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Abstract: Permanent magnet machines are widely applied in motor drive systems. Therefore,
condition monitoring of permanent magnet machines has great significance to assist maintenance.
High temperatures are accountable for lots of typical malfunctions and faults, such as demagnetization
of the permanent magnet (PM) and inter-turn short circuit of stator windings. Therefore, temperature
monitoring of the PM and stator windings is essential for reliable operation. In this paper, an
overview introducing and evaluating existing thermal monitoring methods is presented. First, the
mechanism of thermal-caused failures for the PM and stator windings is introduced. Then, the
design procedure and principles of existing temperature monitoring methods are introduced and
summarized. Next, the evaluations and recommendations of application feasibility are demonstrated.
Finally, the potential future challenges and opportunities for temperature monitoring of the PM and
stator windings are discussed.

Keywords: thermal monitoring; permanent magnet machines; PM; stator windings

1. Introduction

Permanent magnet synchronous machines (PMSMs) have attracted more and more
attention, especially in recent years. The significant research efforts are due to the high
dynamic response, high reliability, high torque density, and high efficiency of PMSMs.
Meanwhile, PMSMs have been used for numerous applications, such as automotive, wind
power generation, electric vehicles, aerospace, and servo-drives. Therefore, reliable opera-
tion is critical for protecting the safety of life and production. In practice, the permanent
magnet (PM) remanent flux density determines the torque production capability and the
insultation of stator windings determines the probability of failure or residual lifetime.
Consequently, the performance of PMSMs is mainly dependent on the PM magnetization
state and insulation condition of the stator windings. However, these two properties are
susceptible to the operating environment, e.g., the component temperature. High tem-
peratures cause the demagnetization of the PM and intensive thermal stress will lead to
insulation aging of the stator windings.

In the last few decades, the techniques of temperature monitoring for PMSMs have
been comprehensively researched and developed. Whether for the PM or stator windings,
from the implementation level, the temperature monitoring methods can be categorized
into contact direct measuring methods and non-contact estimation methods.

Generally, contact direct measuring methods directly measure the temperature, and are
usually implemented using surface-mounted thermal devices [1–6]. In addition, infrared-
detecting methods [7,8] are widely used in some situations for convenience. Because
of the installation requirements of temperature sensors, the applicability of these direct
measuring methods is determined by the accessibility of mechanical structure and overall
cost. Non-contact estimation methods are usually based on the identification of thermal-
relevant parameters or the temperature derivation of intelligence algorithm. Relying on the
measurable quantities, models [9] or iterative multilevel-algorithms [10] are established to
monitor the temperature.
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Considering the principles used in these methods, these temperature monitoring meth-
ods can be classified and presented from the perspective of technical category. Technically,
the existing methods can also be categorized into sensor-based methods, model-based
methods, and AI algorithm-based methods. In Figure 1, methods classified by monitoring
techniques are presented respectively.
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Sensor-based methods are comprehensible, which are based on temperature sensors.
These methods provide the most straightforward way, which is accompanied by the expen-
sive cost and installation problem.

As for the model-based methods, the classification can be based on a thermal model,
electrical model, and mechanical model, and the availability of these methods are demon-
strated respectively. In contrast to the direct measuring of sensor-based methods, these
model-based methods commonly rely on thermal-relevant parameters or are based on the
specification and parameters.

Thermal model-based methods directly estimate the temperature. The heat transfer-
ring process of machines can be described through the lumped-parameter thermal network
(LPTN) models. With temperature information of available positions, the thermal losses
are calculated to derive the temperature difference. In addition, finite element methods
(FEM) can be used to simulate thermal phenomena.

Electrical model-based methods demonstrate the link between electrical parameters
and thermal effect. Due to the different mechanisms between temperature monitoring for
the PM and stator windings, electrical model-based estimation methods are introduced
separately. For the PM, there are two main methods: signal injection-based methods and
PM flux-based methods. Signal injection-based methods are usually implemented by high-
frequency signal injection. Through induced high-frequency resistance and inductance,
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which are thermal sensitive and vary linearly with temperature, the PM temperature can
be derived. The PM flux-based methods also rely on the temperature-sensitive parameter,
i.e., the PM flux. Unlike the signal injection, the PM flux can be estimated based on the
observational model or direct measurement during normal operation. For the temperature
estimation of stator windings, similar to the PM, there are two main methods: observation
model-based methods and signal injection-based methods. In comparison with thermal-
sensitive parameters of the PM, the resistance of the stator winding is commonly utilized
for temperature estimation and the DC signal is usually used for injection.

Mechanical model-based methods exploit the combination of mechanical and electrical
parameters in mechanical equations. Through the conjoint analysis of multiparameter
relations, the thermal-relevant parameter can be extracted.

In addition, the AI algorithm-based methods used for temperature monitoring are
attracting more and more attention and research. From the perspective of model train-
ing, these algorithms can be classified into the following categories: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning. Relying
on advanced processors and excellent adaptability, the AI algorithm-based methods are
preferred in extensive monitoring fields.

According to the categorization, various schemes relying on different mechanisms
are proposed. Therefore, it is of great significance to review these temperature monitoring
techniques for the following purposes.

1. Provide an introduction of the existing temperature monitoring techniques.
2. Summarize the monitoring principles of these techniques.
3. Identify the advantages and limitations.
4. Discuss the challenges and opportunities for practical applications.

Recently, relevant overview papers have been published to review the temperature
monitoring techniques for motor components, such as the PM. In [11], magnet temperature
determination techniques are introduced and compared. However, the focus of this paper
is on the implementation process. As previously mentioned, a prospective analysis for
challenges and opportunities of temperature monitoring and investigation of the research
trend is required. In addition, the practical applications should be discussed.

Therefore, the main purpose of this paper is to provide a better understanding and
exhibition of the existing methods on feasibility and application prospect. Focusing on the
PM and stator windings, the main contribution of this paper lies in the following:

1. The existing methods for temperature monitoring are categorized and introduced.
2. The mechanisms of relevant failures caused by temperature rising is presented.
3. The principles and implementation procedure of the existing methods are introduced.
4. The advantages and limitations of these methods are summarized and analyzed.
5. The challenges and opportunities for practical applications are discussed.
6. The research trend is sketched and presented.

This paper is organized as follows. Section 2 presents the mechanism of temperature
rising and thermal-caused failures for the PM and stator windings. Then, as described in
the introduction, the detailed introduction of sensor-based methods, model-based methods,
and AI algorithm-based methods are demonstrated in Sections 3–5, respectively. The limi-
tations and advantages are presented. In Section 6, possible challenges and opportunities
are discussed. In Section 7, the research trend of temperature monitoring is concluded.

2. The Mechanism of Thermal-Caused Failures for the PM and Stator Windings

As described in previous analysis, the PM and stator windings are two critical com-
ponents in PM machines. Therefore, thermal monitoring of the PM and stator windings
is essential for reliable operation. Furthermore, appropriate monitoring modes should be
determined by the heating mechanism and practical engineering demands.
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2.1. The heating Sources of PM and Stator Windings

Specifically, non-current excitation is the significant feature of rotor flux in PM ma-
chines. However, induced space harmonic magnetomotive force (MMF) can lead to signifi-
cant eddy currents and incur loss. Therefore, the main cause of PM temperature rise is the
eddy-current loss, which can be calculated by [12].

Peddy = 2p
N

∑
v=1

Lstk
2σm

∫ αpπ/2p

−αpπ/2p
Re
[

J̃zv H̃∗θv

]
Rmdθ (1)

where p is the pole pairs, N is the maximum order assumed for the eddy current component
induced, Lstk is the core stack length, σm is the PM conductivity, αp is the pole arc to pole
pitch, αp stands for the angular span of the PM over a pole, Rm is the magnet outer radius,
in terms of complex quantities, J̃zv is the induced current density, and H̃∗θv is the complex
conjugate of tangential magnetic field intensity.

Because of this effect, the eddy-current loss leads to the gradual increase of the PM
temperature. In addition, it is worth noting that the frequency of alternating fields has
significant effect on the losses.

Furthermore, the mechanical loss can also lead to the temperature rising. Among these
factors, air friction loss is the most important and is shown as follows:

Pair = 3.87kairπηair
1
2 ρair

1
2 ω

5
2 RPM

3L (2)

where kair is the surface roughness coefficient of the rotor, ηair is the dynamic viscosity
coefficient of the air at one atmospheric pressure, ρair is the air density, ρPM is the outer
radius of the PM, and L is the rotor length.

Comparatively, stator windings are more prone to overheating. Due to the winding
resistance, copper loss is the main reason of winding temperature rising. The copper losses
can be calculated as:

PCu = 3I2RCu (3)

where RCu is the phase resistance, and I is the effect value of the phase current.
In addition, there are several other effects due to thermal issues. On one hand, the iron

losses from windings and magnetic steel can lead to the temperature rising. The iron loss
can be expressed as [13].

PFe = khystBm
α f + keddyBm

2 f 2 + kexcessBm
1.5 f 1.5 (4)

where khyst and α are the hysteresis loss coefficients, f is the frequency, Bm is the am-
plitude of flux density, keddy is the eddy current loss coefficient, and kexcess is the excess
loss coefficient.

On the other hand, rapid increase of temperature may occur due to abnormal condition
or system failures, such as an unbalanced load, winding faults, and heat dissipation
problems. As a consequence, it is expected that gradual heat accumulation caused by
copper loss and generation of short-term hyperthermia may occur during the operation.

2.2. Thermal-Caused Demagnetization of PM

The self-magnetization and magnetic domain are basic properties of PM materials.
Nevertheless, the magnetism of PM is influenced by the external magnetic field and self-
temperature. The practical influence of the external magnetic field is determined by the
operating point, which is dependent on the specifications and hysteresis loop. Meanwhile,
the trends of the hysteresis loop are influenced by self-temperature. Therefore, thermal
stability is essential for operating reliability. The moving of operating point results in
the decrease in PM flux density, which leads to the lower capability of output torque. In
fact, the operating temperature range is mainly limited in an acceptable torque range. In
addition, there is a critical safety margin, of which the upper limit is defined as the Curie
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temperature. Although the magnetism of PM is weakened with the temperature rising, the
magnetic domain is slightly changed and the magnetism is usually reversible when the
maximum temperature does not exceed the Curie temperature. However, once the Curie
temperature is reached, the self-magnetization disappears and the structure of magnetic
domains is destroyed, which indicates the irreversible demagnetization of PM materials.

The temperature characteristic is dependent on the permanent magnet material. The
parameters of some typical permanent magnet materials are given in Table 1. For these
materials, αB is the thermal coefficient, which is defined as the changing rate of PM rema-
nent magnetic flux density with temperature. Br is the remanent magnetic flux density at
normal temperature, which represents the load capacity. The most popular PM material is
the NdFeB series and the thermal stability of this material is significantly worse than others.

Table 1. The parameters of typical permanent magnet materials.

PM Material αB(%/◦C) Br(T) in Normal Curie Temperature
Alnico_5 −0.02 1.25 530 ◦C
Alnico_9 −0.02 1.05 530 ◦C
Sr-Ferrite −0.2 0.3 450 ◦C
Ferrite_9 −0.18 0.45 450 ◦C

Sm2Co17_35E −0.035 1.19 820 ◦C
SmCo5_18 −0.045 0.87 820 ◦C

NdFeB_33EH −0.11 1.15 310 ◦C
NdFeB_N55 −0.12 1.49 310 ◦C

NdFeB_45UH −0.12 1.35 310 ◦C

The thermal monitoring of PM performs preventative maintenance for an accept-
able temperature range. Once the PM temperature reaches the relative threshold value,
protective actions should be conducted for stability and safety.

2.3. Stator Insulation Aging Caused by High Temperature

The insulation of stator windings in PMSMs contains both inter-turn and groundwall
insulation. Insulation aging is accelerated mainly due to thermal stress. To be specific, the
chains between the molecules break into small ones during the insulation aging process,
and overheating can cause delamination in the insulation. As shown in Figure 2, the
capacitance Ceq represents the capacitive coupling of the insulation and the resistance Req
represents the dielectric losses in the insulation. The insulation aging caused by overheating
is equivalent to the changing of capacitance.
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Therefore, the main goal for temperature monitoring of stator windings is to ensure
the insulation reliability, which is essential for avoiding damage caused by inter-turn fault.

2.4. Sectional Discussion

To sum up, the purpose of temperature monitoring the PM and stator windings is to
detect the health condition of components and maintain normal operation. To be specific,
except for the overheating caused by the normal operation, faults such as interturn short
circuit insulation aging can also lead to temperature rising of stator windings. Therefore,
the thermal monitoring of stator windings should be implemented more frequently in
response to possible emergencies. Online monitoring is an effective method for confirming
the healthy condition of relevant components. Continuous monitoring supports failure
prediction. In addition, the insulation aging of hotspots develops faster due to the higher
temperature. Therefore, multipoint monitoring is more appropriate than global estimation.
As for the PM temperature, considering the relatively uniform temperature rise, the PM
temperature should also be monitored in real-time, considering the operating conditions
for choosing a reasonable monitoring period. Meanwhile, partial demagnetization caused
by nonuniform heating is acceptable due to the inconspicuous temperature difference.
Furthermore, installation challenges the multipoint monitoring of temperature monitoring
and standardization.

Due to the abovementioned requirements of temperature monitoring, various tech-
niques have been proposed in recent years. These schemes are classified by principles and
are presented in the next section.

3. Sensor-Based Methods of Temperature Monitoring for PM Machines

Sensor-based monitoring methods are based on direct temperature measurement
through thermal-sensitive devices. The basic concept in this category is to obtain the
temperature of a target component by precise measurement. These detecting devices
are mainly made of thermal-sensitive metals or based on infrared sensing. If permitted,
PM machines can be modified to install the temperature sensors. It is convenient to
implement direct measurement on stator windings due to the static state. As for the PM,
according to the installation manner, the most typical techniques can be classified into
battery-powered devices, slip rings, and infrared sensors. Considering that the infrared
sensors are additional devices and the machine surface to be tested should be exposed, it is
worth mentioning that the infrared temperature measuring methods are categorized as a
direct contact measuring method.

Considering that the major challenge of sensor-based methods is located on the PM
monitoring, this section is mainly focused on introducing strategies for PM temperature.
Generally, the entire temperature monitoring devices are attached on the target component
in battery-powered methods. In [2,4], the PM rotor is modified to embed the thermocouples
of type K. There are six sensors, of which four are radial surfaced mounted on two ends
of the rotor and two are buried in holes drilled in the rotor with a depth of 5 mm and
15 mm, respectively. The two drilled holes are located on the same radial surface on
one end. In addition to the modification of the motor, the existing space of the motor is
also utilized. Then, the battery devices are integrated to install on the rotor. However,
transmitting the temperature information is complex and inconvenient for battery-powered
methods. For convenient signal transmission, wireless communication is utilized. In [15],
temperature measuring equipment is attached to the PM by inserting it into the extra
space. For each PM section, there is a sensor-array that consists of 15 TMP100 sensors
in a 3 × 5 arrangement attached to the PM surface. The surface of each PM part is
rectangular. These 15 sensors are uniformly distributed in a rectangular array. Meanwhile,
the same temperature measurement arrays are configured on the six PM parts, respectively.
Nevertheless, attaching sensors to the target component is not always possible in practice.
Therefore, no-contact measuring methods based on infrared devices are proposed. In [7],
a surface temperature measurement of excitation winding in rotation is presented. The
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infrared thermometer used for the measurement is an industrial sensor with a thermopile
detector. A measurement junction is connected to a photosensitive element exposed to
infrared radiation. Meanwhile, the digital temperature sensors are used for reference.
In addition, the infrared thermometer distinguishes two different surfaces in terms of
radiation: an excitation winding placed on a salient pole and an interpolar surface. The
emissivity factor is set to realize accurate temperature detecting by an industrial infrared
camera. Similarly, an IR camera is used to detect the temperature of the rotating surface.
In addition, the slip rings can be utilized to transfer the measurement information of
PM temperature [16]. The slip rings method is a classical technique utilized in electrical
machines. These devices contain stationary and rotating components for transmitting the
electrical signal of the rotating sensors.

Sectional Discussion

It is observed that these methods all depend on additional devices, which determines
the accuracy of the monitoring. Meanwhile, for variable types of machines, the charac-
teristics and actual application requirements are different. Contact measuring is accurate
for detecting hot spots, but it is not convenient due to the need for space and modifica-
tion. In addition, these strategies are complicated when transforming the measuring data.
Therefore, these techniques are more applicable in high-capacity and low-speed machines.
Non-contact measuring methods are more convenient for application, which require less
modification. However, this technique is restricted in practical industrial applications due
to its low accuracy. Considering the practical applications in industrial engineering, the
sensor-based methods are widely used to estimate the winding temperature due to the
relatively static state. Comparatively, the application for temperature monitoring the PM is
significantly less restricted by the installation. Thermocouples are fixated to the rotor with
cement glue in [2] and a hollow shaft is required to place the PCBs in [15]. These required
structural modifications of machines are common in sensor-based methods. The primary
concerns of these scholars are the monitoring accuracy and accessibility of temperature
distribution. However, the consequent modifications or specific requirements are inevitable.
In recent years, PM machines are widely used in automotive drives, which are sometimes
miniature and delicate. From the perspective of technique, the availability of sensor-based
monitoring methods is limited by the increasing degree of integration. Furthermore, the
additional cost is an important indicator to evaluate the feasibility.

4. Model-Based Methods of Temperature Monitoring for PM Machines

Restricted by the previously mentioned limitations of sensor-based methods, specifica-
tions, available parameters, and measurable signals are utilized in some research to derive
the temperature of PM machines. These monitoring techniques rely on typical machine
models, which can be classified into model-based methods. As shown in Figure 3, the
model-based methods can be categorized into thermal model-based methods, electrical
model-based methods, and mechanical model-based methods. For thermal model-based
methods, equivalent thermal parameters, such as resistances and capacitances, are calcu-
lated to establish thermal network and used to derive the node temperature. In addition,
the finite element models can also be used for analyzing the thermal process. For the other
model-based methods, relevant temperature-sensitive parameters are respectively utilized
for temperature derivation of target components. Therefore, temperature information
of target components is directly acquired through thermal model-based methods, and
indirectly acquired through the electrical model and mechanical model.
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4.1. Thermal Model-Based Methods for Temperature Monitoring

Relying on reasonable measurements and specifications, the heat generation and
conduction are derived or numerically solved to calculate the temperature in thermal model-
based methods. Temperature monitoring techniques for components in PM machines
based on thermal models can be classified into parameterized thermal networks and
concrete reconstructed simulation. The corresponding typical schemes are LPTNs and
FEMs, respectively.

The heat transfer function in cylindrical coordinates (r, z, ϕ) is shown as follows [17]:

ρc
∂T
∂t

= λr

(
∂2T
∂T2 +

1
r

∂T
∂r

)
+

λϕ

r2
∂2T
∂ϕ2 + λr

∂2T
∂z2 + p (5)

where λr, λϕ, and λr are the thermal conductivity coefficient in three directions in the
cylindrical coordinate, ρ is the material density, c is the specific heat capacity, p is the
internal heat production rate, and T is the temperature of the specific component in a
PM machine.

To simplify the analysis, the basic principle of this kind of method is to transfer the
partial differential heat equation into a simplified form. The LPTN models are established
and rely on the exact thermal energy flow and thermal resistance evaluation. LPTNs
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assume that the heat sources are concentrated at the nodes of the thermal network and
heat flow is concentrated through network paths. Furthermore, the thermal resistances and
thermal capacitances are introduced into the model to establish the heat balance equations.
To solve the temperature of the target component, the solution methods for the electrical
circuit are exploited. A typical simplified thermal model for the temperature monitoring of
rotor magnets is presented in [18]. It presents a network consisting of 12 thermal resistors
and 9 thermal nodes. The thermal resistances are calculated based on the dimensions,
thermal conductivity, and positions as follows:

Rth =
ln
( rout

rin
)

2πλL
× 2π

2pθ
(6)

where rout is the outer radius, rin is the inner radius, λ is the thermal conductivity, p is the
pole pairs, L is the active length of the machine, and θ is the angular span.

In addition, the core losses (including both hysteresis and eddy-current iron loss
components) are calculated as a function of magnetic flux density and excitation frequency,
shown as follows:

P = P0

(
B
B0

)∈0
(

f
f0

)∈1

(7)

where P0 is the base power, B is the flux density, f is the frequency, B0 is the base flux density,
f0 is the base frequency, and ∈0 and ∈1 are the flux exponent. B0, f0, ∈0, and ∈1 are the
characteristic parameters of the PM material. The temperature rise between thermal nodes
are calculated by the power losses. Then, on the basis of available node temperature, the
temperature distribution can be derived. In practice, obtaining comprehensive and accurate
parameters of the motor is not always possible. Therefore, simplifying the LPTN for less
thermal resistors and nodes is reasonable for accuracy improvement. In this condition, some
simplified thermal network models are proposed. In [19], relying on the available stator
core temperature, a thermal model with three thermal nodes is presented. The three thermal
nodes represent the PMs, the stator winding, and the stator core, respectively. The thermal
conductance and capacitances are obtained from a transient reference set of temperatures.
Tpm and Ts represent the temperature of the PM and stator winding, respectively. Specific
to the preliminary implementation, the temperature of the components should be sensed
in advance. The stator core temperature Tc is measured and used as the input quantity in
this thermal network and the ambient temperature Tre f is not required. The total stator
winding losses and heat flow source Pp can be calculated by means of

Ps = 3Rs I2,
Pp

Pp,re f
=

(
f

frated

)a
×
(

I
Irated

)b
(8)

where Rs is the winding resistance, Pp,re f is the reference losses of PM, and rotor core
obtained from a 2D FEA, frated and Irated, are rated stator frequency and phase current,
respectively, and the parameters a and b are results of best fit analysis. It worth mention-
ing that the winding resistance is temperature dependent, which is determined by the
following equation:

Rs = 3Rs,20(1 + αCu(Rs,20(Ts − 20 ◦C))) (9)

where Rs,20 is the winding resistance at 20 ◦C, and αCu is the temperature coefficient of
copper. Based on the thermal structure and power losses, the temperature of the PM and
stator winding can be derived through one measured temperature.

To sum up, there are two main issues for thermal model-based methods: the structure
design and parameter calibration. On the one hand, the manner of heat transfer is too
complex to accurately describe using simple electrical circuits. However, the precision of
the available component temperature is restricted by the sensors. Furthermore, thermal
phenomena, in specific conditions, is not exactly the same as the empirical derivation. In this
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condition, for more straightforward thermal simulation, directly solving thermodynamic
equations can be utilized.

The FEM analysis is implemented based on computer-aided engineering tools, such
as the ANSYS. The heat transfer and fluid functions are precisely established with bound-
aries of temperature and thermal flux. Meanwhile, the numerical calculation based on
flux simulation, such as computational fluid dynamic (CFD), can be conducted to obtain
accurate temperature information. In [20], a 3D-FEM model of PM is employed for thermal
analysis. The temperature distribution of the machine is investigated and obtained. Two
PMSMs with different shapes of PM are studied through FEM models in [21]. Combining
2D and 3D Finite Element models, the thermal effect of the water jacket and the maxi-
mum temperature of the stator windings are depicted. Considering that the complicated
operating conditions cannot be accurately simulated through the FEM method, tempera-
ture monitoring is seriously affected by the simulation accuracy of the machine body and
operating conditions.

Sectional Discussion

In fact, through precise numerical analysis, the thermal distribution of components
in a machine can be acquired theoretically. As discussed in [17], the LPTN methods are
not outstanding in applicable operating areas. In [18], possibilities of LPTNs are listed
as transient thermal analysis and convection cooling. Transient thermal analysis can
be utilized as a prediction technique, which is significant for protection. Nevertheless,
compared with the LPTN methods, results obtained from the FEM are more comprehensive
and detailed. Transient prediction through FEM methods is more reliable. However, the
computational complexity is obviously higher than the LPTN methods, which affects the
real-time capability. Meanwhile, the applicability is restricted by the requirement of a
specific dimension. As for the LPTNs, node temperature is sufficient for global thermal
analysis of machine components. Nevertheless, the structure and parameter calibration are
critical issues for accurate simulation, which inevitably requires pre-tests and additional
thermal information.

4.2. Electrical Model-Based Methods for Temperature Monitoring

The electrical model of PMSM is the theoretical foundation of large number of research,
such as parameter identification and optimization control. Generally speaking, on account
of the decoupling and parameter stability, the electrical model of a PM machine in the
synchronous rotor reference frame is utilized for analysis. These equations are expressed
as follows:

ur
d = Rsird + Ld

dird
dt −ωeLqirq

ur
q = Rsirq + Lq

dirq
dt + ωeLdird + ωeψr

(10)

where ur
d and ur

q are d- and q-axis stator voltages in the rotor reference frame, and ird and irq
are d- and q-axis stator currents in the rotor reference frame. Rs is the stator resistance, Ld
and Lq are d- and q-axis inductances, ωe is the electrical angular velocity, and ψr is the PM
flux linkage.

As demonstrated above, the main electrical parameters are involved in this mathemat-
ical model. The basic principle of temperature monitoring methods based on the electrical
model is to monitor the temperature-sensitive parameters. Due to the different temperature-
sensitive parameters, there are significant distinctions between the temperature monitoring
techniques for the PM and stator windings. Therefore, techniques for different components
are introduced respectively.

4.2.1. Monitoring Techniques for PM Temperature

In order to minimize the impact on operating stability, realizing the parameter estima-
tion during normal operation is preferred. However, the electrical mathematical model is a
strongly nonlinear relationship that contains four changeable parameters. In this condition,
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the nonlinear relationship and rank-deficient problem limit the accuracy of parameter
estimation using fundamental-frequency models.

Therefore, in recent research papers, high-frequency parameters used to estimate the
PM temperature are resistance and inductance. In fact, these temperature monitoring
techniques are essentially dependent on parameter identification.

In typical inverter drive systems, the switching devices are turned ON and switched
OFF at a high frequency, which generates high-frequency harmonics. Meanwhile, the
sinusoidal signals corresponding to the rotation mainly contain the fundamental-frequency.
Therefore, the high-frequency and fundamental-frequency signals are involved in measur-
able quantities, such as voltages and currents. However, the amplitude of high-frequency
signals is not sufficient to extract and exploit. Therefore, for enhancing the dominance
of high-frequency signals, techniques based on a signal injection are proposed in some
papers. Meanwhile, thermal-sensitive parameters, such as the PM flux, can also be detected
by fundamental-frequency signals. Therefore, the main techniques for PM temperature
monitoring can be classified into invasive signal injection-based methods and noninvasive
PM flux-based methods.

A. Signal injection-based methods for PM temperature estimation

In order to distinguish these techniques, relevant thermal-sensitive parameters can be
categorized into high-frequency parameters and fundamental-frequency parameters.

The purpose of signal injection for thermal monitoring of the PM is to establish the
high-frequency models for tracking and extracting the temperature-sensitive parameters,
such as the high-frequency resistances and inductances. The correlation between these high-
frequency parameters and the PM temperature has been demonstrated in the literature.

Theoretically, the stator inductances in the d- and q-axis are determined by the sat-
uration level. Considering that the fundamental-frequency currents are dominant, the
saturation level is determined by the fundamental currents. Combined with the effect of a
magnetic field from the PM, the inductances are dependent on the fundamental-frequency
currents and the PM remanent flux. Therefore, with the known currents, the thermal
condition of PM can be reflected in inductance.

Considering that no high-frequency component containing the PM flux-term and
injecting frequency is sufficiently higher than the rotation frequency, the PM flux-term ωeψr
can be neglected. Therefore, a high-frequency model can be obtained from a fundamental-
frequency model as follows.

ur
d_HF

= Rd_HF ird_HF
+ Ld_HF

dird_HF
dt −ωeLq_HF irq_HF

ur
q_HF

= Rq_HF irq_HF
+ Lq_HF

dirq_HF
dt + ωeLd_HF ird_HF

(11)

where ur
d_HF

, ur
q_HF

, ird_HF
, and irq_HF

are stator d- and q-axis high-frequency voltages and
currents in the rotation synchronous reference coordinate, respectively. Rd_HF , Rq_HF , Ld_HF ,
and Lq_HF are the d- and q-axis high-frequency resistances and inductances, respectively.

In [22], the high-frequency inductance of the d-axis is used for PM temperature estima-
tion. The expression of high-frequency inductance can be derived as follows:

Ld_HF = Ld_HF0

(
αid Ir

sd + αiq Ir
sq + αBr

(
Br(Tr) − Br(Tr0)

))
(12)

where Ir
sd and Ir

sq are fundamental-frequency currents of the d- and q-axis,Br(Tr0)
is the

PM remanent flux at room temperature Tr0, Br(Tr) is the PM remanent flux at arbitrary
temperature Tr, αid, αiq, and αBr are coefficients linking high-frequency inductance with
fundamental current in the d-axis, high-frequency inductance with fundamental current in



Machines 2022, 10, 18 12 of 25

the q-axis due to cross-coupling, and the PM remanent flux, respectively. Considering the
thermal characteristic of the PM, the temperature can be derived as follows:

Tr =
Ld_HF − Ld_HF0 − Ld_HF0

(
αid Ir

sd + αiq Ir
sq − Ld_HF0 αBrBr(Tr0)

αTTr0

)
Ld_HF0 αBrBr(Tr0)

αPM
(13)

where αPM is the thermal coefficient of the PM.
Meanwhile, the other relevant coefficients in this equation should be obtained experi-

mentally. Then, the PM temperature can be acquired.
Similarly, high-frequency resistance can also be used to obtain the PM temperature.

In general, winding resistance is considered as an intrinsic quality of conductor materials,
which stays constant at a fixed temperature. It is confusing to put forward the concept
of high-frequency resistance. However, the skin effect and proximity effect occur when
high-frequency currents flow through the conductor. The changing current density causes
an increase in heating power. Moreover, for the PM, due to the high-frequency injection,
hysteresis and eddy current losses are produced. In this condition, the aforementioned
phenomenon leads to additional energy converting into thermal losses. Therefore, the
high-frequency effect is reflected in stator winding and PM, which can be represented by
defining high-frequency resistance. Considering the temperature characteristic, the overall
high-frequency resistances in the d- and q-axis can be subdivided into contributions of
stator and rotor, which can be expressed as follows:

RdHF (Ts, Tr) = RdHF_s(Ts) + RdHF_r (Tr) (14)

where RdHF_s(Ts) is the winding component at temperature of Ts and RdHF_r (Tr) is the PM
component at temperature Tr. In this condition, the PM component of high-frequency
resistance can be extracted to estimate the PM temperature. In [23], a PM temperature
estimation technique is proposed based on high-frequency resistance. The estimation
principle can be derived as follows:

Tr =
RdHF (Ts, Tr)− Rd_HF(T0)(1 + αs(Ts − T0))− Rd_HF(T0)

Rd_HF(T0)
αPM

(15)

where αs and αPM are the thermal coefficients of stator winding and the PM, and T0 and Ts
are the initial temperature and current temperature of the stator winding.

With the available stator winding temperature detected by thermal sensors, the PM
temperature can be derived.

In addition, in [24], a voltage pulse is applied in the d-axis while the d-axis current is
measured. Through voltage pulse injection applied in the winding of phase A when the
d-axis is coincident with the winding axis of phase A, the voltage of the d-axis is converted
to 2

3 Vdc. Then, the PM temperature can be derived based on the current slope, which
represents the magnetization level of the PM.

In [25], analysis shows that the dynamic permeability depends on the core saturation
level. Meanwhile, the core at the a-axis is less saturated as the PM temperature increases,
which influences dynamic permeability. In addition, the DC component of high-frequency
inductance can be derived using a winding function and dynamic permeance. Therefore,
by considering the effect of spatial harmonics on the high-frequency inductance, the PM
temperature can be calculated and calibrated.

To sum up, the signal injection techniques for PM temperature monitoring are imple-
mented based on the electrical mathematical model of high-frequency parameters. Utilizing
the effects caused by high-frequency signals, corresponding impedance is derived by avail-
able electrical signals to extract the PM temperature. In practice, high-frequency pulsating
or sinusoidal signals can be used for this purpose. Highly precise monitoring can be
achieved by signal injection methods. Meanwhile, no additional devices are required in
most cases. However, extra torque ripple of specific-frequency will be introduced during
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the injecting process. To guarantee that the specific-frequency currents circulate, the control
module or algorithm should be modified, which may not be available in some highly
integrated devices.

B. PM flux-based methods

As introduced in Section 2, the performance of the PM installed on the rotor using
surface-mounted or embedded modes is affected by the temperature. The remanent
flux density is linearly related to temperature. Considering that the hysteresis loop is
straight in the operating area, the PM flux density of the working point varies linearly with
temperature. Then, the PM flux can be regarded as a thermal-sensitive parameter. In most
cases, it is sufficient to express the estimation principle as follows.

αPM =
B(Tt)− B(T0)

B(T0)(Tt − T0)× 100%
⇒ Tt = T0 +

ψr(Tt)− ψr(T0)

αPMψr(T0)
(16)

where αPM is the thermal coefficient, T0 and Tt are the temperatures of the initial moment
and the subsequent moment, B(T0) and B(Tt) are the PM flux density at corresponding
moments, and ψr(T0) and ψr(Tt) are the PM flux at corresponding moments.

As shown in Equation (6), PM flux is involved in the back electromotive force (back-
EMF) term of the electrical mathematical model, which is available for noninvasive PM
temperature monitoring. Therefore, PM flux monitoring for rotor temperature estimation is
studied in some papers. In [26], the hall sensors originally installed in the PMSMs for initial
position detecting are used for the PM flux measurement. The analog signal provided by
the hall sensors is sensitive to the PM flux density, which can be utilized for the temperature
estimation. It is worth mentioning that this technique is not exactly based on the electrical
model. However, considering that the thermal-sensitive parameter is used, this method is
subsumed under this category.

Except for the direct measurement method, the PM flux can be estimated through
solving the mathematical functions. For this purpose, observation models are commonly
used to identify the PM flux, such as the recursive least square (RLS), affine projection
algorithm (APA), and extend Kalman filter (EKF). In general, the implementation of these
estimation methods is based on the steady state model equations. Considering the thermal
or saturation characteristics, several parameters involved in the model are influenced by
the operating conditions. To be specific, the PM flux and stator winding resistance are
influenced by the component temperature, and stator inductances in the d- and q-axis
are fluctuated with load condition. Therefore, there are four unknown parameters that
should be estimated based on the electrical model, theoretically. As a consequence, the
estimation accuracy is limited by the rank-deficient problem. In this condition, there are
increasing research papers focused on solving the rank-deficient problem. In [27], the
EKF algorithm is used to estimate the PM flux, which is implemented as the inductance,
assumed to be constant. In [28], a two-time scale dynamic model is proposed to make
the machine’s full rank and simultaneously estimate the parameters. Considering the
difference in the dynamic of the variable parameters, two APAs with different convergence
rates are combined. Similarly, two RLS models on different time scales are presented
in [29] for parameter identification. In [30], an observation model is proposed on the basis
of extensive measurements and data storage in a lookup table (LUT). In these methods,
available quantities are estimated and compared with measured values, which is used
for calibration of PM. With the update of measured signals, a cyclic iteration algorithm
is established to constantly optimize the estimating result. The iterative logic is shown
as follows:

ψ̂r(k + 1) = ψ̂r(k) + W(y− ŷ) (17)

where W is the gain matrix, y is the matrix of measured quantities, ŷ is the matrix of
estimated quantities, ψ̂r(k) is the estimated PM flux of a previous iteration, and ψ̂r(k + 1)
is the estimated PM flux of this iteration.
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In fact, these algorithms are mainly dependent on the previously mentioned recursive
and iterative logic. During these strategies, the normal operation is not interrupted and no
additional information is required, which shows extensive applicability. However, due to
the simplicity of derivation and measuring deviation, the temperature estimation accuracy
in these methods is not superior.

4.2.2. Monitoring Techniques for Temperature of Stator Windings

The typical material used for stator windings for PMSMs is copper, which has resis-
tance that is linearly dependent on the temperature. Therefore, the temperature estimation
of stator windings based on the electrical model relies on winding resistance. Similarly,
variable-frequency resistances are able to estimate the winding temperature. As introduced
in the PM temperature monitoring techniques, high-frequency resistance can be generated
by signal injection [31]. However, to avoid the interference of hysteresis and eddy current
losses caused by the PM, fundamental-frequency or DC resistance is preferred for parame-
ter identification. It is worth noting that the thermal resistive coefficients utilized for the
PM and winding resistance are not consistent. For the winding temperature estimation
based on resistance at a different frequency, the derivation can be expressed as follows:

Ts = T0 +
Rs − Rs0

αCuRs0
(18)

where T0 and Ts are the initial and current temperatures, αCu is the thermal resistive
coefficient of copper, Rs0 and Rs are the stator winding resistances at temperatures T0 and
Ts. It worth mentioning that the thermal relevant equation is suitable for both DC and
alternating frequency components.

Similarly, the estimation techniques can be classified into noninvasive observer-based
methods and invasive signal injection-based methods.

A. Noninvasive observer-based methods

Similar with the PM flux, the estimation of winding resistance based on the electrical
model is essentially parameter identification. The implementation of observation is limited
by the ill-convergence of parameter estimation due to rank-deficient state equations of
PMSM. Therefore, to establish a suitable and feasible model for parameter estimation, the
satisfaction of required properties should be ensured. Multiple parameters are estimated
based on a nonlinear interconnected observer in [32]. In [33], the model reference adaptive
system (MRAS) is used to estimate the winding resistance.

B. Invasive signal injection-based methods

The DC signal is commonly selected to facilitate the distinguishing of injecting signals
and fundamental-frequency signals. Meanwhile, compared with a high-frequency injection,
the skin effect of the stator windings will not be generated, which reduces the heat emission.
Meanwhile, the hysteresis and eddy current losses of the PM are also mitigated.

Intermittent current injection based on the rotating coordinates is presented in [34] for
resistance monitoring, and by regulating the q-axis injection current, the torque pulsation
caused by injection is reduced. Meanwhile, the injection current and induced voltage are
used to calculate the winding resistance.

4.2.3. Sectional Discussion

In most literatures discussed in this section, temperature monitoring of a specific part
usually requires the temperature of other parts or accurate parameters. Parameters are
coupled in the electrical model. For example, in [22], previous knowledge of inductance and
decoupling of current effects are required. The authors tend to acquire relevant information
through preliminary experimental tests. Furthermore, the reference temperature of the tar-
get component cannot be convinced with a consistent standard. In [22], the thermocouples
are attached to the rotor. However, the hot spots of the specific test machine are dependent
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on the structure and operating conditions. The conflict between global estimation and
practical uneven temperature distribution affects the temperature calibration.

The main limitation and drawback of parameter identification-based methods for
temperature monitoring is the accuracy. The parameter estimation error is scaled up by
temperature coefficient. For example, as shown in Table 1, αB is −0.11%/◦C for NdFeB
33EH, which means that the PM flux estimation error will be approximately magnified by
900. Therefore, accurate PM temperature monitoring requires extremely high precision for
the estimation of PM flux. However, high estimation precision is restricted by the inherent
problems of parameter identification. In fact, due to the requirement of extensive electrical
parameters, deviation of the modelling establishment is incidental and inevitable. Further-
more, considering the complete dependence of electrical model, the voltage source inverter
(VSI) nonlinearity affects the precision of methods based on parameter identification. There-
fore, the accuracy of estimation based on the fundamental-frequency signals is susceptible.
Signal-injection provides significant improvement in precision, but the hysteresis and the
eddy current losses will be increased due to the high-frequency components.

In addition, the temperature monitored by the thermal-sensitive parameters is the
global temperature of the PM or stator windings, which is not suitable for the detailed
detecting of local hot spots.

4.3. Mechanical Model-Based Methods for Temperature Monitoring

The mechanical model combines electrical signals and mechanical signals, which
provides the possibility for the transitive estimation of thermal parameters by motion
parameters. In general, the mechanical model means the torque equations, which can be
expressed by electrical and mechanical parameters, are as follows:

Te = KP

(
ψrirq +

(
Ld − Lq

)
irdirq
)

Te = TL + Bωm + J dωm
dt

(19)

where Te represents the electromagnetic torque, KP =1.5P and P is the pole pairs, TL is the
load torque, B is the friction coefficient, J is the moment of inertia, and the other parameters
are described in previous equations.

With PM flux involved in this model, the mechanical parameters of the machine can
be utilized for the PM temperature estimation when combining the two equations. In [35],
a linear temperature model is presented to demonstrate that the speed harmonic decreases
linearly with the increase of PM temperature, which is derived from the PMSM mechanical
model. Suitable harmonic currents satisfying certain requirements are injected into the
machine to induce speed harmonics. Based on the linear relation between PM temperature
and PM flux, the PM temperature can be estimated by following equation:

T =
1
β

(
Ωh,T

Ωh,T0

− 1
)
+ T0 (20)

where β is the PM thermal coefficient, Ωh,T and Ωh,T0 are the measured speed harmonic
when the PM temperature is T and T0, respectively.

Sectional Discussion

Temperature monitoring based on the mechanical model relies on the rotation speed
and several mechanical parameters. In [35], the friction coefficient and moment of inertia
are considered as fixed quantities. The typical motor drive system is complicated, and
the mechanical parameters may fluctuate with the operating condition. Meanwhile, the
extraction of high-frequency mechanical signals is more prone to be disturbed by operating
conditions or irresistible vibrations. Theoretically, utilizing the mechanical parameters
for PM temperature monitoring is an identification of PM flux. Compared with electrical
model-based methods, the rank-deficient problem is circumvented. In addition, specific
to high-quality automation drives, thermal protection is critical, and high estimation
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accuracy can be obtained through this technique based on the high-precision device for
position sensing.

However, there are some drawbacks for this kind of technique. On the one hand, the
speed harmonics are more difficult to generate and extract at higher running speed. On the
other hand, the main drawback of this method lies in the torque fluctuation caused by the
injecting harmonic currents.

4.4. Discussion for Model-Based Methods

To sum up, the typical models utilized for temperature monitoring are artificially
defined, such as LPTNs or inherent mathematical models, such as electrical functions. The
inherent models are more comprehensive and the defined models are more straightforward.
In terms of technical complexity and estimation accuracy, methods requiring additional
devices or a numerical solver have higher precision. Oppositely, methods aiming to
estimate temperature during normal conditions are paying more attention to simplicity and
convenience. Overall, compared with the sensor-based methods, these techniques based
on models are less invasive.

5. AI algorithm-Based Methods of Temperature for PM Machines

Artificial intelligence (AI) is an emerging technique that branched out of computer
science. Human intelligence is simulated and extended in this area of research. Mean-
while, this technique is based on the algorithm, data, and computing ability. It is worth
mentioning that this section focuses on monitoring techniques that mainly rely on the AI
algorithm. Machine learning is the core technique in these methods. Through training
in historical data, implicit information can be extracted by the constructed network. The
main advantages of the AI algorithm-based methods are the extensive applicability and
automaticity. Compared with the model-based methods, the precision limitations caused by
the required expertise and sophisticated modelling are avoided. Meanwhile, the estimated
temperature is derived by measurable quantities and empirical properties involved in the
historical data set. The properties reveal the relation between measurable quantities and
target parameters. Furthermore, the AI techniques guarantee the robustness for a variety
of operating conditions. Common AI techniques for temperature monitoring are neutral
networks (NN), Particle Swarm Optimization (PSO), genetic algorithm (GA), etc.

In general, the AI algorithm-based methods are based on collecting extensive mea-
surements of quantities and target parameters, which are independent of the motor specifi-
cations and mathematical models. These quantities should be electrical, mechanical, and
thermal parameters. Absolutely, measurable thermal quantities are usually necessary for
PM temperature monitoring. In the meanwhile, the condition-relevant quantities are also
indispensable. Through adequate training based on data-driven algorithms, the updated
measurements can be used to derive the updated parameters, which are unavailable by di-
rect measuring. For temperature monitoring of PM machines, AI algorithm-based methods
are getting attention in recent years. To be specific, the temperature of target components
and other relevant available signals should be recorded and taken as inputs for training.
Taking the deep recurrent and convolutional neural networks presented in [36] as an ex-
ample, there are sequence learning and multilevel calculating processes involved in this
algorithm. Therefore, based on this construction, this algorithm can be called multilayer
perceptron (MLP).

The architectures of both topologies are both based on the MLP algorithm. These
layers can be classified into the input layer, hidden layer, and output layer. There are
weights between layers. The node values in one layer are updated gradually. Finally, the
output sequence is obtained and the weights and other parameters can be modified by the
estimation errors. In this condition, adequate data is needed for better performance.

The sequence learning mode of a state-of-the-art ANN technique called the temporal
convolutional network (TCN) is shown [36]. It inherits recent advances of applications
on sequential data and dilated convolutions of the convolutional neutral network (CNN).
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The prediction ŷT is informed by the corresponding observation xT and a finite set of
past observations. The input sequence consists of the external temperature, measurable
electrical parameters, and rotor speed. The targets are the temperatures of the PM, stator
teeth, stator winding, and stator yoke. The function of hidden layer can be concluded as the
data abstraction, which extracts the correlation patterns of inputs and passes the results to
the next layer. The hidden layers are generated by repeating updates to acquire acceptable
errors between output and sample values. The targets are the thermal quantities of the
stator components and the PM.

Meanwhile, the observations can be distributed apart from each other over the se-
quence rather than being adjacent. In this mode, the crucial, further past events can be
detected for reasonable training. With causal and dilating temporal convolutions, this
dilated operation leads to an effectively expanded receptive field of the TCN, which would
be directly proportional to the network’s depth.

In [37], a Nonlinear Auto-Regressive with eXogenous-input (NARX) model based
on a difference-estimating feedforward neural network (DFNN) is used to monitor the
temperature of the PM and windings of PMSMs. The NARX handles the nonlinear rela-
tionships between the state at the next moment and the past information. In contrast to
the traditional neural network, this paper proposes to introduce a scalar transformation
coefficient to the feedback chain. The training is conducted with an input layer contain-
ing the delayed temperature values of five parts and the recorded initial condition. The
switching function, measured currents, machine position, voltage output of the current
controller, estimated speed, and measured ambient temperature are recorded as the initial
input vector. In addition, the temperature of PM and stator windings are measured as the
initial state vector.

Sectional Discussion

The AI-based methods within the scope of this section all belong to the category
of machine learning. AI-based methods have been the research trend in the thermal
monitoring field. Similarly, the available thermal quantities and electrical quantities are
necessary for training. The training strategies are unique for different AI methods. In [38],
several machine learning models are empirically evaluated on their estimation accuracy for
the temperature monitoring. The feasibility of these methods is verified in this paper. The
scholars thought that temperature monitoring could be implemented through recorded test
data without relevant expertise. Indeed, AI-based methods provides a convenient strategy
for thermal monitoring. Compared with previous methods, no additional devices and
specific parameters are required in AI algorithm-based methods. Focusing on accuracy or
simplicity as the priority is an alternative in these algorithms. Meanwhile, the improvement
of controllers supports data measuring and algorithm computing. The main problem of
these techniques is that real-time capability is limited by data training and multilayer
processing. The application for different machine types should be further demonstrated.

6. Discussion for Challenges and Opportunities

The temperature monitoring of PM machines has been researched for several decades.
Relevant techniques are widely proposed and optimized. However, due to the complex
dynamic characteristics of the motor system, there are several problems and conflicts
remaining to be solved. Meanwhile, the possible opportunities in the future are discussed.

6.1. Challenges for Present works of Temperature Monitoring
6.1.1. The Non-Linearity of Thermal-Sensitive Parameters

In general, the relation between component temperature and relevant thermal-sensitive
parameters is supposed to be linear. However, the variation of thermal-parameters are not
only influenced by the temperature. For example, when the PM temperature is close to the
Curie temperature, the magnetic intensity decreases sharply and therefore the variation
of PM flux based on temperature is not really linear. Therefore, more precise relation is
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required for temperature monitoring. In this condition, the preliminary temperature test or
more temperature factors must be conducted or considered.

6.1.2. The Conflict between Monitoring Accuracy and Technical Complexity

As presented in the previous research overview, high estimation accuracy always
represents high technical complexity. PM flux observer-based methods can be implemented
during normal operation with typical controllers, but the estimation accuracy is susceptible
to conditions. With sufficient precision, direct measuring requires additional devices,
structure modification, and significant processing time are essential for FEM models and AI
algorithm. Comparatively speaking, the AI algorithm-based methods provide alternatives
between estimation accuracy and real-time capability. However, in typical industrial
applications, the required computing ability is hard to achieve for real online estimation.

6.1.3. The Conflict between Anti-Interference Capability and Real-Time Capability

Most online monitoring methods with excellent real-time performance are totally
dependent on electrical signals, such as electrical model-based methods. Nevertheless,
the temperature derivation based on electrical signals is susceptible to electromagnetic
interference (EMI), which mainly contains conductive interference of information and the
conductive interference of electronic noise. For thermal-model and AI algorithm methods,
the modelling or training based on consistent monitoring and immunity is more robust for
temperature estimation. However, the processing time for FEM models and AI algorithms
is too long to realize real-time temperature monitoring. By comparison, even though
sensor-based methods are limited in many conditions, this approach is more harmonious
in both aspects.

6.2. Opportunities for Future Works of Temperature Monitoring
6.2.1. Combination of Multi-Type Techniques for Temperature Monitoring

The combination of techniques provides the possibility of complementary advantages.
Typical techniques cannot all be feasible in extensive operating conditions. For example,
at low speeds, the performance of PM flux observer-based methods is poor and signal-
injection-based methods are more robust. Therefore, a combination of these two methods
provides less invasiveness and more accuracy. In addition, the installation of thermal
sensors can be guided by FEM analysis, which provides extensive temperature distribution.

6.2.2. Prospects of System-Level Temperature Monitoring of PM Machines

In general, the temperature distribution is nonuniform due to different thermal prop-
erties and heat generation. Therefore, existing temperature monitoring methods are usually
focused on individual components. However, thermal protection is required for all critical
components in a PM machine, such as the PM and stator windings. Improving the 0
degree of the integration and miniaturization of the drive system, the overall temperature
situation of PM machines is necessary and crucial. Therefore, the prospect of system-level
temperature monitoring is introduced in the section.

All these techniques have the potential of system-level temperature monitoring. In
terms of technique, sensor-based methods are convenient for temperature distribution
monitoring and is sufficient at detecting hot spots. However, the increased cost and
installation difficulty are the main limiting factors. Model-based methods relying on
parameter identification have the potential to conduct multiparameter estimation, such
as the node temperature, the PM flux, stator winding resistance, and inductances, all of
which are indicators of component temperatures. Nevertheless, only specific components
can be monitored by thermal-sensitive parameters and the estimation accuracy is limited.
Theoretically, the most feasible techniques for reliable system-level temperature monitoring
are LPTNs, numerical methods, such as FEMs, and AI algorithm-based methods. The
common characteristic of these techniques is the capability to supply sufficient thermal
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spots, and the mapping of the machine temperature can be realized through accurate-
specification modelling or preliminary monitoring.

7. Research Trend for Extensive Monitoring for PM Machines

In fact, there are more literatures focused on the temperature monitoring of PM ma-
chines. The references [39–60] belong to the thermal model-based methods. References
in [61–67] exhibit methods based on the high-frequency injection for PM flux monitoring.
References [68–75] are methods for PM flux monitoring without signal injection. Refer-
ences [76–88] are based on the resistance estimation for the temperature monitoring of
PM machines. [89] relies on the high-frequency inductance for temperature estimation.
References [90–92] belong to the AI-based methods. [93–99] are literatures about the char-
acteristics of PM materials. [100–104] studied the thermal losses and aging of electrical
machines. [105–107] are about the identification of thermal-relevant parameters. [108,109]
are other reviews about the thermal monitoring of electrical machines. [110–114] are some
literatures for the researches referenced by this review. In the meanwhile, to demonstrate
the development of existing methods, reference papers are summed up in Figure 4. The
direct monitoring targets are taken as the distinction. Although the high-frequency resis-
tance and winding resistance are indicators of different components, these techniques are
in the category considering the technical overlap. According to the timeline, the research
trend in recent years for temperature monitoring is focused on the thermal model methods,
PM flux estimation methods, and AI algorithm methods. This research trend is related to
the technical extensibility of these methods. Except for the aforementioned system-level
temperature monitoring, condition monitoring is also critical. Temperature monitoring
and condition monitoring of the PM can both be achieved just by PM flux estimation. In
addition, the comparison of these temperature monitoring techniques is demonstrated in
Table 2. Requirements and performance for the implementation of these methods are listed.
Different focuses for temperature monitoring in industrial applications lead to different
suitability of these techniques. In the opinion of the authors, the current research trend
originated from the requirement for extensive monitoring of machines. Moreover, the
extensive system-level monitoring for either temperature or condition is indeed of great
significance for reliable operation and maintenance.

Table 2. Technical comparison of temperature monitoring methods.

Target Monitoring Techniques Computational
Complexity Precision

Additional
Devices/

Invasiveness

Dependence
on Motor

Specifications

Signal
Sampling

Rate

Training
Data Re-

quirement

PM

Sensor-based Low Very High
1.5 ◦C [6]

Yes/Mechanical
modification Low Low No

Model-
based

Thermal
models High High

3.3 ◦C [19] No High Medium No

Electrical
models Medium High

2 ◦C [87]
No/Signal
injection Medium High No

Mechanical
models Medium Medium

4 ◦C [35]
No/Signal
injection Medium High No

AI algorithm-based High High
1.5 ◦C [37] No Low Medium Yes

Stator
Winding

Sensor-based Low Very High
2 ◦C [7]

Yes/Mechanical
modification Low Low No

Model-
based

Thermal
models High High

2.3 ◦C [52] No High Medium No

Electrical
models Medium Medium

4 ◦C [86]
No/signal
injection Medium High No

AI algorithm-based High Medium
4.5 ◦C [37] No Low Medium Yes
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