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Abstract: The data-oriented paradigm has proven to be fundamental for the technological transfor-
mation process that characterizes Industry 4.0 (I4.0) so that big data and analytics is considered a
technological pillar of this process. The goal of I4.0 is the implementation of the so-called Smart
Factory, characterized by Intelligent Manufacturing Systems (IMS) that overcome traditional manu-
facturing systems in terms of efficiency, flexibility, level of integration, digitalization, and intelligence.
The literature reports a series of system architecture proposals for IMS, which are primarily data
driven. Many of these proposals treat data storage solutions as mere entities that support the archi-
tecture’s functionalities. However, choosing which logical data model to use can significantly affect
the performance of the IMS. This work identifies the advantages and disadvantages of relational
(SQL) and non-relational (NoSQL) data models for I4.0, considering the nature of the data in this
process. The characterization of data in the context of I4.0 is based on the five dimensions of big
data and a standardized format for representing information of assets in the virtual world, the Asset
Administration Shell. This work allows identifying appropriate transactional properties and logical
data models according to the volume, variety, velocity, veracity, and value of the data. In this way,
it is possible to describe the suitability of relational and NoSQL databases for different scenarios
within I4.0.
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1. Introduction

Industry 4.0 (I4.0) designates the technological transformation process in production
systems, logistics, and business models observed since the last decade [1]. The integration
of digital technologies has promoted changes in the development phase [2,3], flexibility
of production [3,4], efficiency in the use of resources [5,6], and level of automation and
digitalization of the organizations [7,8]. This new mode of production characterizes the
so-called Intelligent Manufacturing Systems (IMS): more efficient, flexible, integrated, and
digitized than the traditional manufacturing systems. In the context of I4.0, the companies
where the IMS are present are referred to as Smart Factories [9–11].

Data emerged as a fundamental resource for the Smart Factory due to their character-
istics such as low cost, apparent inexhaustibility, and the possibility of cost reduction and
value creation [12]. The authors of [10] argue that Smart Factory status is achieved, among
other factors, when artificial intelligence solutions use the data. The “smart products”
resultant from IMS are objects capable of storing and making their data available to humans
or machines [9]. Thus, the importance of the data-oriented paradigm in the context of I4.0
is clear [12].

New system architectures have been proposed to promote the integration of enabling
digital technologies to use data for industrial innovations [13–15]. While there is concern
about optimizing IMS architectures in many respects, the impact of databases on their per-
formance is not always considered. It is possible to observe that, in many cases, databases
are treated as mere entities that support the functions of architectures, even though they
can significantly influence the performance of the IMS [16].
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This paper proposes the identification of data models that better suit different scenarios
in the context of I4.0. This phenomenon is characterized by its key enabling data-related
technologies and methods so that a consistent description of the nature of the data in this
context could be achieved. By identifying the advantages and limitations of relational and
NoSQL data models for such data characteristics, it is possible to discuss the suitability of
these models for different scenarios in the context of I4.0.

2. Materials and Methods

Presenting the context in which this paper is inserted is essential to justify the choice
of materials and methods adopted in the work from which it derives. For this reason, this
section begins with a contextualization of Industry 4.0. Understanding some of its main
characteristics is important to justify the relevance of this paper to (i) demonstrate the gap
that exists in system architectures for I4.0 concerning data storage solutions used by these
systems and (ii) identify patterns, methods, and technologies whose relevance to I4.0 is
such that, from them, it is possible to obtain a characterization of the data in this context.
Thus, this information is combined to propose suggestions for data models in the context
of I4.0.

Nowadays, there is a consensual understanding that manufacturing automation sys-
tems have been undergoing a continuous transformation of technological paradigms since
the last decade [1]. Authors claim that these transformations, obtained from integrat-
ing a series of independent digital technologies and a certain degree of independence
from each other, configure the Fourth Industrial Revolution [17]. Because of the global
scale of these changes, several initiatives worldwide, such as the Plattform Industrie
4.0 (https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.html accessed
on 2 August 2021), the Industrial Internet Consortium (https://www.iiconsortium.org/
accessed on 2 August 2021), and the Standardization Council Industrie 4.0 (https://www.
sci40.com/ accessed on 2 August 2021), seek to establish guidelines for this process of
technological transformation. The need to have a guide (or multiple equivalent guides) for
the technological transformation process associated with the Fourth Industrial Revolution
is because, unlike the first three, the Fourth Industrial Revolution was identified as such
already in its early stages. Thus, these initiatives become responsible for outlining the
advancement of technological transformation in manufacturing, proposing a common
understanding of the phenomenon, establishing standards, and so on.

Among the different technological aspects mentioned above, some are highlighted
in this work and focus is given to the so-called I4.0, a term often used as a synonym for
the Fourth Industrial Revolution. In Germany, the Plattform Industrie 4.0 was created, a
consortium of various organizations, including industries, universities, and the German
government, proposing to shape the digital transformation in manufacturing according
to the precepts of I4.0. The meaning of the term “Industry 4.0” is the object of analysis by
several researchers [18–20]. Instead of presenting a definition, the option is to describe the
phenomenon in terms of its characteristics: I4.0 is characterized by Intelligent Manufactur-
ing Systems (IMS) that quickly adapt to market demands and with effective interconnection
between all entities involved in these processes. This phenomenon is the conception of the
so-called Smart Factory, which aims at manufacturing based on intelligent services and
processes [21].

The main materials used in this work were technical publications and academic
works. Considering that I4.0 is the result of cooperation between academia, industry, and
government organizations, it was impossible to use only literature review methods of
academic publications. Characterizing a system’s data is essential for choosing the database
to be adopted in the architecture for this system. In this work, this characterization is made
based on technologies, methods, and standards for data in I4.0. Other relevant features for
database design are fundamentally application dependent and are beyond the scope of this
paper which seeks to expand the coverage of its contributions. The following paragraphs

https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.html
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describe the materials and methods adopted to characterize data in different scenarios in
the context of I4.0 and identify which data models are suitable for different scenarios.

Ensuring interoperability among systems is one of the requirements for implementing
the Smart Factory [20,22,23]. For this purpose, the entities that establish guidelines for the
advancement of I4.0 proposed a standard format for digitally representing and managing
elements involved in carrying out productive activities—the Asset Administration Shell
(AAS)—whose concept, structure, metamodel, and perspectives for implementation will be
presented in Section 3.2. Current works propose the implementation and use of the Asset
Administration Shell in system architectures that seek to use data for different purposes.
However, it is noted that less attention is paid to the design of the database to be used in
these architectures. To confirm this statement, a systematic review of the literature was
carried. The adopted procedures were the following:

• The paper databases used in the search were: Web of Science, IEEEXplore, Science
Direct, Scopus, and Google Scholar;

• The following search string was defined to find papers: “Asset Administration Shell”
AND “Database”;

• It was observed that, among the selected databases, the only one to return a consid-
erable number of papers was Google Scholar, which included papers from the other
databases and, therefore, was the only one used. The application of search string
returned 139 papers;

• The following keywords were defined for ranking the papers: “AAS”; “Asset Admin-
istration Shell”; “Database”; “DBMS” (database management system); “Implement*”;
and “Storage”;

• Each occurrence of any keyword in the title of the paper assigned 5 points to it (the
Google Scholar platform does not allow exporting the abstract or keywords of the
article). For instance, the paper entitled “Toward Industry 4.0 Components: Insights
into and Implementation of Asset Administration Shells” contains the keywords
implementation and “Asset Administration Shell” so it scored 10 points;

• Papers with a score greater than or equal to 5 were classified as accepted, and their
content was analyzed;

• It was researched which of the papers classified as accepted cited the implementation
data model and/or DBMS used.

Considering that I4.0 is a process of technological transformation, important data-
based digital technologies and methods were identified. Those have such importance for
this process that a description of the nature of the data in the context of I4.0 can be obtained
from them. In addition to academic works, technical publications such as working papers
from key organizations and entities for I4.0 were also considered in this process.

3. Basic Concepts

This section presents a theoretical framework composed of essential basic concepts for
the work. Database-related topics include relational and NoSQL data models, transactional
properties, and theorems regarding these properties. Moreover, the Asset Administration
Shell concept, an artifact developed to represent Industry 4.0 components in the digital
world, is presented.

3.1. Relational and NoSQL Databases

A logical and coherent collection of data with an intrinsic meaning forms a database [24].
A database stores and ensures the persistence and integrity of data that represent assets,
in addition to allowing these data to be made available to interested users. A database
is created and maintained through a database management system (DBMS), a computer
program that helps maintain and use data sets that compose the databases [25]. These
programs have the following advantages: they enable efficient and concurrent access to
data; ensure data integrity and security; protect against failures and unauthorized access;
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support multiple views of data; and, finally, they guarantee independence, that is, the
isolation between data and applications through data abstraction [25,26].

Data abstraction is provided through data models. A data model is a set of concepts
used to describe the structure of a database [24]. The logical data model describes data in
such a level of abstraction that hides some details of the physical storage, which allows
the end-user of the data to understand them. At the same time, as they are not so far from
the low level, these concepts can be used directly to implement a database in a computer
system. DBMSs are usually characterized by the logical data models they implement and,
for this reason, this work focuses on this level of data abstraction.

3.1.1. Relational Data Model

The relational data model was, for many years, the default choice for database imple-
mentation [27]. It uses the concept of “relation” in a mathematical sense to represent data.
Instead of presenting a formal mathematical definition of the term, which can be found
in [28], it is presented how a relationship is perceived. Relations can be seen as tables of
values. These tables have columns not necessarily distinct that consist of “attributes” used
to characterize an element to be represented by the relation. Each line (formally called
“tuple”) of this table has values for the attributes. For each column, the values present in
every tuple belong to a single domain with a well-defined name, data type, and format.
Besides, only atomic values (each value in the domain is indivisible) are allowed.

A schema defines the structure of a relational database. From a schema, tables, their
attributes, and relationships between them can be described to be used through a DBMS
to create a database. The vast majority of DBMSs that implement a relational model
use a standard language to perform queries—the Structured Query Language (SQL); the
relational model is commonly called the SQL model. The same extends to the DBMSs and
databases that implement it.

3.1.2. ACID and BASE Transactional Properties and CAP Theorem

Relational DBMS grants four properties to transactions to maintain data through
concurrent access and system failures. These properties are atomicity (A), consistency (C),
isolation (I), and durability (D), so they are often referred to as ACID properties. A brief
description of each of them based on [25,26] is presented:

• Atomicity: The transaction must be executed in its entirety or not to be executed. If
during the transaction, any failure occurs that prevents the transaction from being
completed, any changes that it has performed in the database must be undone;

• Consistency: If a transaction runs entirely from start to finish, without interference
from other transactions, it should take the database from one consistent state to another.
A consistent database state satisfies the constraints specified in the schema as well as
any other database constraints that must be maintained;

• Isolation: The execution of a transaction must not be interfered with by any other
transaction running at the same time;

• Durability: Changes applied to the database by a committed transaction must persist
in the database. These changes must not be lost due to any failure.

A distributed database is defined as “a collection of several logically interrelated
databases distributed over a network of computers” [29]. There are three crucial reasons
pointed out in the literature for the use of distributed databases: (1) the increase in the
volume of data [27], which requires the ability to scale horizontally, that is, to distribute
the systems across several nodes—instead of vertically scaling the hardware, adding more
computing resources to the same machine, which would be more expensive and limited;
(2) the need to better reflect the distributed organizational structure of companies [30];
and (3) the inherently distributed nature of a range of applications, including industrial
ones [30]. There are three ways to implement a distributed database system [26,27]. It is
noteworthy that specific systems implement hybrid versions, combining different forms of
partitioning [27].
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• Single server: There is no distribution. The database runs on a single machine that
handles all operations. It is an example of a centralized AAS implementation;

• Partitioning: Different pieces of data on different machines. Aggregate models are
ideal here, as they form a natural partitioning unit, making certain users access, most
of the time, the same server so there is no need to gather information from different
servers, which increases performance compared to a single server implementation;

• Replication: Data can be replicated in a master–slave schema where the master pro-
cesses updates and replicates this data to other nodes or in a peer-to-peer schema
where all nodes can process updates and propagate them.

Three other properties are desirable for database systems: availability (A), partition
tolerance (P), and consistency (C), which, in this case, has a slight difference from the
concept presented before. The analysis of these properties is fundamental in distributed
database systems. The CAP theorem correlates these three properties. According to it, these
three properties, whose descriptions are presented here, cannot coexist simultaneously in a
database system:

• Consistency (C): Ensuring that all nodes have identical copies of replicated data visible
to applications. It is a little different from the consistency concept of ACID properties.
In that case, consistency means not violating database restrictions. However, it can be
considered that “having the same copy of a data replicated in all nodes that this data
is replicated on” is a restriction, so the concepts start to resemble each other;

• Availability (A): Each write or read operation will be successfully processed (sys-
tem available) or will fail (system unavailable). A “down” node is not said to
be unavailable;

• Partition Tolerance (P): A partition tolerant system continues to operate if a network
fails to connect nodes, resulting in one or more network partitions. In this case, nodes
in a partition only communicate with each other.

According to the CAP theorem, only two of the three properties presented can be
guaranteed simultaneously. It is worth noting that this choice is not binary, it is possible
to relax specific properties so that it is possible to privilege others. However, ACID
transactional properties make this flexibility unfeasible. As a kind of alternative, you can
have a database that works basically all the time (basically available) and is not consistent
all the time (flexible state), only when the writes are propagated to all nodes (eventually
consistent) in a distributed system. Thus, the characteristics of this model, named BASE
model, although not strictly defined, are presented as:

• Basically available (BA): the system must be available even if partial failures occur;
• Flexible State (S): the system may not have consistent data all the time;
• Eventually consistent (E): consistency will be achieved once all writes are propagated

to all nodes.

3.1.3. NoSQL Data Models

NoSQL does not have a solid definition, but is possibly better understood as a
movement that proposes non-relational database solutions that do not use the SQL lan-
guage [27,31]. Thus, the term NoSQL (often interpreted as Not Only SQL), used in its
technical sense, is applied to designate a family of DBMSs that have specific characteristics
in common (at least for most DBMSs), the main one being the non-implementation of
a relational data model [32]. These features can mean advantages or disadvantages for
specific applications:

• They do not implement the relational data model: Self-description and the absence
of a fixed schema allow for greater flexibility concerning the content stored in DBMS,
being suitable for handling semi-structured data [26,32];

• They do not use the SQL language: The absence of a declarative query language, with
a wide range of “features” that are sometimes unnecessary, requires more significant
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effort for developers since the functions and operations have to be implemented
through the language of programming [26];

• Absence of ACID transactions: Because aggregate-oriented data models generally do
not guarantee ACID transactional properties, DBMSs that implement these models
have greater efficiency in distributed systems [32,33]. Alternatively, these DBMSs use
the BASE model of transactional properties;

• Horizontally scalable: The ability of NoSQL DBMS to scale out is linked to two main
characteristics. (1) By not having ACID transactional properties (aggregate-oriented
models), it allows for relaxing consistency, and thus balancing the consistency–latency
trade-off in the way which is most suitable for the application, without giving up
partition tolerance, as it was previously discussed. (2) The orientation to aggregates
allows for a “natural” or intuitive data partitioning unit, as data from an aggregate are
commonly accessed together and can be allocated on the same server, which makes
the user of this data access, in the majority sometimes, the same server [27].

NoSQL DBMS are commonly differentiated based on how they store the data, that is,
the data model employed for the storage. There are four main data models implemented in
NoSQL DBMSs. The description of each of these models is presented here:

• Key-value: Key-value DBMSs are possibly the simplest NoSQL systems. These DBMSs
store their data in a table without a rigid schema, where each line corresponds to a
unique key and a set of self-described objects called value. These can take different
formats, from the simplest as strings, passing through tables as in the relational
model, reaching more elaborate formats such as JavaScript Object Notation (JSON)
and eXtensible Markup Language (XML) documents. Thus, they can store structured,
semi-structured, and unstructured data in one format (key, value). The key-value data
model is often represented as a hash table. This data model is aggregate oriented,
meaning that each value associated with a unique key can be understood as an
aggregate of objects that can be retrieved in their entirety through the key. The content
of these aggregates can be different for each key. The aggregate’s opacity guarantees
the possibility of storing any data in the aggregates; that is, the DBMS does not
interpret the aggregate content, seeing it only as a set of bits that must always be
associated with its unique key. This has the practical implication of generally not
allowing partial retrievals on aggregate content. The operations implemented by
key-value DBMSs are the insertion or update of a pair (key, value), the retrieval of a
value from its key, or the deletion of a key;

• Documents: Document-oriented DBMSs are those in which data is stored in document
format. They can be understood as a key-value DBMS in which the only allowed
formats for the values are documents such as XML, JSON, or PDF. A fundamental
difference between the document and key-value data models is that the former allows
for partial aggregate retrievals as it stores self-described data format. In other words,
aggregates are not opaque, they are not seen by the DBMS merely as a set of bits, and
it is possible to define indexes on the contents of the aggregates that allow operations
to be performed on specific items of this data set. As with the key-value data model,
the content of each document does not follow a fixed schema. Document labels that
guarantee the self-description of the data and enable partial recoveries also allow
different keys to have documents with different content (attributes). Thus, it allows
the storage of structured and semi-structured data. There are still DBMSs that allow
the storage of unstructured data such as texts;

• Column family: In column family databases, data is stored similarly to key-value
databases. However, the value can only be composed of a set of tables, each of which
has a name (identifier) and forms a column family. In each of these tables, columns are
self-described; they have a key (also called a qualifier) and its value, which is the data
itself. Thus, a column family database is formed by a table without a rigid structure
containing unique keys and a series of column family associated with each key in each
row. Some considerations can be made about this model. The first is that keys do
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not need to have the same column family. The second observation is that, for each
key, each column family can only contain the columns of interest; that is, the column
family does not need to be composed of the same columns for all the keys. The column
family forms a data aggregate that is frequently accessed together and, because these
columns contain their keys, the aggregates are not opaque to the DBMS, thus being
possible to perform partial recoveries through the aggregates through the indexes of
the columns;

• Graphs: In graph-oriented DBMSs, data is stored in a collection of nodes, which
represent entities, and directed vertices, which represent relationships among these
entities. The set of nodes and vertices form graphs in which the two elements that
compose them can contain labels and attributes associated with them, which are
the data itself. Regarding the characteristics of the data models presented so far,
the flexibility in data representation due to the absence of a fixed schema is one
of the few similarities between the graph data model and the other data models
mentioned, as both vertices and nodes can contain attributes different from each other.
Concerning differences, the graph model is not aggregate oriented, it usually has
ACID transactional properties, it is best suited for single server (non-distribution)
implementations, can represent small records with complex relationships to each other,
and it is more efficient in identifying patterns. Unlike aggregate-oriented models,
where partial recoveries can only be made on one aggregate at a time (when allowed),
in the graph model they can be conducted for the graph as a whole.

3.2. Asset Administration Shell

Before presenting the Asset Administration Shell (AAS), it is necessary to introduce the
concept of “asset”. The IEC describes an asset as “a physical or logical object owned or held
in custody by an organization, having a perceived or real value to the organization”. Based
on this definition, also adopted by the Plattform Industrie 4.0 [34], it is possible to recognize
that an asset can be something physical (a machine, equipment, materials, products) or
not (electronic documents, computer programs). Some less intuitive examples of assets are
location, time, state of an asset, human beings, and relationships between assets [35]. In
summary, the asset is everything that has value and importance for an organization.

It is known that I4.0 characterizes a digital transformation process. For this process to
occur, the assets need to be digitized; their data must be taken to the virtual world [36,37].
To perform this mapping to ensure interoperability between systems and components [37]
in IMS, the AAS was created. It corresponds to a standardized digital representation of
the asset containing all its technical information and functionalities. The AAS provides a
minimum, unique, and sufficient description of the asset in different perspectives relevant
to each use case [34,38]. By standardizing the representation format and communication
interfaces of assets in the digital world, AAS enables the exchange of information among
I4.0 participants, ensuring interoperability between components [34,38]. In summary, the
AAS corresponds to the virtual and standardized representation of an asset in the context
of I4.0.

The combination of asset and AAS gives rise to Component I4.0 (I4.0C or I4.0 Com-
ponent). The I4.0C combines the physical and real world, composed by the asset and its
respective AAS. The combination of these two elements, with the second “involving” the
first, allows services and functionalities to be offered inside (through AAS) and outside
(through the asset) of the I4.0C network. These features and services are made possible by
the unique identification and communication capability of an I4.0C. Here, it is worth noting
that a single I4.0C can be associated with multiple assets depending on the considered
granularity. In this way, such a structure can be replicated to different levels of granularity
(for example, at different levels of hierarchy). The following subsections discuss details of
the AAS structure, elements, metamodel, and implementation perspectives.

The elements that compose an AAS are divided into classes; each has its attributes
used to describe the asset. Elements in the AAS can be understood as subclasses, which
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have the same attributes as a specific superclass from which they are derived but also
contain attributes that differentiate them from other elements of the same superclass. The
first way to divide the element classes of an AAS is to designate them as Identifiable and
Referable. Identifiable Elements have a globally unique identifier. Referable, in turn, has an
identifier that is not globally unique, being unique only within the context (defined by an
Identifiable) in which it finds itself. The element classes contained within the Identifiable
and Referable superclasses are called subclasses and can also, in turn, be superclasses;
that is, they can be composed of other subclasses. There is an inheritance relationship of
attributes in this hierarchy between classes: subclasses inherit attributes from superclasses.

The Identifiable Elements class can present additional domain-specific (owner) identi-
fiers. The “Asset Administration Shell” and “Asset” subclasses have already been described
from the Identifiable class. The subclass “Conceptual Description” defines the standardized
semantic description of certain elements. Finally, the subclass “Submodel” allows an asset
to be represented in its different perspectives. Each Submodel can describe an asset from
an electrical, mechanical, thermal, control, and other perspective.

The “Referable Elements” class has more subclasses than the “Identifiable Elements”
class, so only some of them are presented here in more detail. The description of all
subclasses can be found in [34]. Among the subclasses of Referable elements, the subclass
“Submodel Element” stands out in this work, and it is composed of elements suitable for
the description and differentiation of assets in perspective specified by the Submodel. This
class of “Submodel Elements” can be understood as a superclass in which some of the main
subclasses are “Submodel Element Collection”—a collection that can be composed of all
other classes with the same hierarchical level—and “Data Element”. Data Elements, in turn,
form another superclass with one of the important AAS element subclasses, the “Property”,
described in more detail in the next paragraph.

The “Properties” class contains elements that allow representing the characteristics
of an asset given a perspective defined by the Submodel in which they are found. These
elements are standardized by the IEC 61360 and can be found in the IEC Common Data
Dictionary (CDD, common data dictionary) or eCl@ss repositories [34,39,40]. In the IEC
CDD repository, a property has, in addition to its value itself, some additional data such
as code, version and revision, identifier, and definition. The free digital version of the IEC
CDD provides examples of properties for some specific domains. The complete list of AAS
element classes, including those that do not qualify as Identifiable or Referable, can be
found in [34].

Once the structure and some of the main components of the AAS are presented,
it is possible to illustrate its metamodel. Figure 1 illustrates this metamodel with the
components that were presented through a UML class diagram. The representation of
AAS in the diagram also contains an example for the content of the AAS elements to
highlight that its strict, coherent structure can be composed of data in different formats to
contemplate the heterogeneity of assets represented through this artifact. A generic servo
motor was considered as the asset to be described by the AAS. In Figure 1, the acronyms
SM, SMC, Prop, and CD stand for Submodel, SubmodelElementCollection, Property, and
ConceptDescription, respectively.
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Figure 1. UML class diagram representing the metamodel of the AAS with main elements. Based on
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The standard solutions proposed for I4.0 need to be comprehensive enough not to limit
the possibility of carrying out the Smart Factory in most different organizations. In this
sense, no specific strategy for implementing the AAS is imposed by standardizing the digital
format of representation and exchange of information. In [42], some of these possibilities
are explored, taking into account different implementation perspectives. The different
possibilities provide characteristics that can be advantages or disadvantages for specific
applications. These characteristics include computational power, availability, performance
and latency, security and reliability, maintenance, administration and management cost,
failure identification, and recovery. Here, three perspectives of AAS implementation
presented in [42] are described, along with the advantages and disadvantages.

The first issue to be discussed regarding AAS implementation is the computing plat-
form. Three possibilities of implementation are presented, as illustrated in Figure 2. In the
first one (Figure 2a), the AAS is embedded in the asset which, in turn, contains an execution
environment for its digital representation. It is the case that an implementation based on
an edge computing platform can be used as an example for such an implementation. In
a second possibility (Figure 2b), the AAS can be physically separate from the asset but
residing in the local IT infrastructure, connected to the asset through a local network. This
case corresponds to a fog computing platform-based implementation. As a third possibility
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(Figure 2c), the location of the AAS can be even further away from the asset in a cloud com-
puting platform-based implementation. In this case, AAS and assets connect via external
internet networks.
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The second implementation perspective concerns the scalability of AAS. In a simplified
way, scalability is related to the possibility of distributing data storage and processing across
multiple nodes of a network. In this subsection, three possibilities for AAS distribution
are considered, as illustrated in Figure 3: Figure 3a centralized, in which all information
and services are allocated in a single node; Figure 3b loosely coupled distributed, where
different nodes store information for the same asset (same identifier) and can be accessed
individually; and Figure 3c distributed with aggregator node, which differs from the
previous implementation by including an aggregator node, which gathers information
from the nodes on which the AAS is distributed, forming a single data access point.
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In Figure 2, the implementations differ in the distance between the AAS execution
environment and the asset. However, no further consideration is made concerning the
specific execution environment, which defines a form of AAS virtualization. This form of
virtualization is an implementation perspective that implies advantages and disadvantages
for the application. Three possibilities are presented and illustrated in Figure 4: the
implementation based on Figure 4a operating system, Figure 4b hypervisor, and Figure 4c
container. In the first case, the operating system is the AAS execution environment itself;
that is, the execution environment consists of a process of a dedicated operating system
or running inside another process. In the second case, the AAS execution environment
is a virtual machine (VM). Multiple virtual machines with their own operating systems
are allocated to a host (host) machine; they use its hardware and a hypervisor manages
it. As in the previous case, AAS would still function as a complete operating system
process but, in this case, this process would share hardware resources with other operating
systems and applications. Finally, in the third possibility, the AAS execution environment
consists of containers which run on top of an operating system. Unlike virtual machines,
applications run in containers are run on the host machine’s operating system, requiring
only minimal resources such as applications and APIs needed to run the application, in this
case, the AAS [43]. Two issues are related to the AAS execution environment, namely to its
virtualization form: isolation and performance. These two characteristics form a trade-off,
as pointed out by [44].
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4. Results

This section presents results regarding the importance of technologies and methods
gathered under the term “Big Data and Analytics” for I4.0 and correlates the characteristics
of the data in this context with those of the relational and NoSQL databases.

4.1. Data Characteristics in the Context of I4.0

There is still no consensus on the technological pillars that support Industry 4.0 (I4.0).
It is also observed that most authors put “Industry 4.0” and “Fourth Industrial Revolution”
as synonyms, considering that there is no distinction between the phenomena, making
it even more challenging to identify the technological pillars associated with each of the
concepts. Table 1 presents the views of different authors about the key enabling technologies
of the I4.0.

Despite this mentioned lack of consensus, it can be observed that there are certain
convergences between authors and organizations about the enabling technologies of I4.0.
It can be seen from Table 1 that the only technology identified as such in all the works
consulted was big data and analytics. Thus, although there is no total consensus among the
authors, the relevance of big data and analytics for the industry in the coming decades can
be recognized. In brief, the term big data and analytics comprises (i) data sets “characterized
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by a high volume, velocity and variety to require specific technology and analytical methods
for its transformation into value” [45], as well as the technologies and data analysis methods
(big data analytics) themselves for this type of information asset, that is, specific to its
characteristics [46,47].

Data generated, collected, transmitted, and possibly analyzed in real-time will be part
of the Smart Factory [48]. The fact that big data and analytics systems are considered a
pillar of I4.0 comes from the possibilities of improvements that can occur in a company
based on its available data. The authors of [17,48] state that this type of system can be used
to increase productivity and for better risk management, cost reduction, and aid in general
decision making. For this reason, this set of technologies is considered fundamental for
I4.0 [49]. Considering that big data and analytics is a key enabling technology of I4.0, the
five dimensions of big data presented can be used to obtain a more general description of
the nature of data in the context of I4.0. Still, based on the definition of big data presented,
four dimensions characterize this information asset: the volume, speed, variety, and value
of data. A fifth dimension—veracity—is still considered by some authors to encompass
the reliability of the data [48,50]. These five dimensions, also called “5V”, characterize
big data and directly affect how data is stored, manipulated, and analyzed in IMS [51];
that is, they require technological solutions and specific methods for these functions. A
description of these five dimensions of big data is presented in the next subsection with a
discussion of how they are manifested in I4.0, taking into account the concept, structure,
and implementation perspectives of the Asset Administration Shell and their impact on the
design of databases for Intelligent Manufacturing Systems.

Table 1. Key enabling technologies for Industry 4.0 and/or the Fourth Industrial Revolution, accord-
ing to different authors.

Technology Rüssmann
(2015) [52]

Bechtold
et al. (2014)

[53]

Lichtblau
et al. (2015)

[46]

Bauer et al.
(2015) [54]

Petrillo et al.
(2018) [55]

Wan, Cai,
Zhou (2015)

[56]

Big data and analytics x x x x x x
Advanced robotics x x x x
Systems integration x x x

Internet of things x x x x x
Simulation x x

Additive manufacturing x x x x x
Cloud computing x x x x x

Virtual/augmented reality x x x x
Cybersecurity x x

Machine-to-machine x x
Mobile technologies x x

Location and detection
technologies x

Human–machine
interfaces x x

Authentication and fraud
detection x

Smart sensors x
Interaction with customers x

Community platforms x
Embedded projects x
Self-guided vehicles x

Social networks x

4.2. Data Models in the Context of Industry 4.0

Section 3.2 allows for demonstrating that entities that seek to lead the evolution process
of Industry 4.0 are clearly concerned with the description of data at a conceptual level. The
creation of conceptual dictionaries, such as the aforementioned eCl@ss, IEC 61360, among
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others, defines the composition and semantics of the elements that make up the AAS. In
terms of databases, it can be seen that efforts are directed towards building conceptual data
models for I4.0. The same concern is not observed regarding the mapping of conceptual
models at the logical level. The systematic review results, whose procedure was detailed in
Section 2, demonstrates the gap that exists in the proposals for system architectures for I4.0
in terms of database design. Of the 139 papers resulting from the application of the search
string on the Google Scholar platform, which reports the implementation of the AAS, 25 of
them scored higher than five based on the criteria adopted and were analyzed. Only 32%
(8 papers) at least inform the data model, or DBMS used, suggesting that studies in this
area discuss this issue

Based on the results obtained from the systematic literature review, it is possible to
identify the lack of rigor in the choice of logical data models that are used in databases for
AAS implementations. Alternatively, several works discuss the applicability of data models
in scenarios that can be observed in Industry 4.0 but consider a specific application [57–59]
or do not propose a direct correlation with the phenomenon and its particularities [60,61].
Despite this finding, databases should not be understood as mere tools for data storage but
as essential components of architectures, impacting their performance [16]. For this reason,
database solution choices should not be made arbitrarily but based on criteria, application
characteristics, users, and data. Given the reality exposed in the systematic review, i.e.,
the gaps in the implementation of database solutions in the context of I4.0, a correlation
between the data characteristics described in the previous section—considering the five
dimensions of big data—and the characteristics of relational and NoSQL data models can
be introduced, discussing the adequacy of these models to the context of I4.0.

4.2.1. Operational and Analytical Databases

The subsections dealing with the dimensions of big data and analytics and the Asset
Administration Shell make it possible to have a characterization of the data in the context of
Industry 4.0. However, these characteristics manifest differently depending on application
specifics. Therefore, in order to have a characterization of the data that allows for a deeper
discussion about the suitability of data models for Industry 4.0, a brief differentiation
between two types of databases, operational and analytical, is proposed. They differ in
terms of the type of operations they perform most frequently, the volatility of the data
stored, the number and type of users, the volume of data, their generation, and processing
speed, among other characteristics, which are briefly described as follows:

• Operations: Operational databases are generally dedicated to online transaction pro-
cessing (OLTP) applications, routine operations of an organization, which act on small
fractions of the data, occur with great frequency, and must be processed efficiently, usu-
ally in real time [25]. Such operations are, for example, insertions, updates, deletions,
and queries [26]. Analytical databases, in turn, are optimized for online analytical
processing (OLAP), which allow you to extract value from the data through complex
analytics. They are mainly dedicated to data recovery, involving grouping and joining
operators, statistical functions, and complex Boolean conditions [26], applied to a large
number of records and which, for this reason, usually occur in batches;

• Volume and volatility: Data analysis requires not only a comprehensive system
perspective but often a considerable amount of historical data, such as time series.
Thus, an analytical DB stores volumes of data much larger than its data sources—
transactional DBs—in addition to ensuring the persistence of this data for much longer,
while traditional DBs usually store current and non-historical data [62]. Thus, changes
in the content of an analytical DB usually occur incrementally and in batches, while
changes in transactional DBs occur continuously [26,62];

• Orientation and users: Analytical DBs are systems dedicated to facilitating the ex-
ploratory analysis of data, aiding decision-making and business processes [24]. For
this reason, they are said to be subject oriented and generally dedicated to few users.
Operational DBs, in turn, are purpose oriented and may have few to many users [62].
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4.2.2. Volume

Volume is associated with the amount of data involved in big data applications.
Although there is no consensus on a reference value for data volume for a database to
be characterized as big data, this dimension is usually characterized by petabyte (PB) or
exabyte (EB). According to [52], data volume in the modern industrial sector tends to
grow by more than 1000 EB per year. In the context of I4.0, the digitization of the most
diverse assets and the communication between them leads to an “unprecedented growth”
in the volume of data, according to [56]. The authors of [49] state that big data cannot be
manipulated in a single computer, requiring a distributed architecture for IMS. Thus, it is
noted that the concern with the volume of data in I4.0 is reflected in the perspectives of
implementing the AAS concerning its distribution.

The need for database distribution is a characteristic that imposes limitations on
using the relational model for large volumes of data [63,64]. The main problem associated
with using relational databases to implement distributed database systems is linked to
the CAP theorem and, consequently, to ACID transactional properties. A single server
system is a CA system: there is no partition tolerance because there is no partition on a
single machine. Therefore, the two other properties—availability and consistency—are
guaranteed. Most relational database systems are CA, and licenses for this type of DBMS
are generally marketed to run on a single server [27].

On distributed systems, there is the possibility of partitioning the network. In this
type of system, it is only possible to leave off partitioning tolerance if, in the event of a
network partition failure, the system becomes completely inoperative, which is critically
undesirable in some instances. Thus, it is generally not desirable to leave off the tolerance
of network partitioning; that is, it is not desirable to have a distributed CA system. The
other possibilities are leaving off consistency or availability. Therefore, the essence of the
CAP theorem can be understood as: in a system that may be subject to partitioning, one
must prioritize between consistency or availability. This turns out to be, in fact, a trade-off
between consistency and latency: to have consistent transactions, a certain amount of time
is needed for data changes to propagate to all copies, and the system can be available
again [33].

Because transactions that adopt the ACID model are strongly consistent, it is impossi-
ble to balance the trade-off between consistency and latency in distributed databases that
use this model of transactional properties [33]. For this reason, maintaining ACID proper-
ties generally implies higher latency [27,65] in a distributed database that implements the
relational model. For high availability, data needs to be replicated across one or more nodes,
so if one node fails, the data is available on another. Replication can increase availability
and performance by reducing the overhead on nodes for reading operations. However, for
“write” operations, where one wants to ensure that all nodes have an up-to-date copy of the
data, one can experience a loss of performance (one must wait until the data is replicated
across all nodes). On the other hand, in systems that adopt the BASE model, lower latency
can be achieved, but inconsistencies can occur during a specific time interval (inconsistency
window) since the different nodes can present different versions of the same record. Thus,
it is understood that NoSQL systems, especially those oriented to aggregates, are beneficial
for I4.0 in distributed database implementation scenarios, which usually contain large
volumes of data, as they facilitate horizontal scalability.

In addition to performance, aggregate orientation is another reason why NoSQL data
models better suit distributed database systems. Specific applications may contain data
sets that are frequently accessed and manipulated together. In distributed systems, these
sets can form a natural distribution unit [27] so that interested users are always directed
to one or more specific nodes where they are stored. In databases, these sets are called
aggregates: a rich structure formed by a set of data (objects) that can be stored as a unit, as
they are often manipulated in this way. Elements of AAS as Submodel (set of Submodel
Elements), Submodel Element Collection, and AAS itself (set of other elements) can be
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understood as aggregates. As such, aggregate-oriented NoSQL models are helpful for
distributed implementations of AAS.

In terms of the implementation data model, the main problem of the relational model
regarding the representation of aggregates is its rigid structure, which makes it impossible
to treat data sets as a unit. The relational model allows representing the entities and relation-
ships that are part of an aggregate. However, it does not allow to represent the aggregate
itself; that is, it does not allow identifying which relationships constitute an aggregate
nor the boundaries of this aggregate. For applications looking to process aggregates as
a whole, the NoSQL key-value data model is beneficial because the aggregate is opaque.
In case it is necessary to access parts of an aggregate, the document data model is more
suitable than the key-value, as the aggregates are transparent in the case of the former; that
is, partial operations can be performed on the data of the aggregates. For processing data
from simpler formats such as numeric values, strings, etc., column family is also suitable
for the purpose.

In summary, it can be argued that centralized implementations are suitable for smaller
volumes of data, while distributed implementations are suitable for large volumes. There
are relational databases that can be horizontally scalable; that is, they can be distributed [66]
but the possible high unavailability of the system can make this distribution unfeasible.
The trade-off between consistency and latency can be associated with two other dimensions
of data—veracity and velocity—respectively, so that the speed dimension alone is not able
to determine a more adequate data model.

4.2.3. Variety

Variety refers to the different formats of data. Big data applications can involve
structured data, such as rigidly structured tables populated with scope-limited values;
semi-structured as documents with a pre-defined template; and unstructured, such as
multimedia content (image, audio) [67]. It is possible to argue that such heterogeneity may
exist in the industrial context but it is possibly more “controlled”. Despite this fact, variety
is still a characteristic of the data in I4.0, considering that the AAS proposal presupposes a
standardized format of representation and exchange that must be able to include assets of
the most diverse natures. Thus, variety is a feature of the data in I4.0.

In the context of I4.0, this inability (or difficulty) can be verified in the attempt to
create an AAS metamodel in a relational schema. Since the AAS must contemplate all
I4.0 assets, it has a vast number of classes (entities) that represent each of its elements that
would be translated into a large number of relations that could be even more significant
if normalization procedures are applied. Associated with this complexity arising from
mapping the AAS metamodel in the relational scheme, assets also have heterogeneity.
When building a database composed of different assets, this heterogeneity can imply many
null fields, which is undesirable.

Scenarios in which data heterogeneity is present may require flexibility in databases. A
flexible data structure is not observed in the relational model, both in terms of the relation-
ship scheme and the restrictions imposed by domains on possible values for attributes in
the relationships. The flexibility of NoSQL systems makes them suitable for I4.0. Such flexi-
bility enables the storage of semi-structured data, which best characterizes AAS. Technical
reports from the Plattform Industrie 4.0 [34] and academic papers [68–70] present AAS
implementations in XML and JSON format, which suggests that document-oriented NoSQL
systems are advantageous, although it is not the only one capable of storing semi-structured
data. This document encoding type is supported by essential communication technologies
relevant to the I4.0, such as OPC UA [71] and HTTP. In summary, NoSQL data models
adapt to the characteristic variety of data in I4.0, enabling the storage of heterogeneous
records in the same DB. Thus, the flexibility of NoSQL models has its importance in the
context of I4.0.
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4.2.4. Velocity

This dimension can be understood as having two components—the velocity with
which data is generated and the velocity with which it is processed [57]. In older big data
applications, processing was commonly performed in batches, so the velocity at which data
is generated and captured is critical to ensuring its reliability. Newer applications enable
data processing in real time and in data streams so that, in addition to ensuring data reliabil-
ity, the generation velocity must be consistent with the data processing velocity [52,54,57].
These two forms of processing are essential to guide the choice of database.

In addition to the high growth rate of data volume, which has already been mentioned
and is more associated with data capture velocity, one can also discuss data processing
speed and data analysis in IMS. Batch processing consists of processing a large volume of
data at a time. The literature reports examples of this type of processing in an industrial
environment [58,59]. Furthermore, Data Warehouse systems are typical examples of this
way of processing and analysis. Applications of real-time processing and analysis in
an industrial environment are also reported in the literature [60–62]. Comparing the
AAS implementation platforms—edge, fog, and cloud—the last two are more suitable for
batch processing since, in general, they have greater computational capacity than the first.
However, this finding can be changed with the evolution of technology and the possibility
of increasing data processing and storage capacity in devices closer and closer to the edges
of networks. The asset-based implementation, that is, on edge devices, favors real-time
processing due to low response latency.

Before introducing the discussion of data models suitable for batch and real-time
processing, it is essential to introduce the Speed Consistency Volume principle, or SCV
principle. While the CAP theorem presented in Section 3.1.2 concerns data storage, the SCV
principle deals with data processing. The first attests that it is impossible to simultaneously
guarantee consistency, availability, and tolerance to the partition. The second states that
it is impossible to guarantee processing speed, consistency of results, and processing
large volumes simultaneously. Based on [72], each of the elements that compose the SCV
principle is described:

• Speed: deals with the speed at which data can be processed. To calculate the processing
speed, the time spent to capture data should not be taken into account, considering
only the actual processing time;

• Consistency: concerns the accuracy and precision of the results obtained from data
processing. Inconsistent systems cannot use all available data to be processed, adopting
sampling techniques, which leads to less precision and accuracy of results. On the
other hand, systems with greater consistency use all available data in processing,
obtaining more precise and accurate results;

• Volume: deals with the amount of data that can be processed. Large volumes of data
require distributed processing, while smaller volumes can be processed centrally.

To analyze the “velocity” dimension, batch processing is initially considered. This
type of processing is generally applied to analytical databases, which store large volumes
of data and value the precision and accuracy of the results. Thus, from the point of view
of the SCV principle, the properties that manifest themselves in this type of processing
are volume and consistency. Analogously, considering the CAP theorem, the demands for
consistency and tolerance to partition are manifested at the expense of speed. Thus, batch
processing is often characterized by longer response times. Thus, data models that enable
distribution and ensure data consistency are more suitable. Still regarding the velocity
dimension in big data, the case of real-time processing is now analyzed. This type of
processing is often used in operational databases. For those which store small volumes
of data, there is not necessarily a distribution requirement, so the database system can be
classified from the point of view of CAP theorem as a CA system, where the availability
is low and consistency is ensured. In these cases, data models that implement ACID
transactional properties are recommended. In cases where data have complex connections
to each other, graph databases are particularly more efficient. For operational databases



Machines 2022, 10, 20 17 of 26

with small data volumes, the implementation of AAS based on edge computing platform is
suitable for this type of processing, as being closer (or even embedded) to the asset, delays
tend to be smaller.

Operational databases can also contain large volumes of data that cannot be left off,
which imposes the need for storage and processing distribution. Thus, there are trade-
offs between processing speed and consistency of results (SCV principle) and between
availability and consistency (CAP theorem). In real-time processing, as delays are un-
wanted, trade-offs tend to prioritize speed and availability over consistency. It is known
that ACID transactional properties do not allow the relaxation of consistency in favor of
increased availability. Thus, aggregate-oriented NoSQL systems, which implement the
BASE model of transactional properties, may be more suitable solutions for real-time pro-
cessing. However, the level of consistency required by the application must be taken into
account so that, by maximizing availability and processing speed, precision and accuracy
requirements are not violated. Aggregate-oriented models are even more efficient; they
guarantee higher processing speed if they do not need to perform operations on multiple
aggregates simultaneously.

4.2.5. Veracity

Veracity is associated with the reliability of the captured data. The authors of [64]
argue that the veracity dimension has three components: objectivity/subjectivity, which
is more linked to the nature of the data source; deception, which refers to intentional
errors in the content of the data or malicious modifications thereof; and implausibility
(implausibility, irrationality) of the data, which refers to the quality of the data in terms
of its validity, that is, its degree of confidence. Such concern is observed in the context of
I4.0 as authors consider cybersecurity as a pillar of I4.0 (see Table 1), which presupposes
protection against errors and intentional modifications to the data. It is also observed in
the AAS implementation perspectives, where the virtualization strategy directly affects the
isolation between applications [65] and, consequently, confidentiality and data integrity.

Some causes for veracity problems associated with implausibility, such as inconsis-
tency, latency, and incompleteness, are pointed out by [67]. Therefore, it is observed that
these causes and, consequently, the veracity is essential for the database design.

It is possible to associate the causes of implausibility with the properties of the CAP
theorem and thus discuss the “truthfulness” dimension for different database systems.
The inconsistency that affects the veracity of the data is directly linked to the consistency
referred to in the CAP theorem. Latency is associated with the availability property, as
seen in Section 3.1.2. The issue of incompleteness, in turn, is not directly associated with
a property of the CAP theorem but with the transactional guarantee of atomicity, which
establishes that a transaction must be performed entirely or not be performed at all. Thus,
there is a foundation to discuss the impact of data models on veracity.

ACID transactional properties contribute to data veracity by enabling consistency
and atomicity to operations. However, such properties imply high unavailability, which
translates into delays in operations. Returning to the “speed” dimension of big data, if the
data processing speed obtained through a system with ACID properties is consistent with
the speed of data entry into the system, so there is no processing of outdated data, then
these databases systems can be employed. Relational and graph-oriented DBMS generally
adopt such properties.

Adopting the BASE model of transactional properties promotes an increase in avail-
ability at the expense of relaxation of consistency, which implies a decrease in the delay
but rises the possibility of occurrence of inconsistencies. This does not mean that the BASE
model is a bad choice when one wants to guarantee veracity based on completeness and
consistency. The BASE model does not make it impossible to guarantee consistency but
allows a balance of the trade-off between consistency and availability to better suit the
application’s need. Thus, one of the properties can be prioritized according to the charac-
teristics of the application and the problems related to implausibility, whose susceptibility
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to the occurrence is greater. Thus, aggregate models can guarantee veracity, dealing with
delay, incompleteness, and inconsistency, not simultaneously but balancing the problems
according to the application demand.

This discussion is enriched with the distinction between analytical and operational
databases. Analytical databases often have large volumes of data as they have less volatility.
Therefore, they are generally implemented in distributed architectures, where the concur-
rency control problem is naturally less critical, especially when using aggregate-oriented
data models, which allow users interested in a specific fraction of the data to always consult
the network node that contains this fraction of the data, minimizing concurrent accesses.
Additionally, analytical databases generally have fewer users, which further reduces the
need for tight concurrency control. For these reasons, databases that implement the BASE
model of transactional properties become a more suitable option. Operational databases
have a greater number of users and, for this reason, they need to perform concurrency
control more rigidly. For these cases, data models that implement the ACID model of
transactional properties emerge as more viable options.

Finally, one can also consider in the discussion of veracity the differentiation between
integration and application databases. The former store’s data from multiple applications
in a single database. This type of system has a much more complex structure than would
be required by individual applications, as there is a need to coordinate and orchestrate
applications, which differ above all in terms of performance requirements in terms of their
operations. Application databases, in turn, are accessed and updated by a single application.
This type of implementation allows databases to be encapsulated to applications, and
the integration between them occurs through services so that application databases are
fundamental for web applications and service-oriented architectures in general [27]. In an
I4.0 context, it is possible to observe that the AAS implementation perspectives regarding
its virtualization support both types of databases, especially concerning the degree of
isolation between applications.

Integration databases generally implement the relational model, as the ACID proper-
ties precisely confer the desired concurrency control to coordinate the requests of different
users/applications of the database [73]. However, for application databases, the relational
model entails specific unnecessary and even undesirable characteristics: an application
database usually requires a much smaller number of operations offered by the SQL lan-
guage [27] and ACID transactional properties, which ensures concurrency control becomes
unnecessary as only one application accesses the database [27].

4.2.6. Value

This dimension is associated with the value that can be extracted from the data through
data analytics. Extracting value from data consists of converting the data into entities with
a higher hierarchical level [57]. It involves a series of data analysis techniques, including
machine learning, that requires a multidisciplinary approach, and, above all, it receives
the name “value” because it offers prospects for improvement and cost reduction in terms
of products and processes in the industry [52,63] so that it is possible to argue that there
is a loss in not extracting value from the data. Extracting value from data in a significant
data context presupposes the application of specific technologies and analytical methods.
This dimension highlights the importance of data for the industrial sector as it brings the
possibility of implementing improvements in organizations based on data.

Extracting value from data involves employing data analysis techniques in a mul-
tidisciplinary approach, which can translate into a naturally distributed organizational
structure of a company or institution. Regarding the AAS implementation perspectives, its
distribution in different network nodes, in fact, better reflects the structure of organizations
today [41]. In these situations, an organization’s subdivision is responsible for a fraction of
the AAS or the whole AAS that concerns it. Because applying data analysis techniques in
an organization to extract value from them requires the integration of different perspectives,
it assumes that distributing AAS across different nodes also requires that these “AAS
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fragments” (or different AAS) be integrated to extract value from its data. Taking up the
perspectives of AAS implementation regarding its forms of distribution, the distributed
solution with the aggregator node can be an adequate solution for data integration. This
does not mean that the aggregator node needs to act as a master node of the network,
which manages all routine transactions, but that it can act as a data integration node and as
a source of access by those members of the organization who intend to extract data value.

Although the extraction of value from the data is more linked to data analysis than to
its storage, here is an excerpt of this dimension regarding database management systems,
considering the interdisciplinarity and distribution of data in organizations. Thus, the
analysis of the adequacy of database systems for this “value” perspective is mainly achieved
by taking into account the importance of AAS distribution and the need for integration to
extract value from asset data.

Network nodes that only contain AAS data referring to an organizational unit of the
institution are those that process more routine transactions, the so-called online transaction
processing. The databases of these nodes are called operational or transactional databases.
A network node that promotes data integration, in turn, processes transactions with an
analytical purpose, online analytical processing, and provides data for algorithms and other
subsystems, acting, in fact, as an integrator database. In an institution with a distributed
organizational structure, the data models that enable the horizontal scalability of the
database, that is, the NoSQL DBMSs oriented to aggregates, are suitable for implementing
“transactional” nodes, that is, those that process routine data transactions’ specific AAS that
pertain to a unit of the organization. If AAS distribution is not performed through the DBMS
itself but through application databases that communicate by means of service interfaces,
then NoSQL data models are still applicable. The flexibility provided by these models
allows each company’s subdivision to adopt the data models that best suit their application.

An integrator node is usually built from the so-called multidimensional data model at
the conceptual level of data abstraction [74,75]. This is where the value is extracted from
the data utilizing (big) data analytics methods. The multidimensional model is generally
mapped at the implementation level through a relational scheme, although there are
literature works that seek to map the multidimensional model in NoSQL models [76–78].
In particular, the importance of this mapping for the graph model is highlighted: the
integrator node usually performs processing in batches and, based on the discussions in
the previous subsection, it was argued that the graph-oriented model is suitable for this
type of processing.

5. Discussion

Big data dimensions and other data characteristics in I4.0 were addressed in the
previous subsections to discuss the suitability of data models to different realities of I4.0.
However, interrelationships among these characteristics are analyzed for the database
design, as it is possible to observe that one dimension can affect the others regarding
the data model to be used. The dimensions “volume” and “velocity”, for example, are
correlated according to the SCV principle. When dealing with the “veracity” dimension, the
impact of the BASE and ACID models on the veracity of the data was discussed. However,
using one or another model of transactional properties also affects the distribution of
data associated with the “value” dimension. The variety dimension, which concerns the
possibility of storing data with more complex structures and, therefore, presupposes the use
of more flexible data models such as those oriented to aggregates, for example, also implies
the speed of processing multiple records, which is inferior in this type of data model.

Two qualitative analyses are presented to synthesize the results of the last section. The
first of them is represented in Table 2, in which the dimensions “volume”, “velocity”, and
“veracity” are associated with the two models of transactional properties, that is, BASE
and ACID. As seen earlier, the first model is generally implemented in aggregate-oriented
NoSQL databases, while the second is implemented in relational and graph databases.
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Table 2 also includes the type of database—analytical or operational—where the scenario is
more likely to be observed.

Table 2. Most suitable model of transactional properties according to the volume, velocity, and
veracity of data.

Volume Velocity Veracity Database Type Suitable Model of Transactional Properties

Low

Low
Low Operational BASE

High Operational Both

High Low Operational BASE

High Operational ACID

High

Low
Low Analytical BASE

High Analytical Both

High Low Operational BASE

High Analytical BASE

The recommendations for each of the lines of Table 2 are presented here.

• The first scenario characterized by low volume, velocity, and veracity is more likely to
be observed in operational DBs even though low velocity is usually not desirable. Con-
sidering the correlation between veracity and consistency presented in Section 4.2.5,
the BASE model allows flexibility of consistency and, consequently, of veracity. This is
the determinant factor for this recommendation;

• The second scenario with low volume and high veracity is again more likely to
be observed in operational DBs despite the low velocity. As there is no need for
distribution due to the low volume nor high-velocity requirements, ACID and BASE
can ensure high veracity;

• The third scenario with low volume, high velocity, and low veracity can represent
an operational DB. As there is a demand for high velocity at the expense of veracity,
the BASE model is more suitable as it allows for relaxation of consistency in favor
of availability;

• The scenario with low volume and high velocity and veracity well represent an
operational DB as well as an analytical DB in its early stages. Since the database design
needs to take into account the evolution of the DB, this analysis is made considering
the former. Based on the CAP theorem and the SCV principle, the requirements of
high speed and veracity imply the need for centralization of the database so that it
is not subject to partition. Since the volume of data considered is small, there is no
problem regarding distribution. For a CA system such as this, the ACID model is
more suitable;

• Despite the low veracity, the fifth scenario may better represent an analytical DB than
an operational DB. Although this type of DB requires high veracity (consistency), the
distribution and the lack of strict concurrency control make the BASE model more
suitable;

• The sixth scenario represents an analytical DB well. The requirement of high veracity
(consistency) at the expense of speed can be initially associated with the ACID model.
However, the distribution and no need for strict concurrency control present in an
analytical DB mean that the BASE model can also be used;

• The scenario with high volume and velocity and low veracity illustrates an operational
DB well. As there is a demand for high speed at the expense of veracity, the BASE
model is more suitable as it allows for relaxation of consistency in favor of availability,
especially in a distributed system;

• Regarding the eighth scenario, even though it is ideal for both an operational and an
analytical DB, based on the CAP theorem and the SCV principle, it is not possible
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to guarantee the three properties simultaneously neither with the BASE model nor
with ACID. However, it is important to recognize that the very nature of the analytical
distributed DB without the need for concurrency control contributes to high veracity.
Thus, in an analytical database, to ensure distribution of a large volume of data and
high processing speed, the BASE model can be used;

Table 2 does not refer to one or more data models specific to each scenario. The
“variety” dimension, in addition to data linkage complexity and the flexibility of access,
can be taken into account so that, based on a model of transactional properties, the choice
for a data model can be made. Table 3, inspired by [51], synthesizes these three char-
acteristics also qualitatively, suggesting the most appropriate data model with ACID
transactional properties. Likewise, Table 4 suggests the most suitable data models with
BASE transactional properties according to the veracity dimension, access flexibility, and
data linkage complexity.

Table 3. Most suitable data model with ACID properties according to veracity, access flexibility, and
data linkage complexity.

Variety Access Flexibility Data Linkage Complexity Suitable Logical Data Model

Low
Low

Low Relational
High Graph

High Low Relational
High Graph

High
Low

Low Graph
High Graph

High Low Graph
High Graph

Table 4. Most suitable data model with BASE properties according to veracity, access flexibility, and
data linkage complexity.

Variety Access Flexibility Data Linkage Complexity Suitable Logical Data Model

Low
Low

Low Key-value
High Document

High Low Column family
High Document

High
Low

Low Column family
High Document

High Low Column family
High Document

Initially, database recommendations that implement the ACID model of transactional
properties are discussed. For scenarios where data have high complexity in connections, the
graph model is strongly recommended. This type of data model is also ideal in scenarios
with high variety, where the rigid structure of the relational model is a disadvantage. Both
allow flexible access to data and, therefore, in scenarios with less variety and complexity of
connections, the relational model emerges as a viable option.

Some considerations about the recommendations of data models which implement
the BASE transactional properties are presented: Key-value databases can easily store data
with high complexity and variety but, in these cases, the complexity of handling the data is
transferred to the application that deals with the data since the aggregate is opaque. That is
the reason why the key-value data model is only recommended here for the scenario with
low variety and linkage complexity.
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Column family databases are strongly recommended for analytical databases. The way
related data are organized in groups (the column families) optimizes not only operations for
retrieving records (especially for similar data), as the rows are indexed, but also aggregate
functions such as statistical operations, as the column families are also associated with
primary keys. This data model can provide high access flexibility, but the structure of the
database needs to be previously known.

Document databases are strongly recommended for storing and handling unstructured
and semi-structured data. That is why they are suggested over column family databases
for scenarios with high variety and data linkage complexity. They also provide higher
access flexibility in comparison to column family as the aggregate is transparent; metadata
is encapsulated into the document.

It is possible to observe that, when considering the specifications of a given application
along the dimensions, the choice for a database generates trade-offs in terms of the require-
ments that can be met. In specific applications, conflicting characteristics from a database
standpoint can be equally important. For this reason, it is common to find applications,
especially in service-oriented architectures, in which multiple databases are used to meet
the different application specifications satisfactorily. Works in this area are referred to as
polyglot persistence [16,27], in which each database is responsible for managing data from
a part of the application.

Finally, it is important to highlight that there are other factors linked to the specific
characteristics of applications that can significantly affect the performance of databases.
Optimization solutions are also constantly being developed [79,80]. Prominence is given to
the class of databases called NewSQL, which seek to optimize the scalability of traditional
relational databases such as that of NoSQL systems. The mapping of the conceptual model
to the logical model itself can impact the performance of the database, as pointed out in [81].
All these factors may eventually modify the recommendations presented in this work.

6. Conclusions

This work presents different contributions regarding the database in the context of
Industry 4.0 (I4.0). Given the importance of understanding the characteristics of the data for
the design of a database, this article provided a comprehensive description of the data in
the present context, identifying, for this purpose, the technologies, methods, and standards
related to data that show fundamentals for the I4.0.

Systems architectures that organize the fundamental technologies and methods to
provide functionalities of Intelligent Manufacturing Systems (IMS) can be provided. An
indispensable element for these architectures is the database. Regarding the design of this
element, this paper seeks to corroborate the assertion that, among the works that propose
architectures for IMS, including adopting its standardizations such as Asset Administration
Shell (AAS), few demonstrate evident concern and justification about the choice of data
models to be used and how databases can influence the performance of these architec-
tures. Subsequently, based on the characterization of the data in an I4.0 context, analysis
was made of how the characteristics of relational and NoSQL data models fit into the
dimensions of the data—volume, velocity, variety, veracity, and value. These analyses were
summarized in Tables 2–4, in which hypothetical scenarios were built based on four of the
five dimensions of data and other characteristics such as flexibility of access and complexity
of data connections. The transactional guarantee models (ACID and BASE) and the data
models (relational and NoSQL) that best fit each scenario were suggested.

The results presented in this paper adopted a qualitative comparison between data
models. Works found in the literature propose comparisons between the performance of
relational and NoSQL databases based on quantitative metrics [32,57,82]. However, the
dimensions dealt with in this article can be analyzed quantitatively. The velocity dimension
is widely used for performance comparisons across databases. This dimension can be
measured in terms of the time it takes for database instantiation, reading, writing, removing,
and searching operations to be performed on the database, as conducted by [83]. The
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volume dimension, strongly associated with the distributed databases, can also be evaluated
quantitatively. In [84], the performance of databases is compared in terms of the number
of operations performed per second, but having as parameters in the comparisons the
amount of data stored and the number of nodes in the cluster where the data is distributed.
Quantitative metrics for evaluating flexibility are presented in [85]. Data linkage and
structure complexity can be quantitatively accessed by the metrics defined in [86]. Thus,
future work can explore the dimensions by which the data were characterized in this paper
and quantitatively assess the performance of the data models for the scenarios presented.

Furthermore, the previous section briefly mentions the concept of polyglot persistence,
in which multiple databases are used in the architecture for the IMS as a whole or its
subsystems. This work considered the use of a single relational or NoSQL data model
for each scenario and then it was pointed out which would be a possible, most adequate
choice. Future work can explore the combination of different data models for each scenario
and discuss the possible improvements this combination would have, as well as the cost of
managing more than one database for each application.
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