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Abstract: In the vehicle composite planetary gear transmission system, nonlinear excitations such as
time-varying meshing stiffness, backlash and comprehensive error would lead to large vibration and
noise, uneven load distribution, unstable operation and other problems. To address these issues, this
work focuses on compound planetary gears and develops the bending-torsion coupling nonlinear
dynamic model of the system based on the Lagrange equation. There are internal and external
multi-source excitations applied to the system. This model is used to study the bending-torsion
coupling meshing deformation relationship of each meshing pair along with the translational and
torsional directions. The natural frequencies and vibration modal characteristics of the system
are extracted from the model, and the influence of rotational inertia and meshing stiffness on the
inherent characteristics of the system are studied. The coupling vibration characteristics of the system
under operating condition are analyzed in terms of the inherent characteristics and time–frequency
characteristics of the system. The simulation results exhibit that the planetary gear system has
three modes. The change in natural frequency trajectory has two phenomena: modal transition and
trajectory intersection. The main frequencies include engine rotating frequency, meshing frequency
and its double frequency, and the rotation frequency and harmonic frequency of the engine have
a great influence on the vibration response of the system. Finally, the virtual prototype of the
composite planetary system is used to verify the accuracy of the established model from speed,
inherent characteristics, meshing force and frequency composition.

Keywords: compound planetary gear; non-linear excitation; composite error; meshing clearance;
time-frequency characteristics; meshing force

1. Introduction

The planetary gear transmission system has, as its characteristics, a large transmis-
sion ratio, stable transmission, strong carrying capacity, high unit volume, mass power
density, coaxial input and output and strong impact resistance and power shunt, which
is widely used in various industrial fields. With the change in the number and phase of
the planetary gear, as well as the diversification of the engagement with the gear ring sun
gear, the design of the planetary gear system becomes complex and diverse. There are
some nonlinear excitations in the gear transmission system, such as time-varying meshing
stiffness, backlash and comprehensive transmission error, which cause the vibration and
noise of the system, and directly affect the reliability and safety of the system.

Many scholars have made an in-depth study of the vibration characteristics of plan-
etary systems. Ambarisha et al. [1] applied the lumped parameter and finite element
model to investigate the complex and nonlinear dynamic behavior of spur planetary gears.
Sun et al. [2–4] studied the strongly nonlinear dynamic behavior of planetary gear sys-
tems with multiple clearances. Kim et al. [5] offered the planetary gear dynamic model,
assuming that the position of the contact line is determined by the average angular motion
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of the gear. Zhou et al. [6] employed numerical methods to analyze the planetary gear
transmission system at high speed and light weight. Liu et al. [7–9] made a study of the
planetary gear dynamic model considering time-varying stiffness, gear meshing error and
gyroscopic effect. Kahraman et al. [10] established a planetary gear pure torsion dynamics
model to obtain the planetary gear’s dynamics in which the natural frequency is compared
with the dynamic model of the torsion translation planetary gear. Peng et al. [11] first
used the meshing phase to study planetary gears with faults. Qiu et al. [12] reviewed the
dynamics of the planetary gear transmission system of wind turbines from the aspects of
research status, dynamic optimization design and development direction. Xiang et al. [13]
discovered the non-linear dynamic characteristics of the system under the change in the
planetary gear’s supporting stiffness and excitation frequency. Bozca et al. [14] presented
a multi-body torsional vibration dynamic model of the rigid-flexible coupling planetary
gear system by using the state-space model and considering the influence of box flexibility.
Zhang et al. [15] raised a dynamic model of planetary transmission considering the flexibil-
ity of the ring gear and identified its inherent characteristics and relevant test verification.
Qin et al. [16] advanced the coupling dynamics model of the wind turbine gear transmis-
sion system and examined the natural frequency, vibration response, dynamic meshing
force and rolling bearing dynamic bearing force of the wind turbine gear transmission
system. Dou et al. [17,18] studied the frequency coupling and coupling resonance of the
composite planetary transmission system under complex excitations. Wang et al. [19]
studied the time–frequency characteristics of planetary gear systems by establishing a
flexible multi-body dynamics model. Li et al. [20] inspected the spectral characteristics of
vibration signals of the compound planetary transmission system. Zhu et al. [21] explored
the dynamic response characteristics of planetary transmission systems by gear modifica-
tion. Inalpolat et al. [22] investigated the influence of system input speed on the dynamic
response amplitude of multi-stage planetary gear systems and verified it through exper-
iments. Chaari et al. [23] utilized the iterative method to explore the dynamic response
characteristics of planetary transmission systems under nonlinear factors. Zhang et al. [24]
established the dynamic model of planetary gear systems with sliding bearing and flexible
structure, and the influence of different radial sliding bearings on load sharing characteris-
tics was researched. Gu et al. [25] proposed a lumped parameter model of original planetary
gear considering planetary position error and simulated their effects on quasi-static and
dynamic load sharing among planets. Li et al. [26] observed the influence law of each
excitation factor from the perspective of bifurcation characteristics, and researched whether
the change in backlash would affect whether the system was periodic or chaotic. Ryali
et al. [27] proposed a three-dimensional dynamic load distribution model of planetary gear
sets. Mo et al. [28] inspected the load-sharing characteristics of flexible support when the
sun gear is floating and normal. Sanchez-Espiga et al. [29] proposed a numerical approach
for calculating the load distribution of planetary transmission. Iglesias et al. [30] found
that the tooth load is much lower than the planetary non-uniform load in the transmission
with and without defects.

These scholars have done a large amount of work on the dynamic modeling of single-
stage planetary row, nonlinear dynamic analysis and load sharing characteristics. Few
people have studied the dynamic characteristics of multi-stage planetary gear system
under internal and external nonlinear excitation. However, these nonlinear factors bring
about self-excited motion, which has a great influence on the system. In order to study the
vibration problem caused by nonlinear excitation in the composite planetary system, this
paper establishes the bending-torsion coupling dynamic model of the composite planetary
transmission system, considering the external and internal excitations such as engine har-
monic excitation, time-varying stiffness, gear time-varying phase, comprehensive error and
dynamic backlash. The meshing deformation relationship of meshing pair in translational
and torsional directions was analyzed in detail, and the correctness of the model is veri-
fied by the virtual prototype from the aspects of rotational speed, inherent characteristics,
meshing force and frequency composition. The vibration characteristics of the nonlinear
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system are revealed by analyzing the natural frequency, which varies with stiffness and
inertial trajectory, as well as the time–frequency characteristics of the system response.

2. Dynamic Model for Compound Planetary System
2.1. Model Description

The schematic of the compound planetary system is shown in Figure 1, which includes
three pairs of planetary chains composed of sun gear s, planet carrier c, long planet gear a,
short planet gear b, the small gear ring r1 and the big gear ring r2. In addition, the brakes
C1 and C2, and the clutch C3, control different gears. The meshing relations in the system
are equivalently simplified into a mass-spring-damping model, as shown in Figure 1. In
this paper, the brake C1 is engaged, and the brake C2 and the clutch C3 are disengaged. The
small ring gear r1 sends power to the long planetary gear a, while a transmits the power to
the sun gear s and the short planetary gear b; b transfers the power to the large ring gear r2
and the planet carrier c; finally, the power is output from both ends of the planet carrier.
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Figure 1. Schematic of the compound planetary transmission system.

To describe the meshing relationship between planetary gear systems more accurately,
three coordinate systems are used in this paper: the first is the absolute coordinate system
X_O_Y, which is used to describe the vibration displacement of all central rotating parts;
the second is the involved coordinate system Xi_Oi_Yi, which describes the translational
vibration displacement and which rotates synchronously with the planetary shelf; the third
is the relative coordinate system xaj_Oaj_yaj of the jth planetary wheel in the planetary
row of a or b, whose origin is located in the center of each planetary wheel, and its
coordinate axis is orthogonally along the radial and circumferential directions of the
planetary carrier. In the dynamic model of the composite planetary gear system established
in this paper, the vibration displacement of planetary gear is based on their respective
relative coordinate systems xaj_Oaj_yaj. The bending–torsion coupling mechanical model
of the composite planetary gear system is shown in Figure 2. kmsaj,kmraj,kmrbj and kmabj
are the meshing stiffness of the meshing pair in the torsional direction; θc,θr1,θr2, and θs,
respectively, represent the torsional displacement relative to the fixed reference frame
X_O_Y; θaj and θbj indicate the relative torsional displacement of the planet wheel aj
and the planet wheel bj in the relative coordinate system xaj_Oaj_yaj, xbj_Obj_ybj, where
j = 1, 2, 3; kbpx, kbqx, kbpy, and kbqy express the supporting stiffness of p and q in the x
direction and y direction in their respective coordinate systems, where p = s, c, r1 and r2,
respectively, mean the sun wheel, planet rack, small ring gear and large ring gear in the
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composite planetary gear system; q = aj, bj represent the long planet wheel and the short
planet wheel in the composite planetary gear.
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Figure 2. Bending–torsional coupling mechanical model of composite planetary gear system.

2.2. The Deformation of Meshing Planetary Gears

The expression of meshing deformation of a pair of gear teeth is related to the meshing
model, coordinate selection, positive rotation direction selection and meshing line selection.
Meshing deformation is defined along the tangential direction of the base circle between
meshing gears. There are four meshing relationships in Figure 3 in this paper; the meshing
deformation relationship between planetary wheels is selected for research and the meshing
compression is positive in the direction of deformation.
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Figure 3. Torsional meshing deformation relationship between the planetary gear aj and the planetary
gear bj.

There are two different mesh lines, AB and A′B′, in Figure 3, though their meshing
deformation calculation method is the same. This paper selects the AB as the mesh line. rba
and rbb are the base circle radius of the two gears. The mesh deformation caused by pure
torsion of the gear can be described by the length variation between A and B points, which
can be expressed as Equation (1):

δab = rbaθa + rbbθb (1)

The projection relation of the translational displacement of the planetary wheel aj
on the meshing line is shown in Figure 4a. The absolute translational displacement of
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the planetary rack Lc is the vector sum of translational displacements xc and yc in the
fixed coordinate, which is also the involvable displacement of the planetary wheel; xc
and yc are projected to the orthogonal directions of xaj and yaj; the relative displacement
L′a of the planet wheel aj is the vector sum of the translational displacements xaj and
yaj in the relative coordinate xajOajyaj; the absolute translational displacements La can be
regarded as the vector sum of its relative translational displacements L′a and the involved
translational displacements Lc; finally, the total deformation of xaj and yaj in two orthogonal
directions is projected along the meshing line EF to obtain the change in the planetary
wheel aj on the meshing line EF induced by the translation displacement σb

ab, as shown in
Equation (8). Similar to the planetary gear aj, the projection relationship of the planetary
gear bj’s translation displacement on the meshing line is shown in Figure 4b.
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translation displacement.

In Figure 4, rca and rcb, respectively, express the distance between the theoretical
rotation center of the planet wheel aj and bj and the rotation center of the planet rack. ψaj
and ψbj represent the position angle of the planet wheels aj and bj in the fixed coordinate
system XOY, which are calculated as shown in Equations (2) and (3). βa and βb indicate
the angle between the centerline of the planetary wheel aj and bj, meshing with each other
and their respective coordinate axes; their relationship is shown in Equations (4) and (5). γa
and γb indicate the angle between the meshing line of the aj and bj intermeshing planetary
wheels and their respective coordinate axes Xaj and Xbj, which are calculated as shown in
Equations (6) and (7); the other symbols have the same meaning as previously stated.

ψaj = ωct + 2π(j− 1)/n + ϕa (2)

ψbj = ωct + 2π(j− 1)/n + ϕb (3)

in which n is the number of planetary gears; ϕa and ϕb denote the initial circumferential
installation angle of planetary gear aj and bj.

βa + βb = ψbj − ψaj (4)

sinβa

rcb
=

sinβb
rca

(5)
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γa = βa + α− π/2 (6)

γb = π/2− (βb − α) (7)

The total deformation σa
ab of planetary gear aj on the meshing line EF is:

σa
ab = −

(
ycsinψaj + xccosψaj + xaj

)
cosγa +

(
yccosψaj − xcsinψaj + yaj

)
sinγa (8)

The total deformation σa
ab of planetary gear bj on the meshing line EF is:

σb
ab =

(
ycsinψbj + xccosψbj + xbj

)
cosγb −

(
yccosψbj − xcsinψbj + ybj

)
sinγb (9)

The total meshing deformation σab caused by the translation displacement in the
meshing line direction of planetary gear aj and planetary gear bj is:

σab = σa
ab + σb

ab (10)

Similarly, in the direction of the outer meshing line between the sun wheel and the
planetary gear, the meshing deformation δsa and the total meshing deformation in external
meshing line σs

a are shown in Equations (11) and (13). In the direction of the internal mesh-
ing line between the gear ring and the planetary gear, the meshing deformation δra and the
total meshing deformation in external meshing line δr

a are shown in Equations (14) and (16).

δsa = λsa(rbs(θs − θc) + rbaθa) = σs + σs
a (11)

σs = xssin
(
ψaj + α

)
− yscos

(
ψaj + α

)
(12)

σs
a = −xcsin

(
ψaj + α

)
+ yccos

(
ψaj + α

)
− xajsinα + yajcosα (13)

δra = λra(rbaθa + rbr(θr − θc)) = σr + σr
a (14)

σr = −xrsin
(
ψaj − α

)
+ yrcos

(
ψaj − α

)
(15)

σr
a = xcsin

(
ψaj − α

)
− yccos

(
ψaj − α

)
− xajsinα− yajcosα (16)

2.3. Internal Nonlinear Excitation

The internal nonlinear excitation would be caused by the comprehensive error, the
dynamic backlash and the time-varying stiffness.

The eccentricity error (EE) between the sun and the planets is:{
ei

sa = Essin(−ωst− εs + ψi
sa + α)

ei
as = −Ei

asin(−ωi
at− εi

a + α)
(17)

The EE between gear ring r1 and planetary gear a is:{
ei

ra = −Ersin(ωrt + εr − ψi
ra + α)

ei
ar = Ei

asin(ωi
at + εi

a + α)
(18)

The EE between gear ring r2 and planetary gear b is:{
ei

rb = −Ersin(−ωrt− εr + ψi
rb + α)

ei
br = Ei

bsin(−ωi
bt− εi

b + α)
(19)

The EE between planetary wheel a and planetary wheel b is:{
ei

ab = −Ei
asin(ωi

at + εi
a + α + γi

a)
ei

ba = Ei
bsin(ωi

bt + εi
b + α− γi

b)
(20)
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The EE caused by planetary carrier to internal and external meshing pairs is:
ei

c_sa = Ecsin(−ωct + ψi
j + α)

ei
c_ra = Ecsin(ωct− ψi

j + α)

ei
c_ab = Ecsin(−ωct + ψi

j + α)

ei
c_rb = Ecsin(ωct− ψi

j + α)

(21)

where El and Ei
q represent the amplitude of manufacturing eccentricity error, ε l and εi

q stand
for the initial phase of eccentricity error corresponding, ei

lq, ei
ql and ei

qq are the eccentricity
error of sun gear, gear ring and planetary gear, l = s, r and c are, respectively, sun gear, gear
ring and planetary carrier; q = a, b are the two-stage planetary gear; and, γi

b are the angle
between the theoretical installation position of planetary wheel 1pi in row a and 2pi in row
b; ψi

j is the position angle between the central component j and the ith planetary wheel.
The assembly eccentricity error (AEE) between the sun gear and planetary wheel a is:{

ai
sa = Assin(−ϕs + ψi

sa + α)
ai

as = −Ai
asin(−ϕi

a + α)
(22)

The AEE between gear ring 1 and planetary gear a is:{
ai

ra = −Arsin(−ϕr − ψi
ra + α)

ai
ar = Ai

asin(−ϕi
a + α)

(23)

The AEE between gear ring 2 and planetary wheel b is:{
ai

rb = −Arsin(−ϕr + ψi
rb + α)

ai
br = Ai

bsin(−ϕi
b + α)

(24)

The AEE caused by planetary carrier to internal and external meshing pairs is:
ai

c_sa = Acsin(−ϕc + ψi
j + α)

ai
c_ra = Acsin(ϕc − ψi

j + α)

ai
c_ab = Acsin(−ϕc + ψi

j + α)

ai
c_rb = Acsin(ϕc − ψi

j + α)

(25)

The AEE between planetary wheel a and planetary wheel b is:{
ai

ab = −Ai
asin(ϕi

a + α + γi
a)

ai
ba = Ai

bsin(ϕi
b + α− γi

b)
(26)

where Al and Ai
q stand for the assembly eccentricity error of amplitude, ϕl and ϕi

q represent
the eccentric error of the initial phase, ai

lq, ai
ql and ai

qq are, respectively, projection to the
corresponding meshing line wheel, gear ring, the sun and the planets round eccentric error;
l = s, r and c are, respectively, sun gear, gear ring and planetary carrier; q = a, b are the
two-stage planetary gear.

The tooth profile equivalent meshing error is expressed as a harmonic function, and its
excitation frequency is the meshing frequency of the tooth pair, as shown in Equation (27):

bi
sa = Bi

sasin(ωmsat + 2πγi
sa)

bi
ra = Bi

rasin(ωmrat + 2πγi
ra)

bi
rb = Bi

rbsin(ωmrbt + 2πγi
rb)

bi
ab = Bi

absin(ωmabt + 2πγi
ab)

(27)
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Here, bi
j is the tooth profile error along the direction of the meshing line, Bi

j is the

manufacturing error amplitude, ωmj is the meshing frequency, γi
j is the initial phase,

i = 1, 2, 3 when j equals sa, ra, rb, ab, which are, respectively, sun and planetary wheel
pi

a, small gear and planetary wheel pi
a, large gear and planetary wheel pi

b and planetary
wheel pi

a.
Based on the mathematical model of the above, the comprehensive error along the

engagement line in the composite planetary system is shown in Equation (28):
ei

sa = ei
sa + ai

sa + ei
c_sa + ai

c_sa + ei
ab + ai

ab + bi
sa

ei
r1a = ei

ra + ai
ra + ei

c_ra + ai
c_ra + ei

ba + ai
ba + bi

ra
ei

r2b = ei
rb + ai

rb + ei
c_rb + ai

c_rb + ei
ba + ai

ba + bi
rb

(28)

In summary, when considering the bending–torsion coupling mechanical model of the
composite planetary gear system, the total deformation on the meshing line is the superpo-
sition of the torsional vibration displacement deformation of each gear meshing pair, the
deformation induced by the translational vibration displacement and the comprehensive
meshing error.

The total meshing deformation (TMD) of the solar wheel and the planetary wheel aj is:

εsaj = δsaj + σsaj + eaj
sa (29)

The TMD between the pinion ring and the aj the planetary gear is:

εraj = δraj + σraj + eaj
ra (30)

The TMD between the large gear ring and the bj the planetary gear is:

εrbj = δrbj + σrbj + ebj
rb (31)

The TMD εabj of the aj planetary gear and the bj planetary gear is:

εabj = δabj + σabj + ej
ab (32)

The nonlinear meshing forces of each meshing gear in the x and y directions on the
meshing line and in the respective coordinate systems.

Fmpj = kmpj(t) f
(
εpj, b

)
+ cm

.
εpj

Fmpjx = Fmpjsin
(
ψpj + α

)
Fmpjy = Fmpjcos

(
ψpj + α

) (j = 1, 2, 3) (33)

when p equals sa, r and rb are, respectively, sun and planetary wheel, small gear and
planetary wheel aj and large gear and planetary wheel bj.

The nonlinear meshing force of the planetary wheel aj and planetary wheel bj in the
direction is: 

Fmabj = kmabj(t) f
(

εabj, b
)
+ cm

.
εabj

Fmabjx = Fmabjsinα

Fmabjy = Fmabjcosα

(j = 1, 2, 3) (34)

Bearing support in the translation direction is considered in the composite planetary
gear system. Each component is subjected to bearing support reaction in x and y directions.{

Fbqx = kbqxxq + cbqx
.
xq

Fbqy = kbqyyq + cbpy
.
yq

(35)
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when q equals s, r1, r2, aj and c are, respectively, sun gear, small gear, large gear, planetary
wheel aj, planetary wheel bj and planetary frames.

Based on the above deformation relationship and elastic mechanics theory, considering
the time-varying stiffness km calculated by the Shichuan formula and tooth side clearance
function f (δ, b), the meshing force Fm can be obtained by Equation (36).

Fm = km(t) f
(
δ′, b

)
+ cm

.
δ
′

(36)

The time-varying stiffness of teeth is:

km(t) =
Fload
δ(t)b

(37)

in which Fload is the normal load on the tooth surface; b is the tooth width; δ(t) is the total
tooth deformation.

Comprehensive deformation δi in the direction of the single tooth meshing line can be
expressed as the linear superposition of deformation of rectangular bending part δBr, local
deformation δG, shear deformation δS and trapezoidal bending deformation δBt.

δi = δBr + δBt + δS + δG (38)

when i = p, n, respectively, are the single tooth deformation of driving wheel and
driven gear.

The bending deformation of the rectangular part can be expressed as:

δBr = 12FNcos2ωx/(Ebs3
F

[
hxhr(hx − hr) + h3

r /3
]

(39)

The bending deformation of trapezoidal part can be expressed as:

δBt = 6FNcos2ωx/(Ebs3
F)

[
hi − hx

hi − hr

(
4− hi − hx

hi − hr

)
− 2 ln

hi − hx

hi − hr
− 3
]
(hi − hr)

3 (40)

The meshing shear deformation can be expressed as:

δS = 2(1 + ν)FNcos2ω2/EbsF

[
hr +

(
hi − hr ln

hi − hr

hi − hr

)]
(41)

The local deformation caused by the inclination of the substrate can be expressed as:

δG = 24FNh2
xcos2ω2/πEbs2

F (42)

here
hi = (hsF − hrsk)/(sF − sk) (43)

h =

√
r2

k −
( sk

2

)2
−
√

r2
r −

( sF
2

)2
(44)

hx = rxcos(αx −ωx)−
√

r2
r −

( sF
2

)2
(45)

when rg ≤ rF, z ≥ 2 (1−x)
(1−cosα0)

:

sF = 2rFsin{−((π + 4xtgα0)/2z) + invα0 − invαF} (46)

αF = arccos
(

rg

rF

)
(47)

hr =

√
r2

F −
( sF

2

)2
−
√

r2
r −

( sF
2

)2
(48)
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when rg > rF, z < 2 (1−x)
(1−cosα0)

:

sF = 2rgsin{(π + 4xtgα0)/2z + invα0} (49)

hr =

√
r2

g −
( sF

2

)2
−
√

r2
r −

( sF
2

)2
(50)

where c represents Poisson’s ratio; z means number of teeth; x is displacement coefficient;
rg stands for the base circle; rr denotes the root circle; rx expresses the pitch circle; rk is the
addendum circle; rF means radius of effective tooth root circle participating in meshing;
α0 is the standard pressure angle; αx represents meshing angle of the gear.

When a pair of gears mesh, in addition to the deformation caused by each single tooth,
there is also the local deformation δpv caused by the meshing contact stress Fn of the tooth
pair, which can be expressed as

δpv = 4
(

1− ν2
)

Fn/πEb (51)

Combined with the above formulas, the comprehensive deformation along the mesh-
ing direction at the meshing point is

δ(t) = δp + δn + δpv (52)

2.4. External Nonlinear Excitation

This article uses the four-stroke 12-cylinder V-type engine with rated power of 1000
kW and rated speed of 2300 r/min. Under the rated condition, the excitation torque
characteristics of the single cylinder and the harmonic analysis of the output torque of
the engine are shown in Figure 5a,b. It can be seen that the amplitude characteristics
of the output torque of the engine are mainly composed of six-order harmonics, except
for the average torque. In the nonlinear dynamic model, the torque can be equivalent to
the superposition of the average amplitude and the harmonic function of the six-order
harmonics. The expression is shown in Equation (53):

Min = M0 + µM0sin(2π fet + ϕe) (53)

where M0 is the average output torque of the engine, fe is the torque fluctuation frequency,
ϕe is the initial phase and µ is the ratio of the torque amplitude to the torque M0.
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2.5. Nonlinear Flexural and Torsional Coupling Dynamics Equation of the System

For multi-degree-of-freedom complex dynamical systems, the Lagrange equation is
usually used to derive the system vibration differential equation.

The bending–torsional coupling vibration differential equation of sun gear is:
ms

..
xs + ∑3

j=1 Fmsajx + Fbsx = 0
ms

..
ys −∑3

j=1 Fmsajy + Fbsy = 0

Js
..
θs −∑3

j=1 rbsFmsaj = 0
(54)

The bending–torsional coupling vibration differential equation of a small gear ring is:
mr1

..
xr1 + ∑3

j=1 Fmrajx + Fbr1x = 0
mr1

..
yr1 −∑3

j=1 Fmrajy + Fbr1y = 0

Jr1
..
θr1 + ∑3

j=1 rbr1Fmraj = Tin

(55)

The bending–torsional coupling vibration differential equation of the long planetary
wheel is:

maj
( ..

xaj +
..
xccosψaj +

..
ycsinψaj

)
−maj

(
2ωc

.
yaj + ω2

c xaj

)
−Fmsajsinα + Fmrajsinα + Fmabjx + Fbajx = 0

maj

( ..
yaj −

..
xcsinψaj +

..
yccosψaj

)
+ maj

(
2ωc

.
xaj −ω2

c yaj
)

Fmsajcosα(j = 1, 2, 3)
+Fmrajcosα + Fmabjy + Fbajy = 0

Jaj

( ..
θc +

..
θaj

)
+ rbajFmsaj − rbajFmraj + rbajFmabj = 0

(56)

The bending–torsional coupling vibration differential equation of planetary carrier is:

mc
..
xc + ∑i=a,b ∑3

j=1 mij
..
xc + ∑i=a,b ∑3

j=1 mij

( ..
xijcosψij −

..
yijsinψij

)
+ω2

c ∑i=a,b ∑3
j=1 mij

(
−xijcosψij + yijsinψij

)
+ 2ωc ∑i=a,b ∑3

j=1 mij

(
− .

xijsinψij −
.
yijcosψij

)
−∑3

j=1 Fmsajx −∑3
j=1 Fmrajx −∑3

j=1 Fmrbjx + Fbcx = 0

mc
..
yc + ∑i=a,b ∑3

j=1 mij
..
yc + ∑i=a,b ∑3

j=1 mij

( ..
xijsinψij +

..
yijcosψij

)
+ω2

c ∑i=a,b ∑3
j=1 mij

(
−xijsinψij − yijcosψij

)
+ 2ωc ∑i=a,b ∑3

j=1 mij

( .
xijcosψij −

.
yijsinψij

)
−∑3

j=1 Fmsajy −∑3
j=1 Fmrajy −∑3

j=1 Fmrbjy + Fbcy = 0

Jc
..
θc + ∑i=a,b ∑3

j=1 mijr2
c

..
θc + ∑3

j=1 Jaj

( ..
θc +

..
θaj

)
−∑3

j=1 Jbj

(
−

..
θc +

..
θbj

)
±∑3

j=1 rbsFmsaj −∑3
j=1 rbr1Fmraj + ∑3

j=1 rbr2Fmrbj = −Tout

(57)

The bending–torsional coupling vibration differential equation of the big gear ring is:
mr2

..
xr2 + ∑3

j=1 Fmrbjx + Fbr2x = 0
mr2

..
yr2 −∑3

j=1 Fmrbjy + Fbr2y = 0

Jr2
..
θr2 −∑3

j=1 rbr2Fmrbj = −Tbrake

(58)

The bending-torsional coupling vibration differential equation of short planetary
wheel is: 

mbj

( ..
xbj +

..
xccosψbj +

..
ycsinψbj

)
−mbj

(
2ωc

.
ybj + ω2

c xbj

)
+Fmabjx + Fmrbjsinα + Fbbjx = 0

mbj

( ..
ybj −

..
xcsinψbj +

..
yccosψbj

)
+ mbj

(
2ωc

.
xbj −ω2

c ybj

)
(j = 1, 2, 3)

−Fmabjy + Fmrbjycosα + Fbbjy = 0

Jbj

(
−

..
θc +

..
θbj

)
− rbbjFmabj − rbbjFmrbj = 0

(59)
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In which mp is the equivalent mass of each component; Jp is the equivalent moment
of inertia of each inertial component; p = s, c, aj, bj, r1 and r2, respectively, represent
each rotational component in the composite planetary gear; Tin is the nonlinear excitation
torque, considering the engine fluctuation torque Min; Tout is the load torque; Tbrake is the
braking torque.

3. Dynamic Characteristic Analysis
3.1. The Inherent Characteristics

The modulus of all gears is 4 and the displacement coefficient is 0; the pressure angle
is 20 rad; the meshing clearance is 0.06 mm; the base circular tooth thicknesses of planet
gear a and planet gear b are 7.7592 mm and 7.8679 mm, which are used to calculate the
phase difference between gears. The transmission ratio can be calculated according to the
number of teeth of each gear; the main parameters as shown in Table 1.

Table 1. Main parameters of the transmission system.

Number of Teeth Moment of Inertia (kg*m2) Mass (kg)

The small ring r1 77 0.2546 11.275
The big ring r2 82 0.4977 14.434

sun gear 34 0.0140 6.323
planet gear a 21 0.0028 2.163
planet gear b 22 0.0017 1.094

Based on the established dynamic model of the composite planetary gear system, the
natural frequency and vibration mode of the system can be obtained. The analysis of its
inherent characteristics can obtain the resonant frequency, vibration mode characteristics
and vibration mode. The influence of the rotational inertia of each component of the system
and the meshing stiffness between components on the natural frequency is further analyzed.
The characteristics of the natural frequency and vibration mode of the composite planetary
row under the working condition are analyzed, which can help to better understand the
vibration law of the planetary gear system.

Figure 6 shows that the vibration modes of the composite planetary gear system can be
divided into three types of modes: planetary gear vibration, global vibration and coupled
vibration. When the system displays the planetary gear vibration, namely that only the
planetary gear has torsional vibration, other rotating components do not vibrate, as shown
in Figure 7a. When the system displays the global vibration, the vibration generated by the
central rotating parts and planetary gear at all levels as well as the amplitude of the same
type of planetary gear, are the same, as shown in Figure 7b. When the system displays the
coupled vibration, except for the obvious characteristics of planetary wheel vibration and
global vibration, the rest can be regarded as coupled vibration, as shown in Figure 7c.

3.2. The Natural Frequency Varies with the Trajectory of Stiffness and Inertia

The natural frequency is mainly related to the structural parameters of the system. It
was found in the study that, with the change in parameters, the trajectory will appear as
modal transition and trajectory intersection.

The trajectory of the natural frequencies of each order of the system changing with
the meshing stiffness kmraj is shown in Figure 8. It can be seen that ω2 and ω3 are the
double roots of the same frequency before point A, and their trajectories are the same. At
point A, there is a modal transition, ω2 and ω3 alter rapidly with different frequencies,
respectively, then ω3 changes with single frequency in the AB and ω4 changes with a single
root frequency before point B. ω3 and ω4 modify in the same trajectory after the trajectory
intersection at B until the mode transition occurs again at C, and ω3 and ω4 transform
rapidly with different frequencies, respectively. In this case, the complex trajectory of
natural frequencies is induced by the third-order natural frequency ω3. The trajectories of
ω5, ω6, ω8 and ω9 always coincide, which is caused by the double roots under the same
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natural frequency. Trajectories of the meshing stiffness kmsaj, kmrbj and kmrbj with natural
frequency are similar to that of kmraj, as shown in Figures 9–11.
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Figure 8. The trajectory of the natural frequency with kmraj.
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Figure 9. The trajectory of the natural frequency with kmsaj.

Shown in Figure 12 are the trajectory changes in natural frequencies of each order
when the rotational inertia Jr1 of the gear ring increases from 0.01 kg·m2 to 0.5 kg·m2.
It can be seen that there are more complex modal transitions and trajectory intersection
phenomena when the natural frequency changes. The trajectory intersection of high-order
frequencies ω9 and ω10 occur at point A, the two-order frequency trajectory remains
consistent until the mode transition at point B separates rapidly; after that, these two
phenomena occur simultaneously at point C. ω7 and ω8 change from the coincidence of
trajectories before point C to the rapid separation, and then keep consistent with ω9, ω6
and ω7, which modify at a single frequency to point D and intersect their trajectories; until
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the modal transition phenomenon occurs at point E, the two frequency trajectories quickly
separate, and the same phenomenon as point C occurs again at point F. Before point F,
the trajectories of ω4 and ω5 are the same. After point F, the trajectories of ω5 and ω4 are
separated due to the modal transition and trajectory intersection, and ω5 and ω6 keep the
same trajectory. This phenomenon is consistent with the torsional vibration, planetary
wheel vibration and coupled vibration modes in the system. Trajectories of the inertia with
natural Jc, Js , Jr2 , Jaj and Jbj frequency are similar to that of Jr1, as shown in Figures 13–17.
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Figure 10. The trajectory of the natural frequency with kmrbj.
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Figure 11. The trajectory of the natural frequency with kmabj.
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Figure 12. The trajectory of the natural frequency with Jr1.
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Figure 13. The trajectory of the natural frequency with Jc.
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Figure 14. The trajectory of the natural frequency with Js.
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Figure 15. The trajectory of the natural frequency with Jr2.
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Figure 16. The trajectory of the natural frequency with Jaj.
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Figure 17. The trajectory of the natural frequency with Jbj.

3.3. Time-Frequency Characteristic Analysis of System Coupling Response

Simulation condition: the rated speed is 2300 r/min, the mean torque is 2000 N.m and
the fluctuation frequency is six times the rotation frequency of the crankshaft.

As seen in Figure 18a,b, the planet carrier and the gear ring are completely overlapped
in frequency; namely, their vibration is caused by the same excitation and their vibration
frequency coincides completely. It can be seen that the low-frequency components of the
vibration are mainly composed of engine rotation frequency fe, modulation frequency fc,
fs– fc, the high-frequency components of the vibration are mainly composed of the planetary
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gear rotary frequency fm and the engine rotation frequency fm ± fe. It is also obvious that
there are modulation components fm ± 6 fe induced by the fluctuation frequency 6 fe and
the meshing frequency fm.
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Figure 18. Frequency of vibration displacement of planetary carrier and small gear ring: (a) Spectrum
of translational displacement; (b) Spectrum of torsional displacement.

It can be seen from Figure 19 that the main peak frequencies include the engine rotat-
ing frequency fe, meshing frequency fm and its frequency doubling n fm. In addition, there
are sidebands with planetary carrier rotating frequency fe, sun gear rotating frequency
fs, planetary wheel rotating frequencies fa and fb, modulation frequencies fe, 6 fe, fb − fe
and n fm ± fc, n fm ± fs, n fm ± fa (n = 1, 2, 3 . . . ). The largest amplitude is the meshing
frequency and double frequency of the system, while the smallest amplitude is the rota-
tional frequency of the system and modulation frequency with each meshing frequency. In
addition, there are special frequencies, which are mainly caused by nonlinear factors. The
dominant frequency of meshing force is the same from Figure 20, the maximum amplitude
is Fmrb and the smallest amplitude is Fmsa.
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Figure 20. Time-frequency of each meshing force: (a) The meshing force Fmrb between the large ring
gear and planetary gear b; (b) The meshing force Fmsa between the sun gear and the planet gear; (c)
The meshing force Fmra between the small gear ring and the planetary gear a; (d) The meshing force
Fmab between planetary gears.

4. Verification of Model Accuracy

The virtual prototype model of the composite planetary gear system is established
by combining CATIA and ADAMS for dynamic virtual simulation and vibration response
analysis, the response results are compared and verified with the dynamic model.

4.1. Comparison of Natural Frequency

By comparing the mean value of the stabilized rotational speed with the calculated
theoretical rotational speed, as shown in Table 2, it can be seen that the simulation errors of
the rotational speed of the main components are all within 0.2%. It can be considered that
the established virtual prototype model of the composite planetary wheel system has good
accuracy and can be used for comparative analysis of numerical analysis results.



Machines 2022, 10, 31 21 of 25

Table 2. Comparison between simulation value and theoretical values of rotational speed.

Ring Gear r1 (Input) Sun Gear s Planet Gear aj Planet Gear bj
Planet Carrier c

(Output)

Theoretical values (r/min) 2300 1572.5 5463.1 3235.4 1113.8
Simulation values (r/min) 2300 1574.2 5452.7 3234.0 1113.9

Errors (%) 0 0.11 0.19 0.045 0.0048

The undamped natural frequency of the composite planetary gear system simulation
model is obtained by modal analysis and the results are compared with the numerical
results as shown in Table 3. Due to some assumptions of lumped mass method equivalence
and inaccurate measurement of parameters such as inertia and stiffness being adopted
in dynamic modeling, there is a certain error between simulation results and numerical
calculation values; however, the overall error is relatively small.

Table 3. Comparison of natural frequency simulation value and theoretical value.

Degree 1 2 3 4 5 6

Theoretical values(Hz) 0 1339.1 2624.2 3281.3 5075.0 7420.5
Simulation values (Hz) 0 1324.9 2508.0 3206.6 5092.7 6970.2

Errors(%) 0 1.06 4.43 2.28 0.35 6.07

4.2. Comparison of Meshing Force

Simulation condition: the rated speed is 2300 r/min, the mean value is 2000 N.m and
the fluctuation frequency is six times of the crankshaft frequency.

The numerical calculation values of meshing forces Fmra, Fmrb and Fmab are not com-
pletely consistent with the simulation results as shown in Table 4; the errors of all meshing
forces are within 5%.

Table 4. Comparison between simulation and theoretical values of meshing forces.

Mean Meshing Force Fmra Fmrb Fmab

Theoretical values (N) 4360.4 6204.6 6177.3
Simulation values (N) 4391.9 5916.4 6295.9

Errors (%) 0.72 4.64 1.92

It can be clearly seen from Figures 21–23 that, in each meshing force spectrum, the
vibration response of wave frequency 6 fe is dominant, followed by the system meshing
frequency and double frequency 2 fm and 3 fm, which are the same as that of numerical
calculation. In the spectrum of the meshing force of the simulation results, there is a small
value of the edge frequency band, mainly because the impact function is used in ADAMS
to simulate the contact force of the gear meshing.

The comparative analysis of the virtual simulation and the numerical calculation re-
sults show that the coupling vibration response of the composite planetary gear system has
a good correspondence in each vibration frequency component, which can form a good mu-
tual verification with the established dynamic model and the numerical response results.
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Figure 22. Frequency spectrum and time–frequency spectrum of meshing force Fmra.
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5. Conclusions

Taking time-varying stiffness, dynamic clearance, comprehensive error and engine
harmonic excitation induced by the time-varying phase angle of the planetary gear into
consideration, a time-varying dynamic model for composite planetary gear system is
established in this paper. From this work, we can conclude that:

(1) The vibration of the composite planetary gear system has three modes: planetary gear
vibration, global vibration and coupling vibration;

(2) The frequency trajectories of each order increase with the change in stiffness, al-
though some frequency trajectories will have the phenomenon of modal transition
and trajectory intersection. With the increase in inertia, the natural frequency of the
system shows a decreasing trend and most orders change slightly. In addition, there
are complex modal transitions and trajectory intersections in the natural frequency
change trajectory, which are consistent with the torsional vibration, planetary wheel
vibration and coupled vibration modes in the system;

(3) In bending–torsional direction, the vibration frequency components of different parts
in the planetary gear are the same; however, their amplitudes are different. The low
frequency is induced by the single frequency fluctuation torque converter input, which
is independent of the system state. The high frequency is composed of the meshing
frequency f m, six times the fluctuation frequency of engine rotating frequency 6 f e and
its modulation frequencies f m± 6 f e. The rotation frequency and harmonic frequency
of the engine have a great influence on the vibration response of the system.;

(4) The main frequencies in the meshing force spectrum include the engine rotation fre-
quency and the meshing frequency and its frequency multiplication. In addition, there
are sideband frequencies, such as the rotation frequencies of planetary carrier, sun
gear and planetary gear as well as their modulation frequency. The larger amplitudes
are the meshing frequency and its frequency doubling, while the smaller amplitudes
are the rotation frequencies and the modulation frequency of meshing frequency;
there are also some special frequencies, which are mainly caused by the nonlinear
factors of the system.
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