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Abstract: One of the main challenges of maneuvering an Unmanned Aerial Vehicle (UAV) to keep a
stabilized flight is dealing with its fast and highly coupled nonlinear dynamics. There are several
solutions in the literature, but most of them require fine-tuning of the parameters. In order to avoid
the exhaustive tuning procedures, this work employs a Fuzzy Logic strategy for online tuning of
the PID gains of the UAV motion controller. A Cascaded-PID scheme is proposed, in which velocity
commands are calculated and sent to the flight control unit from a given target desired position
(waypoint). Therefore, the flight control unit is responsible for the lower control loop. The main
advantage of the proposed method is that it can be applied to any UAV without the need of its
formal mathematical model. Robot Operating System (ROS) is used to integrate the proposed system
and the flight control unit. The solution was evaluated through flight tests and simulations, which
were conducted using Unreal Engine 4 with the Microsoft AirSim plugin. In the simulations, the
proposed method is compared with the traditional Ziegler-Nichols tuning method, another Fuzzy
Logic approach, and the ArduPilot built-in PID controller. The simulation results show that the
proposed method, compared to the ArduPilot controller, drives the UAV to reach the desired setpoint
faster. When compared to Ziegler-Nichols and another different Fuzzy Logic approach, the proposed
method demonstrates to provide a faster accommodation and yield smaller errors amplitudes.

Keywords: control strategy; UAV; fuzzy; PID controller; ROS

1. Introduction

Recently, the use of autonomous vehicles and robotics technologies has increased
significantly. Such systems are now being used to perform a great number of tasks in
an optimized manner. Most traditional solutions demanded human resources, which
may provide gaps and cause unsafe working places or human workers’ depletion due
to repetitive tasks. Human safety issues are taken into account in some autonomous
unmanned vehicle-related tasks in [1–4].

The field of Unmanned Aerial Vehicles (UAVs) is gaining a growing interest over
the past years due to the possibility of enabling new services that help modernize trans-
portation tasks [5], inspection [6], supply chain support [7], search and rescue activities [8],
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change detection in water scenes [9], air quality assessment (e.g., by measurements of
gaseous elemental mercury) [10], early wildfire detection [11], delivery goods tasks [12,13],
information warfare [14], topographic surveys in active mines [15], plant genotyping [16],
documentation and inspection of historical buildings [17], among others. The reason for us-
ing them in several applications can be explained by the UAV’s ability to perform complex
activities with low-cost flight operation and maneuvering flexibility [18,19].

Autonomous or semi-autonomous UAVs have been used to substitute human workers
in different tasks in order to reduce maintenance costs and intervention times, especially in
inspections [20,21]. There are different ways of performing such inspections with a UAV.
In these all different flying situations, the UAV can fly very close to the object with a slow
speed, producing valuable and reliable information about the inspected area. According
to [1], the use of UAV can help to reduce the the mission’s complexity for data gathering
due to its high versatility, and the possibility of attaching new technologies into it. In this
work, this and some other aspects are also taken in place to use as work motivation.

The UAV should also be capable of performing these missions stably. Therefore,
there is also great importance in controlling the UAV’s movement itself. For example,
the authors of [22] have used a self-tuned PID control method to deal with external
disturbances in a quadrotor UAV. In [23], the authors have proposed a hybrid PID control
strategy to overcome sensor noise and strong wind disturbances. Several works in the
literature have been proposed to make UAVs more robust to disturbances, parametric
uncertainties, among other problems. For example, the control method proposed in [24] is
a fault-tolerant strategy that takes into account system uncertainties and actuator failures.
In [25], the authors have proposed a flight control for a quadrotor UAV for hovering with a
slung load attached to it. The mathematical model was simplified to several controllable
linear subsystems via reasonable assumptions. A robust H∞ controller was designed by
utilizing the estimated states of a state observer. Other works have proposed robust control
techniques for compensating for the effects of external disturbances and uncertainties in
the UAV model parameters [26–29].

The physical instability of the UAV’s platform causes motion in the acquired videos,
which imposes harmful impacts on the accuracy of camera-based measurements [30]. These
issues, among others, motivate the adoption of flight stabilization techniques, which allow
the adaptation to operational changes based on the knowledge of dynamical properties [31].
They commonly use a navigation system to feed a classical PID controller, which has a sim-
ple structure, good stability, and less dependence on the exact system model. Although the
PID controller has a simple structure to be implemented, the process of adjusting its pa-
rameters requires attention from the designer, particularly when nonlinearities are present.
This is an issue that has been receiving growing attention. Such dynamical characteristics
force the PID design and tuning to become even more complex, demanding an additional
control approach. Computational Intelligence techniques can be used to optimize the PID
gains, as seen in [32], where the PID gains were tuned by using Particle Swarm Optimiza-
tion technique, and in [33], where Genetic Algorithm was used. The Fuzzy Logic Theory
has also emerged as a solution for dealing with systems that are not easy to be modeled
because of their nonlinearities and undetermined states. In this sense, many researchers
have applied fuzzy controllers to obtain improved performance, and robustness properties
compared to those that use pure classical control algorithms [34–38].

Note that the fuzzy-based control is considered as a control scheme that can improve
the system’s robustness and adaptability. This approach can be used to dynamically adjust
the controller parameters in accordance with the output [39]. The authors in [40], proposed
the use of a fuzzy PID scheme to control the attitude of a UAV. They used the fuzzy to
adjust the controller parameters by inference rules. A similar scheme was proposed in [41].
The results showed that the UAV obtained better dynamics and stable performance.

In this work, a hybrid approach composed of a Cascaded-PID and a Fuzzy Logic
controller is implemented. Due to the Cascaded-PID module, the proposed approach offers
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the system adaptive capabilities engendered by the Fuzzy Logic part and a robustness
property against parametric uncertainties.

The focus of the devised approach is to propose a controller that has the robustness of
a PID, but also that could be applied to many different scenarios. PIDs are widely used in
the context of machine control and stabilization. However, the values of the Proportional,
Integrative, and Derivative gains rely directly on the plant model. It can be very challenging
to choose values that will fit the best way in all operational situations that this kind of robot
can use. In order to amplify the range of use for those UAVs, the insertion of a fuzzy-based
algorithm is implemented. In this case, the fuzzy would not control the movement speed
and position itself, as usually is seen in state of the art, but would provide the adapted PID
gains to the system and develop an optimized new PID controller to it.

Therefore, the main contributions of this work are:

• To propose a novel control strategy for UAVs, combining a Cascaded-PID with a fuzzy
logic controller;

• To provide a method for fine tuning the fuzzy range of the PID gains values;
• To present a solution that can be embedded on UAV’s companion computers us-

ing ROS;
• To provide a testing solution using a state-of-the-art high-fidelity simulation engine

such as Unreal Engine with AirSim.

This paper is structured as follows. Section 2 described the advanced method, whereas
Section 3 describes some promising results and Section 4 the discussion. At last, Section 5
concludes the paper by furnishing the final conclusions.

2. Materials and Methods

The proposed scheme combines a Cascaded-PID with a Fuzzy algorithm that is
responsible for calculating the PID gains. In the so-called fuzzy controller, the control
strategy is described through linguistic rules that imprecisely connect various situations
with the actions taken. Different from the traditional PID controller, a formal mathematical
model of the plant is not necessary. Approximately knowing the UAV’s behavior when
exposed to different inputs is enough for defining the fuzzy rules, which is a feasible task to
UAV specialists. Therefore, these linguistic rules that define the control strategy represent
the linguistic model of the plant. Note that Fuzzy and the PID can provide an effective
solution to the system’s non-linearity. As a result, the system can accurately converge to
the desired position in fewer iterations.

In the beginning, suitable PID values may be defined for the PID controller. As time
goes by, such gains are updated dynamically by the Fuzzy algorithm, whose rules are only
dependent on the position error and its derivative.

Figure 1 depicts the designed iterative learning control algorithm, along with the
real-time management of Fuzzy gain computation. The UAV Desired Position is the
commanded waypoint that the UAV should go to. The desired position can be changed at
any time during the process, allowing the system to follow a moving goal or a trajectory,
for example.

It is important to note that one independent Fuzzy Logic controller must be set for
each control axis (x, y and z). In this work, the methods, figures and tables will be only
relative to the x-axis to avoid unnecessary repetition.

Figure 1. Scheme of fuzzy addition to the PID controller.
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2.1. Cascaded-PID

The cascade strategy is a well-known scheme in control system design. It basically
consists of the interaction between two control loops: an external one that is responsible
for generating a reference signal and an internal, fed by the latter, which is responsible for
computing the signals to drive the actuators.

The block diagram in Figure 2 illustrates the proposed simplified Cascaded-PID
controller scheme. The external loop uses the position error to generate a setpoint reference
value for the internal loop. Concerning the diagram, the internal control loop is responsible
for controlling the UAV motors. The rotors ’ velocities are calculated after demonstrating
that both roll and pitch angles converge to their (generated) reference values.

Figure 2. Schematic of the Simplified Cascaded-PID controller.

As can be seen in the diagram of Figure 2, the proposed scheme uses the altitude and
position errors for generating and sending the velocity commands to the flight control
unit controller.

2.2. ROS Integration

The general idea of the proposed methodology is illustrated in Figure 3. It consists of
using a companion computer to perform the control of the UAV.

Figure 3. Signal flowchart and architecture.

This strategy allows a more straightforward implementation and testing tasks that are
benefited from more advanced sensors, such as light detection and ranging and waypoint
control integration. The Flight Management Unit (FMU) is responsible for acquiring
information from the peripheral sensors and modifying these values in the actuators to
which it has access. The primary sensor data are fed through the FMU to a specific ROS
driver, the MAVROS. The data are then forwarded to a ROS node, in which the controller
is implemented. The reverse-path takes place to perform motor driving at the end of the
control loop.

The ROS interface with the UAV works as follows. The companion computer has
the ROS core processing data in each of the code’s pre-configured nodes. The computer
receives the UAV state information from Ethernet using the MAVLink communication
protocol. The UAV state is made available as a ROS topic by the MAVROS ROS driver.
The calculations that enable the Cascaded-PID controller are performed in the main ROS
node, which publishes the current PID gains and the errors to a topic that is used by
the fuzzy logic module. The same ROS node subscribes to the messages with the new
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PID gains sent by the fuzzy logic module. When it receives a message, it makes the PID
calculations and transmits the target velocities to the FMU by publishing a MAVROS
message. The gains are changed at a rate of 10 Hz, which is the best possible MAVLink rate.

2.3. Fuzzy Logic PID Tuner

In Figure 4, the MATLAB/Simulink block diagram with the Fuzzy Logic and the
connection between Simulink and ROS are presented. It is shown, on the left side of the
diagram, the subscription block that reads the information from the topics sent by ROS.
The messages are divided in five variables, so they can be individually read by Simulink.
The variable of the error derivative was suppressed, as it can be directly calculated from
the error variable using Simulink, which guarantees that both have the same rate. Some
displays are added only to keep track of evaluation during the tests. The the error and
it’s calculated derivative are sent to the Fuzzy Logic Controller With Ruleviewer block.
This particular block is responsible for reading the fuzzy controller file and performing the
fuzzy logic calculations. After that, the values from the fuzzy controller are sent to ROS,
on the publish block on the bottom of the figure. The ROS messages of “fuzzy_values” and
“defuzzy_values” were created for this work.

Figure 4. Simulink model for the fuzzy controller.

The Membership Functions types were chosen as Gaussian for the inputs and trian-
gular for the outputs. This is the setup present in most of the literature cited by this work
when it comes to PID gains tuning with fuzzy logic. The existing works were followed
as a start point regarding the rules, and the rules were defined according to the UAV’s
desired behavior. For instance, if the position error X-error and its time derivative X-error-D
are sufficiently small in the present approach, there is no need for large PID gain values.
Since no "crisp functions" were used, final gains regularly tend to be slightly different from
those in the center of the membership function. The fuzzy inference technique adopted
in this work is based on the classical Mamdani [42] inference method and on the centroid
defuzzification method.

The fuzzy rule Table 1 can be seen as the following. The symbol ‘B’ represents ‘Big’, ‘M’
for ‘Medium’, and ‘L’ for ‘Low.’ The outputs should be interpreted as KP, KD, and Alpha
gains. Hence, the output notation ’LMB’ should mean that the proportional (KP) gain is
Low, the derivative (KD) gain is Medium, and Alpha gain is Big. For the integrative (KI)
gain, the formula below is used [43]. As the desired behavior of the controller is the same
for when the position error is positive or negative, the absolute value of the error was used.
Regarding the derivative, it was the derivative of the absolute value of the error.

KI = KP
2/(αKD) (1)
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Table 1. Fuzzy Rule table.

Error

Error − D Low Medium Big

Negative LBB MMM BLL

Zero BBM BML BLL

Positive LBB MMM BLL

Selecting the Range of PID Gains for Horizontal Motion Control

The methodology to define the range of each of the PID gains for the horizontal motion
control (x and y axis) followed [44], and [43] with a modification proposed by this work.

First, the ultimate gain (Ku) and the oscillation period (Tu) [45] are obtained. This
is done by removing the derivative and integral parts of the PID and increasing the
proportional gain until the point that the output of the control loop has stable and consistent
oscillations. In this work, the measured ultimate gain was of 2.2 and the oscillation period
of 4 s.

With the measured values of Ku and Tu, the Zhao/Larson gains KP′ ,min, KP′ ,max, KD′ ,min
and KD′ ,max were calculated:

KP′ ,min = 0.32Ku , KP′ ,max = 0.6Ku , (2)

KD′ ,min = 0.08KuPu , KD′ ,max = 0.15KuPu. (3)

Provided that the traditional Ziegler-Nichols exhibits a high overshoot and that the
overshoot is reduced but not removed by the above described method, this work proposes
the following modification. The modification is to use a compression factor to reduce
the fuzzy range of the PID gains, which will smooth the control signal and make it more
suitable for UAV applications, where a fast convergence is desired but without a very
high overshoot.

Therefore, the actual adopted gains KP,min, KP′ ,max, KD′ ,min and KD,max are obtained
as follows:

KP,min = KP′ ,min −
KP′ ,min

7
, KP,max = KP′ ,min +

KP′ ,max

7
, (4)

KD,min = KD′ ,min −
KD′ ,max

7
, KD,max = KD′ ,min +

KD′ ,max

7
. (5)

Finally, the summary of the limits can be seen in Figure 5, where the left shows the
two inputs and the right shows the three outputs.

Figure 5. Fuzzy membership functions.
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3. Results
3.1. Horizontal Motion Control Tests in the Simulation Environment

The proposed solution was tested in a simulation environment and compared with
other solutions. The other solutions adopted for comparisons are:

• ArduPilot built-in GUIDED mode controller.
• Cascaded-PID solution tuned by the Ziegler-Nichols method.
• Cascaded-PID solution tuned by the methods in [44], which were detailed in [43].

The tests were performed in a simulation environment (Figure 6) that runs in Windows
operating system with Windows Subsystem for Linux (WSL) Ubuntu 18.04.5 LTS 64 bits.
The computer has an Intel i9-9900K 3600 MHz processor with an NVIDIA GeForce RTX
2080Ti graphics card and 48 GB RAM.

Figure 6. Simulation Environment provided by the software Unreal Engine 4 with AirSim.

The software Unreal Engine 4 (UE4) with the AirSim plugin [46] was used for the
simulations trials. AirSim was developed by Microsoft, and is an abbreviation for Aerial
Informatics and Robotics Simulation. This plugin program provided some important
resources for this work, especially with regard to input/output signals, corresponding to
the behavior of sensors and actuators, sent to and received from the UAV flight controllers.
In the tests, the UAV was commanded to go from position 2 m at East from takeoff position
to −2 m. Therefore, a total movement of 4 m was performed. The command to move was
sent around 1.6 s after starting recording the logs and building the graphs.

Simulation Results

First, the three tuning methods for the Cascaded-PID were evaluated (Figure 7). It
is possible to notice that, as already shown in [43,44], the Zhao/Larson method achieves
the same convergence time as the Ziegler-Nichols but with lower overshoot and faster
accommodation profile. In UAV applications, fast convergence is desirable, but the ac-
commodation property is more important, as the UAV usually needs to acquire data with
onboard sensors. Therefore, the solution proposed in this work is better suited for UAVs as
it can achieve accommodation in a faster way with significantly less overshoot. By consid-
ering an acceptable error of 1 cm, the proposed solution reaches accommodation in 6.7 s,
against 10.8 s achieved by using the Zhao/Larson tuning approach and more than 20 s
achieved with the Ziegler-Nichols tuning method.

The proposed method was also compared with ArduPilot’s built-in controller in
GUIDED mode, in which ArduPilot accepts target position commands and updates the
velocity control at a rate of 50 Hz. A ROS message of the target position was sent using
MAVROS. The result is presented in Figure 8. From the curve, it is possible to conclude that
the ArduPilot achieves a shorter time of accommodation. However, the proposed method
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performed very well to reach the desired position, being 1.5 s faster than the ArduPilot,
with a small overshoot of less than 0.5 m (Figure 9).

Figure 7. The comparison among Cascaded-PID tuning methods.

Figure 8. ArduPilot and Proposed method compared.

Figure 9. Absolute Error comparison between ArduPilot and the proposed method.
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It is important to note that the ArduPilot controller is very advanced and has been
developed for many years, counting with a big team of developers and contributors.

Furthermore, in comparison with ArduPilot’s results, in Figure 10 the accumulated
error can be analyzed. The accumulated error is a measure that shows how much the
UAV was away from the desired position over time. The upper line shows the ArduPilot’s
accumulated error in terms of position in X axis, while the lower line represents the results
of this proposed method. Both have crescent errors before two seconds, but it is shown
that the ArduPilot stabilizes this error almost in 6 s, while the proposed method takes more
than that to be a fairly horizontal line. However, the most meaningful information in this
comparison is that the difference between both methods at the end of the experimentation
is almost 25 m. This means that counting on every small error that both had on the
trajectory tests, the proposed method shows itself significantly more accurate in terms of
position in x.

Figure 10. Accumulated Error comparison between ArduPilot and the proposed method.

Regarding the Fuzzy Logic PID gains used in the proposed method, they can be
observed in Figure 11, by the side of a graph with the calculated error and error time
derivative. The peak of the derivative error, in the beginning, is due to discontinuity
generated by variable initialization and should not be considered. As explained in the
previous section, the error curve is shown in absolute value.

The behavior of the PID gains variations shows that the Fuzzy Logic was properly
configured as in the beginning when the error exhibits large values, the derivative gain has
lower values but increases every time the error is approaching the setpoint. In addition,
the derivative gain tends to reduce even more if the derivative of the error is negative,
meaning that the UAV is progressing correctly. The integral gain tended to increase if there
is an error for a long time, being smoothly reduced if the UAV is around the setpoint for
some time. Regarding the proportional gain, it is possible to observe that it is basically
directly following the error.

A fact that deserves to be highlighted in the graphs in Figure 11b are the oscillatory
behaviors of the P, I and D gain estimates. These behaviors are probably caused by the
measurement of the error derivative illustrated in Figure 12a, and are also propagated to the
velocity command represented in Figure 12a. Although this type of oscillatory behavior is
undesirable, it did not affect the actual measured velocity (Figure 12b). However, the issue
regarding the chattering mitigation needs to be further investigated in future work.
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(a)

(b)

Figure 11. (a) Measured errors; and (b) Fuzzy PID gains.

Finally, the commanded velocity and the measured velocity can be compared in
Figure 12. The sample times are different because the commands are sent at a rate 2.5 times
superior than the measurements. Therefore, the graphs have the same time range in seconds.

It can be observed that the actual measured velocity of the UAV does not reach the
commanded velocity. That happens because new commanded velocities are sent before
the UAV can reach the previously sent one. In addition, the UAV has a limited maximum
velocity, which was set to 3 m/s. Therefore, if the Fuzzy logic Cascaded-PID calculates
a commanded velocity larger than 3 m/s, as it happened in the beginning as the UAV
was steady and the error was big, the UAV is not able to immediately reach that velocity
because of inertia.

In another perspective, in Figure 13, the proposed method is compared to fixed PID
gains using the mean values of the Fuzzy Logic gains. This clarifies the importance of
the adaptive controller for such purposes, while the mean values of fuzzy gains present
still reasonable results, the variation of the fuzzy gains shows a smaller overshoot on
the first attempt to stabilize, oscillates less than the mean-gains approach, and achieve
the desired position in X axis before than the mean-values method. Still compared to a
the method using fuzzy gains’ mean values, the accumulated position error in X axis is
slightly smaller for the proposed method at the end of the experimentation in Figure 14.
The accumulated error from the proposed method is greater than the mean-values method
only near 7 s, where it is trying to stabilize for the last time, with no further oscillations,
while the mean-values method oscillates and thus briefly achieves the objective position.
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(a)

(b)

Figure 12. (a) Commanded; and (b) Measured velocities.

Figure 13. Comparison between the proposed method and using the mean values of the fuzzy
logic gains.
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Figure 14. Accumulated Error comparison between the proposed method and using the mean values
of the fuzzy logic gains.

Finally, a last simulation was performed, when a wind of 15 m per second was intro-
duced. The results can be seen in Figure 15. It is possible to observe that the proposed
method has a better performance than the approach using only the mean values. In ad-
dition, it achieves nearly the same time of accommodation than the Ardupilot solution,
with faster convergence.

Figure 15. Comparison among different methods in the presence of 15 m/s wind to the West.

3.2. Altitude Control Tests in Real Flight

In the real implementation, the multirotor Parot bebop 2 was used. This UAV is shown
in Figure 16. Its system provides a compatible network interface for ROS, by furnishing the
required sensor information as well as the control interface. Any other compatible UAV
can also be used, replacing only the proper interfaces.

Only height control is used in the test, while the original FMU algorithm still handles
stabilization and position control. This ensures safety once the UAV is stable and locked
into position. Figure 17 shows the UAV flight on a blue screen room during the test.
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Figure 16. The Parrot Bebop 2.

Figure 17. The UAV height control flight test.

In order to avoid discontinuous movements, the method was tested using ramp
profiles from one altitude setpoint to the next one. Figure 18 shows the control signal and
the error measurements. The dotted line represents the overall behavior of the control
signal that is applied in discrete time instants. Note that the error has a well-behaved time
profile. The slightly oscillatory behavior is due to the effects of environmental conditions.

Figure 18. Control signal and error during the experimental trial.
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The control PID gains estimated by the proposed fuzzy algorithm are shown in
Figure 19. Their performances are within the expected patterns. It is also noticeable that
the derivative estimation changes were more aggressive than the other two.

Figure 19. Individual control response during the experiment.

4. Discussion

In the literature, most of the Fuzzy Logic tuning solutions have rules defining the
PID gains (KP, KD, and KI) based on the output error and its time derivative. In this
work, however, the absolute value of the output error is used to generate the Fuzzy rules.
With this strategy, the deviation between the desired and current UAV position always
assumes positive or null values, which facilitates the definition of “low”, “medium” and
“high” levels for the fuzzy algorithm. In the literature, it is common to find the same
definitions of such levels for both the positive and negative excursions of the error time
derivative, which is the same strategy adopted in fuzzy rules proposed in this work. Based
on the observations made on the results obtained, we emphasize that the definition of
different rules for the negative and positive excursions of the error derivative seems to
influence the performance of the closed-loop and that, therefore, it should be an issue to be
investigated in a future work.

In addition, one of the main challenges when using Fuzzy Logic for PID online
tuning is to define a proper range of KP, KD, and KI values. This work presents a method
for defining a proper range for the horizontal motion PID gains specifically applied to
UAVs based on the existing literature and with a novel modification that smooths the
behavior. Regarding the altitude controller, the range of PID gains was chosen empirically.
Similar tuning methods could have been used for this purpose, such as the Ziegler-Nichols
ultimate gain and oscillation period method, or some variant tuning scheme as fast as the
Zhao/Larson method, but with better settling time.

Regarding the results, some oscillations were verified on the commanded PID gains,
which may be due to different rates among the different systems (ROS, FMU, MAT-
LAB/Simulink). This affected the commanded velocity but did not affect the actual
measured velocity. The MATLAB/Simulink was used for this solution’s proof of concept
version, and the Fuzzy Logic algorithm should be embedded in the ROS Python or C++
scripts in future work. By doing so, we expect to achieve a faster and more synchro-
nized system.

In terms of evaluation, this research work opens up several future possibilities. For in-
stance, it is expected the deployment of this method in a real UAV inspection mission.
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Besides, the authors intend to insert the proposed control algorithm along with an optical
flow algorithm for performing autonomous flight.

5. Conclusions

Nowadays, UAVs have been widely applied in diverse applications because of their
flexibility of maneuvers, reducing risks to human life, ease to control, and cost-effectiveness.
A drawback is the necessity of a platform with a high degree of stability to prevent the UAVs
from falling and maintaining the desired orientation and path during the flight. Many
solutions rely on PID controllers. However, its design and adjustment can be difficult.
Therefore, this work proposed a novel approach composed of a Cascaded-PID Fuzzy
Logic controller, where the system have adaptive capabilities engendered by the Fuzzy
Logic part.

In this specific scenario, the fuzzy rules along with the membership functions play
a crucial role in defining whether PID gains should prioritize stability. For instance,
enhancing derivative gain in a constant position (zero error) scenario or prioritizing high
gain PI for faster response when position error and its time derivative are both large.

Simulations and flight tests were conducted to demonstrate the effectiveness of the
proposed method. As it can be seen from the results and discussions, when compared
to the traditional Ziegler-Nichols method and another fuzzy method from the literature,
the proposed solution provides much faster accommodation and smaller error amplitudes.
Regarding the comparison with the built-in controller present in the ArduPilot flight control
unit, the proposed solution achieves faster convergence and smaller accumulated error.
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