sun wheel, planet rack, small ring gear and large ring gear in the
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composite planetary gear system; q = aj, bj represent the long planet wheel and the short
planet wheel in the composite planetary gear.

Ys yc yr1 Yr2

Figure 2. Bending-torsional coupling mechanical model of composite planetary gear system.

2.2. The Deformation of Meshing Planetary Gears

The expression of meshing deformation of a pair of gear teeth is related to the meshing
model, coordinate selection, positive rotation direction selection and meshing line selection.
Meshing deformation is defined along the tangential direction of the base circle between
meshing gears. There are four meshing relationships in Figure 3 in this paper; the meshing
deformation relationship between planetary wheels is selected for research and the meshing
compression is positive in the direction of deformation.

Figure 3. Torsional meshing deformation relationship between the planetary gear 4; and the planetary
gear b;.

There are two different mesh lines, AB and A’B’, in Figure 3, though their meshing
deformation calculation method is the same. This paper selects the AB as the mesh line. ry,
and ryy, are the base circle radius of the two gears. The mesh deformation caused by pure
torsion of the gear can be described by the length variation between A and B points, which
can be expressed as Equation (1):

O = Tpala + 1pp0y 1)

The projection relation of the translational displacement of the planetary wheel 4;
on the meshing line is shown in Figure 4a. The absolute translational displacement of
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the planetary rack L. is the vector sum of translational displacements x. and y. in the
fixed coordinate, which is also the involvable displacement of the planetary wheel; x.
and y. are projected to the orthogonal directions of x,; and y,;; the relative displacement
L', of the planet wheel a; is the vector sum of the translational displacements x,; and
Yqj in the relative coordinate x,;O,;y,; the absolute translational displacements L, can be
regarded as the vector sum of its relative translational displacements L', and the involved
translational displacements L; finally, the total deformation of x,; and y,; in two orthogonal
directions is projected along the meshing line EF to obtain the change in the planetary
wheel 4; on the meshing line EF induced by the translation displacement (be, as shown in
Equation (8). Similar to the planetary gear a;, the projection relationship of the planetary
gear b;’s translation displacement on the meshing line is shown in Figure 4b.

Xoj
v

(b)

Figure 4. Translational meshing deformation relationship between the planetary gears g4;
and b;: (a) Projection relation of a; translation displacement; (b) Projection relation of bj
translation displacement.

In Figure 4, r¢; and 7, respectively, express the distance between the theoretical
rotation center of the planet wheel 2; and b; and the rotation center of the planet rack. ¢,;
and y; represent the position angle of the planet wheels 4; and b; in the fixed coordinate
system XOY, which are calculated as shown in Equations (2) and (3). 8, and B indicate
the angle between the centerline of the planetary wheel 4; and b;, meshing with each other
and their respective coordinate axes; their relationship is shown in Equations (4) and (5). -y,
and 7, indicate the angle between the meshing line of the 4; and b; intermeshing planetary
wheels and their respective coordinate axes X,; and X, which are calculated as shown in
Equations (6) and (7); the other symbols have the same meaning as previously stated.

Paj :wct‘|‘27T(]'*1)/n+§9a ()

Ypj = wet +270(j = 1) /n+ @y ®)

in which # is the number of planetary gears; ¢, and ¢, denote the initial circumferential
installation angle of planetary gear a; and b;.

Ba =+ Bo = Puj — aj @)

sinfa _ sinfy -

Teh Tea
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')’a:,Ba‘l'l’(—ﬂ/z (6)
Yo =70/2— (B — &) )

The total deformation ¢, of planetary gear a j on the meshing line EF is:
Oay = — (Yesin,j + XccosP,j + X)) C05Ya + (YeCOSPaj — XeSin,j + Yaj) Sinya 8)

The total deformation o7 of planetary gear b; on the meshing line EF is:

Ufb = (ycsinlpbj + xccospy; + xbj)cos'yb - (yccosq)bj — Xcsinyy; + yb]->sin'yb 9)

The total meshing deformation o,;, caused by the translation displacement in the
meshing line direction of planetary gear 4; and planetary gear b; is:

Tap = Olty + O (10)

Similarly, in the direction of the outer meshing line between the sun wheel and the
planetary gear, the meshing deformation J,; and the total meshing deformation in external
meshing line ¢} are shown in Equations (11) and (13). In the direction of the internal mesh-
ing line between the gear ring and the planetary gear, the meshing deformation 4,, and the
total meshing deformation in external meshing line J}, are shown in Equations (14) and (16).

Osa = Asa(rps(0s — Oc) + 1paba) = 05 + 03 (11)

05 = Xs5in (Paj + &) — yscos (P, + «) (12)

p = —XcSin (Paj + &) 4 Yccos (Paj + &) — Xgjsina + ygjcosn (13)
Ora = Ma(Tpaba + 1py(6r — 0c)) = 07 + 0 (14)

07 = —X;5in (Paj — &) + yrcos (P, — ) (15)

Oy = XcSin (o — &) — YcCos (Paj — &) — Xgjsina — ygicosa (16)

2.3. Internal Nonlinear Excitation

The internal nonlinear excitation would be caused by the comprehensive error, the
dynamic backlash and the time-varying stiffness.
The eccentricity error (EE) between the sun and the planets is:

el, = Essin(—wst — es + i, +a) 17
el = —Elsin(—wit — e +a) (17)
as a a a
The EE between gear ring r1 and planetary gear a is:
ey, = —Eysin(wit + & — P, + ) (18)
el = Elsin(wht + €, + )
ar a a a
The EE between gear ring 2 and planetary gear b is:
el = —Egsin(—w,t — & + ¢, + o) (19)
ey, = Epsin(—wpt — e} + a)
The EE between planetary wheel a and planetary wheel b is:
ety = —Epsin(wit + € + a + 7}) 20)
el =EFElsin(wit+e +a—1)
ba b b b b
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The EE caused by planetary carrier to internal and external meshing pairs is:

e; sy = Ecsin(—wet + 1,0] +a)

el ., = Ecsin(wet — ¥+ o) 1)
Coab = Ecsin(—cw,t + I/J] +a)

el ., = Ecsin(wct — l,b’ +a)

where Ej and E; represent the amplitude of manufacturing eccentricity error, ¢ and 5% stand
for the initial phase of eccentricity error corresponding, ef & e p and e, are the eccentricity
error of sun gear, gear ring and planetary gear, | = s, and c are, respectlvely, sun gear, gear

ring and planetary carrier; g = a, b are the two-stage planetary gear; and, v, are the angle

between the theoretical installation position of planetary wheel 1pi in row a and 2pi in row

b; 1[15» is the position angle between the central component j and the ith planetary wheel.
The assembly eccentricity error (AEE) between the sun gear and planetary wheel a is:

ai =A Sin( 4)5 +l/)sa +“)
{ aizs - _Al Sln( qoa +“) (22)

The AEE between gear ring 1 and planetary gear a is:

alra = AVSin(_.(PV - ¢£a + ) )
{ a, — Alsin(— g} +a) )

The AEE between gear ring 2 and planetary wheel b is:

rb = —Assin(—¢r + ¥, + ) (24)
al, = Alsin(—¢} + )

The AEE caused by planetary carrier to internal and external meshing pairs is:

al o, = Acsin(—gc T+ o)
alc ra — ACSin((PC - lp]l + D‘) (25)
alq,ab = Acsin(—gc —|-'l/J; +a)
gy = Acsin(@ec — i +a)
The AEE between planetary wheel a and planetary wheel b is:
{ ub = —AZSZI’l(q)a—i-tX—i-’)/u) (26)
al = Alsin(gl +a—7)

where A; and A; stand for the assembly eccentricity error of amplitude, ¢; and (pf7 represent

the eccentric error of the initial phase, af ¢ a gl and a 4 are, respectively, projection to the
corresponding meshing line wheel, gear ring, the sun and the planets round eccentric error;
I =s,rand ¢ are, respectively, sun gear, gear ring and planetary carrier; ¢ = a,b are the
two-stage planetary gear.

The tooth profile equivalent meshing error is expressed as a harmonic function, and its

excitation frequency is the meshing frequency of the tooth pair, as shown in Equation (27):

béa = Béusin(wmsut + 2n7§u)
bl, = B sin(wmpat + 2717%,)
b;b = rbsin(wm,bt +2m7y,,)
b, = B;bsin(wmabt +2m,)

(27)



Machines 2022, 10, 31

8 of 25

Here, b; is the tooth profile error along the direction of the meshing line, B;: is the

manufacturing error amplitude, wy,; is the meshing frequency, ’y;: is the initial phase,
i = 1,2,3 when j equals sa, ra, b, ab,‘which are, respectively, sun and planetary wheel
pPa, small gear and planetary wheel py, large gear and planetary wheel p; and planetary

wheel pi.
Based on the mathematical model of the above, the comprehensive error along the
engagement line in the composite planetary system is shown in Equation (28):

ely = eby +ak, +el o +al g, ey +al, + b,

€1q = €ra T Ay €C_pg A _a + €, + 1y, + by, (28)
1 — pl 1 1 1 1 1 1

€op = € + arp + ecfrb + ac;rh + €ha + Apq + brh

In summary, when considering the bending—torsion coupling mechanical model of the
composite planetary gear system, the total deformation on the meshing line is the superpo-
sition of the torsional vibration displacement deformation of each gear meshing pair, the
deformation induced by the translational vibration displacement and the comprehensive
meshing error.

The total meshing deformation (TMD) of the solar wheel and the planetary wheel 4; is:

€saj = 55&]' + Osaj + e?z]z (29)
The TMD between the pinion ring and the 4; the planetary gear is:

€raj = 5ruj + Oraj + 6?1]1 (30)
The TMD between the large gear ring and the b; the planetary gear is:

bi

€rbj = Orpj + Oy + ey (31)
The TMD ¢, of the a; planetary gear and the b; planetary gear is:

€abj = 5ubj + Oabj + eZzh (32)

The nonlinear meshing forces of each meshing gear in the x and y directions on the
meshing line and in the respective coordinate systems.

Fuupj = Kmpj (£)f (€pjs b) + cmépj
mpjx = Fmpjsin (p; + «) (j=1,23) (33)
Fupjy = Fpjcos (p; + &)

..”

when p equals sa,r and rb are, respectively, sun and planetary wheel, small gear and
planetary wheel 4; and large gear and planetary wheel b;.
The nonlinear meshing force of the planetary wheel 4; and planetary wheel b; in the
direction is:
Fmahj = kmabj(t)f(gabj/ b) + Cméabj
Fmabjx = mabjSinD‘
Fmabjy = EFpapjcosx

(j=1,23) (34)

Bearing support in the translation direction is considered in the composite planetary
gear system. Each component is subjected to bearing support reaction in x and y directions.

(35)

qux = khqqu + Chqxjcq
Foqy = KogyYq + Copylq
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when g equals s,71,72,a; and c are, respectively, sun gear, small gear, large gear, planetary
wheel g;, planetary wheel b; and planetary frames.

Based on the above deformation relationship and elastic mechanics theory, considering
the time-varying stiffness k, calculated by the Shichuan formula and tooth side clearance
function f(4,b), the meshing force F;, can be obtained by Equation (36).

-/

Fo = k()£ (', b) + cpd (36)

The time-varying stiffness of teeth is:

o Fload
km(t) = 5()b (37)

in which Fy,,; is the normal load on the tooth surface; b is the tooth width; §(t) is the total
tooth deformation.

Comprehensive deformation §; in the direction of the single tooth meshing line can be
expressed as the linear superposition of deformation of rectangular bending part Jp,, local
deformation ¢, shear deformation Js and trapezoidal bending deformation Jp;.

6; = Opr +0pt + 65 + I¢ (38)
when i = p,n, respectively, are the single tooth deformation of driving wheel and

driven gear.
The bending deformation of the rectangular part can be expressed as:

8pr = 12Fncos’wy / (Ebs} [y (s — ) + 12 /3] (39)

The bending deformation of trapezoidal part can be expressed as:

hi —h hi —h hi —h
- 2 3 i x o X\ i x L 3
St = 6Fncos*wy / (Ebsy) [ - (4 o hr> 21n — 3} (hi — hy) (40)

The meshing shear deformation can be expressed as:

8s = 2(1 4 v)Fycos®w?/ Ebsy {hr + (hl- —hyIn Zf — Z’)} (41)
i~ Ir

The local deformation caused by the inclination of the substrate can be expressed as:

o = 24FNh§cosza)2/7rEbs% 42)
here
hi = (hsp — hys)/ (sp — sk) (43)
_ (8K \/ 2 (SF)?
== (3) - n- (%) @
s 2
hy = rycos(ay — wy) — (/12 — (EF) (45)
whenrg <71,z > 2(19;520):
sp = 2rpsin{—((7r + 4xtgug) /2z) + invay — invar } (46)
— s
XF = arccos (47)
TF

== (5) - (3) @
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(1=x)
whenrg > 1p,z < 2%'
sp = 2rgsin{ (7 + 4xtgag)/2z + invag } (49)
s\ 2 S\ 2
== (3) 7= () g

6000

where ¢ represents Poisson’s ratio; z means number of teeth; x is displacement coefficient;
r¢ stands for the base circle; 7, denotes the root circle; ry expresses the pitch circle; 7y is the
addendum circle; rr means radius of effective tooth root circle participating in meshing;
«( is the standard pressure angle; a, represents meshing angle of the gear.

When a pair of gears mesh, in addition to the deformation caused by each single tooth,
there is also the local deformation 4, caused by the meshing contact stress F; of the tooth
pair, which can be expressed as

%024@—vﬂaMnﬂy (1)

Combined with the above formulas, the comprehensive deformation along the mesh-

ing direction at the meshing point is

5(t) = 8y + 6n + S0 (52)

2.4. External Nonlinear Excitation

This article uses the four-stroke 12-cylinder V-type engine with rated power of 1000
kW and rated speed of 2300 r/min. Under the rated condition, the excitation torque
characteristics of the single cylinder and the harmonic analysis of the output torque of
the engine are shown in Figure 5a,b. It can be seen that the amplitude characteristics
of the output torque of the engine are mainly composed of six-order harmonics, except
for the average torque. In the nonlinear dynamic model, the torque can be equivalent to
the superposition of the average amplitude and the harmonic function of the six-order
harmonics. The expression is shown in Equation (53):

M, = Mo + uMopsin (27t fot + @e) (53)
where M) is the average output torque of the engine, f. is the torque fluctuation frequency,
@e is the initial phase and y is the ratio of the torque amplitude to the torque M.

4500

— Gas pressure torque
5000 -

4000

T T T T T T
- - -Single cylinder synthesis torque --=-- Inertial excitation torque

-« Gravity excitation torque Average engine torque

4000 -

3500

m)

> 3000 -

g
5
17
=
£
2
Ed Z
£ 3000 o
s 5
=] 2500
g 2000 E
B 52000
@ =]
9 200 400 600 @
% 1000 - Crank angle/?CA o~ K=
5 N / 1500 -
£ 7 N / o Main ha . fenci
g 0 i \, s ain harmonic torque of engine
£ R ~ 7 1000 |
o Y 4 \, K
E N et
= v
g -1000 5001
22000 . | | \ . . 0 . . . . ] . . "
0 100 200 300 400 500 600 700 0 2 4 6 8 10 12 14 16 18 20
Crank angle/°CA Engine harmonics
(@ (b)

Figure 5. Engine harmonic excitation: (a) The excitation torque of engine single cylinder; (b) Har-
monic relation of engine output torque.
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2.5. Nonlinear Flexural and Torsional Coupling Dynamics Equation of the System

For multi-degree-of-freedom complex dynamical systems, the Lagrange equation is
usually used to derive the system vibration differential equation.
The bending-torsional coupling vibration differential equation of sun gear is:

msj&s + Z?:1 Fmsajx + Fbsx =0
msys - E?:l Fmsujy + Fbsy =0 (54)
]595 - E?:1 rhsFmsa]’ =0

The bending-torsional coupling vibration differential equation of a small gear ring is:

My X1 + Z?:l Fmrajx + Fpr1x =0
mrlyrl - Z?:l mejy + Fhrly =0 (55)
Jnbn + Z?:l Tbr1 Fmraj = Tiy

The bending-torsional coupling vibration differential equation of the long planetary
wheel is:

1Maj (Xgj + XcCOSPaj + VY, Sinpg;) — myj (chyaj + nguj)

—Fsajsine + Fypgjsina + Fygpjx + Fpajx = 0

My (j]uj — Xcsiny,j + j/'ccosz,ba]) + 14 (2wc X g — W2Yaj) Fsajcosa(j = 1,2,3) (56)
+Fyrajcosa + Fyapjy + Fpajy = 0

Jaj (éc + éu]-) + PhaFnsaj — TbajFouras  ToajFruabj = 0

The bending-torsional coupling vibration differential equation of planetary carrier is:

MeXe + Yieap 2]3:1 MijXe + Yiegp 213-:1 mij (iijCOSIPij - j/ijSi”lPij)

W Licap E?=1 mij (—xijcosyj + yijsintij) + 2we iz g p 213:1 mij (—iijSimPij - f/ijCOSIPij)
— X1 Fusajx = Zi=1 Furajx — L1 Furbjxc + Foex = 0

My, + Lizap Z?:1 M. + Yieap Z?:1 mij (iszianz‘j + %jCOSEL’ij)

+HWE T p Xooq mij (—xigsinyj — yijeosiij) + 2we Yimgp Yoy i <5CijCOSlPij - yijSi”lPij)
— X1 Fusajy = Sj=1 Furajy — Ej=1 Frbjy + Focy = 0

Jebe + Timqp Ty mijr28e + Ty o (B + 00 ) — Ty oy (—6c + 015

£ Y21 PbsFmsaj = Xom1 7ot Furaj + Loy o2 et = — Tout

The bending-torsional coupling vibration differential equation of the big gear ring is:

(57)

MyXy + 213:1 Fmrbjx + Fpox =0
eryrz - Z?:l Fmrbjy + Fbr2y =0 (58)
]r29r2 - 2?:1 rhrZFmrbj = 7Thmke

The bending-torsional coupling vibration differential equation of short planetary
wheel is:

my; (kb]« + Xccosipyj + ycsinlpbj) — My, (2wcy,,]. + w%xbj)

+Fmﬂbjx + Fmrbjsinﬂé + bejx =0

My (jjb]- — Xcsingyj + jjccoswbj) + 1y, (chjcb]- - wfyh]) (j=1,23) (59)
—Fuapjy + Fmrbjycosa + Fypjy = 0

Jvj (—éc + ébj) — "bbjFinabj — TowjFmrpj = 0
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In which m,, is the equivalent mass of each component; ], is the equivalent moment
of inertia of each inertial component; p = s, ¢, aj, bj, r1 and rp, respectively, represent
each rotational component in the composite planetary gear; T;, is the nonlinear excitation
torque, considering the engine fluctuation torque M;,;; Toy: is the load torque; Tp, g, is the
braking torque.

3. Dynamic Characteristic Analysis
3.1. The Inherent Characteristics

The modulus of all gears is 4 and the displacement coefficient is 0; the pressure angle
is 20 rad; the meshing clearance is 0.06 mm; the base circular tooth thicknesses of planet
gear a and planet gear b are 7.7592 mm and 7.8679 mm, which are used to calculate the
phase difference between gears. The transmission ratio can be calculated according to the
number of teeth of each gear; the main parameters as shown in Table 1.

Table 1. Main parameters of the transmission system.

Number of Teeth Moment of Inertia (kg*m?) Mass (kg)
The small ring r1 77 0.2546 11.275
The big ring r2 82 0.4977 14.434
sun gear 34 0.0140 6.323
planet gear a 21 0.0028 2.163
planet gear b 22 0.0017 1.094

Based on the established dynamic model of the composite planetary gear system, the
natural frequency and vibration mode of the system can be obtained. The analysis of its
inherent characteristics can obtain the resonant frequency, vibration mode characteristics
and vibration mode. The influence of the rotational inertia of each component of the system
and the meshing stiffness between components on the natural frequency is further analyzed.
The characteristics of the natural frequency and vibration mode of the composite planetary
row under the working condition are analyzed, which can help to better understand the
vibration law of the planetary gear system.

Figure 6 shows that the vibration modes of the composite planetary gear system can be
divided into three types of modes: planetary gear vibration, global vibration and coupled
vibration. When the system displays the planetary gear vibration, namely that only the
planetary gear has torsional vibration, other rotating components do not vibrate, as shown
in Figure 7a. When the system displays the global vibration, the vibration generated by the
central rotating parts and planetary gear at all levels as well as the amplitude of the same
type of planetary gear, are the same, as shown in Figure 7b. When the system displays the
coupled vibration, except for the obvious characteristics of planetary wheel vibration and
global vibration, the rest can be regarded as coupled vibration, as shown in Figure 7c.

3.2. The Natural Frequency Varies with the Trajectory of Stiffness and Inertia

The natural frequency is mainly related to the structural parameters of the system. It
was found in the study that, with the change in parameters, the trajectory will appear as
modal transition and trajectory intersection.

The trajectory of the natural frequencies of each order of the system changing with
the meshing stiffness k;;;;; is shown in Figure 8. It can be seen that w; and w3 are the
double roots of the same frequency before point A, and their trajectories are the same. At
point A, there is a modal transition, w, and wj3 alter rapidly with different frequencies,
respectively, then w3 changes with single frequency in the AB and w4 changes with a single
root frequency before point B. w3 and w4 modify in the same trajectory after the trajectory
intersection at B until the mode transition occurs again at C, and w3 and wy transform
rapidly with different frequencies, respectively. In this case, the complex trajectory of
natural frequencies is induced by the third-order natural frequency w3. The trajectories of
ws, wg, wg and wy always coincide, which is caused by the double roots under the same
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natural frequency. Trajectories of the meshing stiffness kyysqj, kinypj and ky,yp; with natural
frequency are similar to that of k;;,,j, as shown in Figures 9-11.

s
al -

a3 bl

b2 3 N
2

]Vode b3 b i L

Figure 6. The vibration modes of each order of the composite planetary gear system.
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Figure 7. The vibration modes of each order of the composite planetary gear system: (a) Planetary
wheel vibration; (b) Global vibration; (¢) Coupled vibration.
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Figure 8. The trajectory of the natural frequency with ky;,,;.
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Figure 9. The trajectory of the natural frequency with k;;;s,;.

Shown in Figure 12 are the trajectory changes in natural frequencies of each order
when the rotational inertia J,; of the gear ring increases from 0.01 kg-m? to 0.5 kg-m?.
It can be seen that there are more complex modal transitions and trajectory intersection
phenomena when the natural frequency changes. The trajectory intersection of high-order
frequencies wy and wig occur at point A, the two-order frequency trajectory remains
consistent until the mode transition at point B separates rapidly; after that, these two
phenomena occur simultaneously at point C. wy and wg change from the coincidence of
trajectories before point C to the rapid separation, and then keep consistent with wy, wg
and wy, which modify at a single frequency to point D and intersect their trajectories; until
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the modal transition phenomenon occurs at point E, the two frequency trajectories quickly
separate, and the same phenomenon as point C occurs again at point F. Before point F,
the trajectories of w4 and ws are the same. After point F, the trajectories of w5 and w4 are
separated due to the modal transition and trajectory intersection, and ws and wg keep the
same trajectory. This phenomenon is consistent with the torsional vibration, planetary
wheel vibration and coupled vibration modes in the system. Trajectories of the inertia with
natural J¢, /s, Jy2 , Jaj and Jp; frequency are similar to that of J;1, as shown in Figures 13-17.

3
X100 | | | |
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S
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N

Natural frequency @ ,/Hz
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\S]

e . . .
0 0.5 1 1.5 2 2.5 3
Meshing stiffness k,,.,;/N ‘m’! X 10°

1

S

Figure 10. The trajectory of the natural frequency with k,,;;.
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Figure 11. The trajectory of the natural frequency with k;,p;.
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Figure 17. The trajectory of the natural frequency with J;.

3.3. Time-Frequency Characteristic Analysis of System Coupling Response

Simulation condition: the rated speed is 2300 r/min, the mean torque is 2000 N.m and
the fluctuation frequency is six times the rotation frequency of the crankshaft.

As seen in Figure 18a,b, the planet carrier and the gear ring are completely overlapped
in frequency; namely, their vibration is caused by the same excitation and their vibration
frequency coincides completely. It can be seen that the low-frequency components of the
vibration are mainly composed of engine rotation frequency f., modulation frequency f,
fs—fc, the high-frequency components of the vibration are mainly composed of the planetary
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gear rotary frequency f,, and the engine rotation frequency f;; & f.. It is also obvious that
there are modulation components f;;, & 6f, induced by the fluctuation frequency 6f, and
the meshing frequency f,.
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Figure 18. Frequency of vibration displacement of planetary carrier and small gear ring: (a) Spectrum
of translational displacement; (b) Spectrum of torsional displacement.

It can be seen from Figure 19 that the main peak frequencies include the engine rotat-
ing frequency f., meshing frequency f;; and its frequency doubling nf,,. In addition, there
are sidebands with planetary carrier rotating frequency f., sun gear rotating frequency
fs, planetary wheel rotating frequencies f; and f;,, modulation frequencies f, 6f., f, — fe
and nfy + fo, nf £ fs, nfw £ fo (n=1,2,3 ... ). The largest amplitude is the meshing
frequency and double frequency of the system, while the smallest amplitude is the rota-
tional frequency of the system and modulation frequency with each meshing frequency. In
addition, there are special frequencies, which are mainly caused by nonlinear factors. The
dominant frequency of meshing force is the same from Figure 20, the maximum amplitude
is Fyrp and the smallest amplitude is Fysq.
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Figure 19. The spectrum of each meshing force.
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Figure 20. Time-frequency of each meshing force: (a) The meshing force F,,,, between the large ring
gear and planetary gear b; (b) The meshing force Fys; between the sun gear and the planet gear; (c)
The meshing force Fy;r; between the small gear ring and the planetary gear 4; (d) The meshing force
F.ap between planetary gears.

4. Verification of Model Accuracy

The virtual prototype model of the composite planetary gear system is established
by combining CATIA and ADAMS for dynamic virtual simulation and vibration response
analysis, the response results are compared and verified with the dynamic model.

4.1. Comparison of Natural Frequency

By comparing the mean value of the stabilized rotational speed with the calculated
theoretical rotational speed, as shown in Table 2, it can be seen that the simulation errors of
the rotational speed of the main components are all within 0.2%. It can be considered that
the established virtual prototype model of the composite planetary wheel system has good
accuracy and can be used for comparative analysis of numerical analysis results.
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Table 2. Comparison between simulation value and theoretical values of rotational speed.

Ring Gear r1 (Input) Sun Gear s Planet Geara;  Planet Gear b Planet Carrier ¢

(Output)
Theoretical values (r/min) 2300 1572.5 5463.1 3235.4 1113.8
Simulation values (r/min) 2300 1574.2 5452.7 3234.0 1113.9
Errors (%) 0 0.11 0.19 0.045 0.0048

The undamped natural frequency of the composite planetary gear system simulation
model is obtained by modal analysis and the results are compared with the numerical
results as shown in Table 3. Due to some assumptions of lumped mass method equivalence
and inaccurate measurement of parameters such as inertia and stiffness being adopted
in dynamic modeling, there is a certain error between simulation results and numerical
calculation values; however, the overall error is relatively small.

Table 3. Comparison of natural frequency simulation value and theoretical value.

Degree 1 2 3 4 5 6

Theoretical values(Hz) 0 1339.1 2624.2 3281.3 5075.0 7420.5
Simulation values (Hz) 0 13249  2508.0  3206.6 5092.7 6970.2
Errors(%) 0 1.06 443 2.28 0.35 6.07

4.2. Comparison of Meshing Force

Simulation condition: the rated speed is 2300 r/min, the mean value is 2000 N.m and
the fluctuation frequency is six times of the crankshaft frequency.

The numerical calculation values of meshing forces Fyq, Fyyyp and Fy,p are not com-
pletely consistent with the simulation results as shown in Table 4; the errors of all meshing
forces are within 5%.

Table 4. Comparison between simulation and theoretical values of meshing forces.

Mean Meshing Force Finra ) - ) S

Theoretical values (N) 4360.4 6204.6 6177.3

Simulation values (N) 4391.9 5916.4 6295.9
Errors (%) 0.72 4.64 1.92

It can be clearly seen from Figures 21-23 that, in each meshing force spectrum, the
vibration response of wave frequency 6f. is dominant, followed by the system meshing
frequency and double frequency 2f,; and 3f,;, which are the same as that of numerical
calculation. In the spectrum of the meshing force of the simulation results, there is a small
value of the edge frequency band, mainly because the impact function is used in ADAMS
to simulate the contact force of the gear meshing.

The comparative analysis of the virtual simulation and the numerical calculation re-
sults show that the coupling vibration response of the composite planetary gear system has
a good correspondence in each vibration frequency component, which can form a good mu-
tual verification with the established dynamic model and the numerical response results.
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Figure 21. Frequency spectrum and time—frequency spectrum of meshing force F,,,;.
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Figure 22. Frequency spectrum and time—frequency spectrum of meshing force Fy;,.
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Figure 23. Frequency spectrum and time—frequency spectrum of meshing force F,,;.

5. Conclusions

Taking time-varying stiffness, dynamic clearance, comprehensive error and engine
harmonic excitation induced by the time-varying phase angle of the planetary gear into
consideration, a time-varying dynamic model for composite planetary gear system is

estab

@
)]

®)

4)

lished in this paper. From this work, we can conclude that:

The vibration of the composite planetary gear system has three modes: planetary gear
vibration, global vibration and coupling vibration;

The frequency trajectories of each order increase with the change in stiffness, al-
though some frequency trajectories will have the phenomenon of modal transition
and trajectory intersection. With the increase in inertia, the natural frequency of the
system shows a decreasing trend and most orders change slightly. In addition, there
are complex modal transitions and trajectory intersections in the natural frequency
change trajectory, which are consistent with the torsional vibration, planetary wheel
vibration and coupled vibration modes in the system;

In bending-torsional direction, the vibration frequency components of different parts
in the planetary gear are the same; however, their amplitudes are different. The low
frequency is induced by the single frequency fluctuation torque converter input, which
is independent of the system state. The high frequency is composed of the meshing
frequency fm, six times the fluctuation frequency of engine rotating frequency 6 fe and
its modulation frequencies fm =+ 6 fe. The rotation frequency and harmonic frequency
of the engine have a great influence on the vibration response of the system.;

The main frequencies in the meshing force spectrum include the engine rotation fre-
quency and the meshing frequency and its frequency multiplication. In addition, there
are sideband frequencies, such as the rotation frequencies of planetary carrier, sun
gear and planetary gear as well as their modulation frequency. The larger amplitudes
are the meshing frequency and its frequency doubling, while the smaller amplitudes
are the rotation frequencies and the modulation frequency of meshing frequency;
there are also some special frequencies, which are mainly caused by the nonlinear
factors of the system.
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