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Abstract: In this paper, we consider some paraconsistent calculi in a Hilbert-style formulation with
the rule of detachment as the sole rule of interference. Each calculus will be expected to contain all
axiom schemas of the positive fragment of classical propositional calculus and respect the principle
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1. Introduction

The principle of explosion states that from any set {α,¬α} of contradictory formulas any other
formula β follows. Paraconsistent logic can be described as a logic in which the principle does not hold.
The ‘definition’ is very simple, but it is also very broad. This may lead to some ambiguity and cause
interpretive problems, especially if we aim to draw a sharp distinction between paraconsistent and
some other nonclassical logics. In this paper, we discuss some possible consequences of the definition.
We examine several paraconsistent calculi that respect the so-called principle of gentle explosion,
according to which from any set {α,¬α,¬¬α} of formulas any other formula β follows. The calculi
(of paraconsistent logic) that admit the principle will be called gently paraconsistent.

Let var denote a denumerable set of all propositional variables: p1, p2, p3, etc. The set F of
formulas is defined in the standard way using propositional variables from var and the symbols ¬,
∨, ∧ and→ for negation, disjunction, conjunction and implication, respectively. The connective of
equivalence, α↔ β, is treated as an abbreviation for (α→ β) ∧ (β→ α), and hence it will be omitted.
We say that a formula α is atomic, if α ∈ var; otherwise α will be called complex. By literals we mean the
set LI of all formulas of the form ¬k pi, where i ∈ N, k ∈ N∪ {0} and pi ∈ var (if k = 0, then ¬0 pi = pi;
if k = 1, then ¬1 pi = ¬pi; etc.). We use lowercase Greek letters for formulas and uppercase Greek
letters for subsets of F .

In F , we will consider axiomatic propositional calculi in a Hilbert-style formulation with the rule
of detachment, (MP) α→ β, α / β, as the sole rule of interference. Each calculus C discussed in this
paper is expected to have all axiom schemas of the positive fragment of classical propositional calculus
(CPC+, for short), that is, all instances of the following schemas:

(A1) α→ (β→ α)
(A2) (α→ (β→ γ))→ ((α→ β)→ (α→ γ))
(A3) ((α→ β)→ α)→ α
(A4) (α ∧ β)→ α
(A5) (α ∧ β)→ β
(A6) α→ (β→ (α ∧ β))
(A7) α→ (α ∨ β)
(A8) β→ (α ∨ β)
(A9) (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ)),
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and include the law of gentle explosion: (DS2) α→ (¬α→ (¬¬α→ β)).

Definition 1. For C, any α ∈ F and any Γ ⊆ F , we say that α is provable from Γ within C (in symbols:
Γ `C α) if, and only if there is a finite sequence of formulas, β1, β2, . . . , βn such that βn = α and for each
i 6 n, either βi ∈ Γ, or βi is an axiom of C, or for some j, k 6 i, we have βk = β j → βi. A formula α is a
thesis of C (in symbols: ∅ `C α) iff α is provable from ∅ within C (henceforth, we will use iff as shorthand for if,
and only if).

Notice that each calculus C may be identified with a triple 〈F , AxC ,`C〉, but it is determined by its
set of axioms AxC which is included in F . Moreover, it can be verified that `C is a finitary consequence
relation satisfying the so-called Tarskian properties (viz. reflexivity, monotonicity and transitivity).

Lemma 1. Let Γ, ∆ ⊆ F and α, β ∈ F , then we have

(1) Γ `C α iff for some finite ∆ ⊆ Γ, ∆ `C α
(2) If α ∈ Γ, then Γ `C α
(3) If Γ ⊆ ∆ and Γ `C α, then ∆ `C α
(4) If ∆ `C α, and for every β ∈ ∆ it is true that Γ `C β, then Γ `C α
(5) If Γ ∪ {α} `C β and ∆ `C α, then Γ ∪ ∆ `C β; in particular,

if Γ ∪ {α} `C β and ∅ `C α, then Γ `C β.

Proof. We refer the reader to [1] and [2] for details.

The deduction theorem holds for any calculus having (MP) as the sole rule of inference, and (A1),
(A2) as its axiom schemas. Thus we have

Theorem 1. For any Γ ⊆ F and α, β ∈ F : Γ ∪ {α} `C β iff Γ `C α→ β.

It follows from (A9), the deduction theorem and (MP) that the following lemma holds as well:

Lemma 2. For any Γ, ∆ ⊆ F and α, β, γ ∈ F : if Γ ∪ {α} `C γ and Γ ∪ {β} `C γ, then Γ ∪ {α ∨ β} `C γ.

Remark 1. The following formulas are provable in CPC+:

(IL) α→ α
(LoC) (α→ (β→ γ))→ (β→ (α→ γ))
(HS) (α→ β)→ ((β→ γ)→ (α→ γ))
(C) (α→ (α→ β))→ (α→ β)

(PoC) ((α→ β)→ γ)→ ((α→ γ)→ γ).

The formulas will be useful for proving the results presented below.

2. Gently Paraconsistent Calculi

The set of axiom schemas of C enriched with (ExM) α∨¬α and (NN2) α→ ¬¬α yields the axiom
system of classical propositional calculus (in short: CPC). From the viewpoint of paraconsistency,
neither (ExM) nor (NN2) seems to be controversial, and therefore they could be generally accepted.
There is a problem, however, in admitting (DS2) and (NN2) simultaneously. This is because the pair of
formulas is equivalent, on the grounds of CPC, to (DS) α→ (¬α→ β). The latter, being viewed as a
highly contentious logical law, should be rejected. Not surprisingly then, (NN2) cannot be universally
accepted either. On the other hand, the formula (NN1) ¬¬α→ α appears to be more applicable than
(NN2), in the sense that its application does not need to be limited, for example, to certain complex
formulas (cf. Sections 2.2 and 2.5).
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2.1. The Calculus A1

The basic gently paraconsistent calculus is A1. The calculus is defined by the axioms of CPC+,
(DS2) and (MP) as the sole rule of inference. It is a proper subsystem of the paracomplete logic CLaN.
The CLaN, as proposed in [3], is axiomatized by CPC+, (DS) and (MP). The calculus A1 may be seen
as an example of a paranormal calculus (in Miró Quesada’s terminology), that is, a calculus which
is both paraconsistent and paracomplete. Some other examples of the paranormal calculi are given
in [4,5].

Definition 2. An A1-valuation is any function v : F −→ {1, 0} that satisfies, for any α, β ∈ F ,
the following conditions:

(∧) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
(∨) v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
(→) v(α→ β) = 1 iff v(α) = 0 or v(β) = 1
(¬1) if v(¬α) = v(¬¬α) = 1, then v(α) = 0.

Definition 3. A formula α is an A1-tautology iff for every A1-valuation v, v(α) = 1. For any α ∈ F and
Γ ⊆ F , α is a semantic consequence of Γ (in symbols: Γ |=A1 α) iff for any A1-valuation v: if v(β) = 1 for any
β ∈ Γ, then v(α) = 1.

Theorem 2. For every Γ ⊆ F and α ∈ F : if Γ `A1 α then Γ |=A1 α.

The proof of soundness proceeds by induction on the length of a derivation in A1. To prove
the completeness, we apply the method which is based on the notion of maximal nontrivial sets of
formulas (see [6,7]). To begin with, let us recall some important definitions and results.

Definition 4. Let C = 〈F , AxC ,`C〉 be a calculus (satisfying Tarskian properties) and ∆ ⊆ F . We say that ∆
is a closed theory of C iff for any β ∈ F , we have ∆ `C β iff β ∈ ∆. We say that ∆ is maximal nontrivial with
respect to α ∈ F in C iff (i) ∆ 6`C α and (ii) for every β ∈ F , if β 6∈ ∆ then ∆ ∪ {β} `C α.

Lemma 3 ([6], Lemma 2.2.5.). Every maximal nontrivial set with respect to some formula is a closed theory.

Observe that the lemma holds for A1. Additionally, we have

Lemma 4. For any maximal nontrivial set ∆ with respect to α in A1, any δ ∈ F , the mapping v : F −→ {1, 0}
defined as (?): v(δ) = 1 iff δ ∈ ∆, is an A1-valuation.

Proof. We need to prove that the mapping v is an A1-valuation. The proof splits into a number of
cases. The case (∧) follows directly from the definition of (?), the axioms (A4)–(A6) and Lemma 1;
the case (∨) from (?), (A7)–(A9) and Lemma 1.

Case (→): (if–then) Assume, for a contradiction, that v(β→ γ) = 1, v(β) = 1 and v(γ) = 0. Then,
by (?), we have that β→ γ ∈ ∆, β ∈ ∆ and γ 6∈ ∆. Now, by Lemma 1, we get ∆ `A1 β→ γ, ∆ `A1 β,
that is, ∆ `A1 {β → γ, β}. The formula (IL) is a thesis of A1 and the deduction theorem holds,
so {β→ γ, β} `A1 γ. Since the relation `A1 is transitive (see Lemma 1), then ∆ `A1 γ, which means
that γ ∈ ∆. However, γ 6∈ ∆. This entails a contradiction.

(then–if ) There are two subcases to consider. Subcase (i): Suppose, for a contradiction, that v(β)
= 0 and v(β → γ) = 0. This implies that β 6∈ ∆ and β → γ 6∈ ∆, by (?). Since ∆ is a maximal
nontrivial set with respect to α, then ∆ ∪ {β} `A1 α and ∆ ∪ {β → γ} `A1 α. Hence, ∆ `A1 β → α,
∆ `A1 (β → γ) → α, by the deduction theorem, and consequently, ∆ `A1 {β → α, (β → γ) → α}.
Observe that (PoC) is a thesis of A1, so {β → α, (β → γ) → α} `A1 α, by the deduction theorem.
The relation `A1 is transitive, and therefore ∆ `A1 α. Since ∆ is deductively closed, then α ∈ ∆.
However, α 6∈ ∆, by the main assumption. This yields a contradiction. Subcase (ii): Suppose that
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v(γ) = 1. Then, by (?), we get γ ∈ ∆. This implies, by Lemma 1, that ∆ `A1 γ. Since (A1) is an axiom
schema of A1, then, by the deduction theorem, we have {γ} `A1 β→ γ. The relation `A1 is transitive,
and hence ∆ `A1 β→ γ. If ∆ `A1 β→ γ, then β→ γ ∈ ∆, which means that v(β→ γ) = 1.

Case (¬1): Assume, for a contradiction, that v(¬β) = 1, v(¬¬β) = 1 and v(β) = 1. Then by (?),
we have ¬β ∈ ∆, ¬¬β ∈ ∆ and β ∈ ∆. By Lemma 1, we obtain ∆ `A1 ¬β, ∆ `A1 ¬¬β and ∆ `A1 β.
This implies that ∆ `A1 {β,¬β,¬¬β}. Since (DS2) is an axiom schema of A1, then {β,¬β,¬¬β} `A1 α,
by the deduction theorem. The relation `A1 is transitive, so ∆ `A1 α. Observe that ∆ is deductively
closed, then α ∈ ∆. However, by the main assumption, α 6∈ ∆. This entails a contradiction.

Notice that the so-called Lindenbaum–Łoś theorem holds,for any finitary calculus
C = 〈F , AxC ,`C〉.

Lemma 5 ([2], Theorem 3.31; [6], Theorem 2.2.6). For any Γ ⊆ F and α ∈ F such that Γ 6`C α, there is a
maximal nontrivial set ∆ with respect to α in C such that Γ ⊆ ∆.

Thus, the completeness of A1 follows

Theorem 3. For all Γ ⊆ F and α ∈ F : if Γ |=A1 α, then Γ `A1 α.

Proof. Assume that Γ 6`A1 α and let ∆ be a maximal nontrivial set with respect to α in A1 such that
Γ ⊆ ∆. Then, α 6∈ ∆. Because Lemma 4 holds, there is an A1-valuation v such that v(α) = 0 and, for any
β ∈ Γ, v(β) = 1. Hence, Γ 6|=A1 α.

Though the calculus A1 is very weak and does not provide any adequate grounds for practical
inference, it offers a good starting point for further research. In the subsequent paragraphs, we will
discuss various gently paraconsistent extensions of A1.

2.2. The Calculus E1

The calculus E1 is defined by CPC+, (DS2), (DS‡) (α ‡ β)→ (¬(α ‡ β)→ γ), where ‡ ∈ {∧,∨,→},
and (MP). There are only few paraconsistent calculi in which (DS‡) is provable. One of them is Sette’s
calculus P1. Anticipating what comes next in Section 2.5, Sette’s calculus will be the top paraconsistent
extension of the calculi admitting (DS2) and (DS‡), simultaneously.

Definition 5. An E1-valuation is any function v : F −→ {1, 0} that, for any α, β ∈ F , satisfies all the
conditions of A1-valuation and, additionally: (¬‡) if v(¬(α ‡ β)) = 1, then v(α ‡ β) = 0, where ‡ ∈ {∧,∨,→}.

Definition 6. A formula α is an E1-tautology iff for every E1-valuation v, v(α) = 1. For any α ∈ F and
Γ ⊆ F , α is a semantic consequence of Γ (in symbols: Γ |=E1 α) iff for any E1-valuation v: if v(β) = 1 for any
β ∈ Γ, then v(α) = 1.

Theorem 4. For every Γ ⊆ F and α ∈ F : Γ `E1 α iff Γ |=E1 α.

The proof of soundness is by induction on the structure of proofs in E1. The completeness proof
strategy is exactly the same as that of the proof of Theorem 3. The key point is to show that the
following lemma holds:

Lemma 6. For any maximal nontrivial set ∆ with respect to α in E1, any δ ∈ F , the mapping v : F −→ {1, 0}
defined as (?): v(δ) = 1 iff δ ∈ ∆, is an E1-valuation.

Proof. Case (∧), (∨), (→) and (¬1): The proof proceeds analogously to that of Lemma 4. Case (¬‡):
Assume, for a contradiction, that v(¬(β ‡ γ)) = 1 and v(β ‡ γ) = 1, where ‡ ∈ {∧,∨,→}. Then by (?),
we have ¬(β ‡ γ) ∈ ∆ and β ‡ γ ∈ ∆. It follows from Lemma 1 that ∆ `E1 ¬(β ‡ γ) and ∆ `E1 β ‡ γ,
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which results in ∆ `E1 {β ‡ γ,¬(β ‡ γ)}. By (DS‡) and the deduction theorem, we easily show that
{β ‡ γ,¬(β ‡ γ)} `E1 α. The relation `E1 is transitive, so ∆ `E1 α. Since ∆ is deductively closed,
then α ∈ ∆. However, α 6∈ ∆ (the main assumption). This entails a contradiction.

Definition 7. Let T H(C) be the set of all theses of C. For any calculi C and C? in F , we say that C is an
extension of C? iff T H(C?) ⊆ T H(C). We say that C? is a proper subsystem of C (in symbols: C? @ C) iff
T H(C?) ⊆ T H(C) and T H(C) 6⊆ T H(C?).

Remark 2. CPC+ @ A1 @ E1.

There is an alternative way to extend A1 so that the resulting calculus preserves (DS‡) as provable.
Let E1? be the calculus defined by CPC+, (DS2), (NN2‡) (α ‡ β) → ¬¬(α ‡ β), where ‡ ∈ {∧,∨,→},
and (MP). It then follows from the deduction theorem, (NN2‡), (DS2) and (MP) that (DS‡) is a thesis
of E1?. Note that (p1 → p2) → ¬¬(p1 → p2) of the form (NN2‡) is not an E1-tautology. So,
by completeness, it is not provable in E1, either. This suggests that the new calculus is strictly stronger
than E1, i.e., E1 @ E1?.

Another example is the paranormal logic I1P1. The logic was considered in [4,8–10]. It is
characterized by the four-valued matrix

MI1P1 =
〈
{1, 2, 3, 0}, {1, 2},¬,∧,∨,→

〉
,

where {1, 2, 3, 0} and {1, 2} are the sets of logical values and designated values, respectively;
the connectives ¬,∧,∨,→ are defined in the following way:

¬

1 0
2 1
3 0
0 1

→ 1 2 3 0

1 1 1 0 0
2 1 1 0 0
3 1 1 1 1
0 1 1 1 1

∧ 1 2 3 0

1 1 1 0 0
2 1 1 0 0
3 0 0 0 0
0 0 0 0 0

∨ 1 2 3 0

1 1 1 1 1
2 1 1 1 1
3 1 1 0 0
0 1 1 0 0

An I1P1-valuation is any function v : F −→ {1, 2, 3, 0} compatible with the above truth tables.
An I1P1-tautology is a formula which under every valuation v takes on the designated values {1, 2}.

All axioms of E1 are I1P1-tautologies, and (MP) preserves tautologicality. However, the formula
¬p1 → (¬¬p1 → p2), being an I1P1-tautology, is unprovable in E1. This yields that E1 @ I1P1.

A slightly different example is with LPPL. The logic, as proposed in [5,11], is axiomatizable by
(A1), (A2), (A4)–(A9), (ConL) (¬φ → ¬ψ) → (ψ → φ), where φ, ψ 6∈ LI , and (MP). The formula
p1 → (¬p1 → (¬¬p1 → p2)) of the form (DS2) is unprovable in LPPL, and neither is (¬(p1 → p2)→
¬(p3 → p4)) → ((p3 → p4) → (p1 → p2)) of the form (ConL) provable in E1, then we have that
E1 6@ LPPL and LPPL 6@ E1.

2.3. The Calculus B1

The calculus B1 is obtained from A1 by adding the formula (ExM) as a new axiom schema,
which indicates that B1 is axiomatizable by CPC+, (DS2), (ExM) and (MP). Since the law of excluded
middle is unprovable in A1, we obviously have that A1 @ B1. The calculus B1 was considered
in [12,13] as the strongest in the hierarchy of Bn-calculi (n ∈ N).

Definition 8. A B1-valuation is any function v : F −→ {1, 0} that satisfies, for any α, β ∈ F ,
the following conditions:

(∧) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
(∨) v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
(→) v(α→ β) = 1 iff v(α) = 0 or v(β) = 1
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(¬0) if v(¬α) = 0, then v(α) = 1
(¬¬1) if v(¬¬α) = 1, then v(α) = 0 or v(¬α) = 0.

Definition 9. A formula α is a B1-tautology iff for every B1-valuation v, v(α) = 1. For any α ∈ F and Γ ⊆ F ,
α is a semantic consequence of Γ (in symbols: Γ |=B1 α) iff for any B1-valuation v: if v(β) = 1 for any β ∈ Γ,
then v(α) = 1.

Theorem 5. For every Γ ⊆ F and α ∈ F : Γ `B1 α iff Γ |=B1 α.

The completeness proof is carried out similarly as for the calculus A1. In addition to Lemmas 3
and 5 given in Section 2.1, the following lemma is of particular importance:

Lemma 7. For any maximal nontrivial set ∆ with respect to α in B1, any δ ∈ F , the mapping v : F −→ {1, 0}
defined as (?): v(δ) = 1 iff δ ∈ ∆, is a B1-valuation.

Proof. Case (∧), (∨), (→) and (¬1): We proceed analogously to the proof of Lemma 4. Case (¬0):
Assume, for a contradiction, that v(¬β) = 0 and v(β) = 0. Then by (?), we obtain ¬β 6∈ ∆ and
β 6∈ ∆. Since ∆ is a maximal nontrivial set with respect to α, then ∆ ∪ {β} `B1 α and ∆ ∪ {¬β} `B1 α.
By Lemma 2, we get ∆∪{β∨¬β} `B1 α. Since (ExM) is a thesis of B1 and Lemma 1 holds, then ∆ `B1 α.
Recall that ∆ is a closed theory, so α ∈ ∆. However, α 6∈ ∆. This entails a contradiction.

Case (¬¬1): Suppose, for a contradiction, that v(¬¬β) = 1, v(β) = 1 and v(¬β) = 1. The remaining
part of the proof is similar to the case (¬1) of Lemma 4 and thus omitted.

As p1 ∨ ¬p1 of the form (ExM) is not a thesis of E1 and (p1 → p2)→ (¬(p1 → p2)→ p3) of the
form (DS‡) is not provable in B1, it follows that E1 6@ B1 and B1 6@ E1.

2.4. The Calculi BE1 and CB1

The calculus BE1 comprises the axioms of CPC+, (DS2), (ExM), (DS‡) and (MP), which clearly
yields that both E1 @ BE1 and B1 @ BE1. The BE1 is an example of calculus which is paraconsistent
only at the level of literals: a pair of the formulas α and ¬α yields any β iff α is not a propositional
variable nor is its iterated negation.

Definition 10. A BE1-valuation is any function v : F −→ {1, 0} that satisfies, for any α, β ∈ F , all the
conditions of B1-valuation and additionally: (¬‡) if v(¬(α ‡ β)) = 1, then v(α ‡ β) = 0, where ‡ ∈ {∧,∨,→}.

Definition 11. A formula α is a BE1-tautology iff for every BE1-valuation v, v(α) = 1. For any α ∈ F and
Γ ⊆ F , α is a semantic consequence of Γ (in symbols: Γ |=BE1 α) iff for any BE1-valuation v: if v(β) = 1 for
any β ∈ Γ, then v(α) = 1.

Theorem 6. For every Γ ⊆ F and α ∈ F : Γ `BE1 α iff Γ |=BE1 α.

Proof. The proof proceeds as in Theorems 2–4.

The calculus CB1 was introduced in [14]. It arose as a result of the extension of B1 with the law of
double negation (NN1) ¬¬α→ α, which suggests that B1 @ CB1. Moreover, we have

Remark 3. The calculus CB1 is axiomatizable by CPC+, (ExM), (DS¬) and (MP).

Proof. See op. cit., p. 227, for details.

Definition 12. A CB1-valuation is any function v : F −→ {1, 0} that satisfies, for any α, β ∈ F ,
the following conditions:
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(∧) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
(∨) v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
(→) v(α→ β) = 1 iff v(α) = 0 or v(β) = 1
(¬0) if v(¬α) = 0, then v(α) = 1.
(¬¬1) if v(¬¬α) = 1, then v(¬α) = 0.

Definition 13. A formula α is a CB1-tautology iff for every CB1-valuation v, v(α) = 1. For any α ∈ F and
Γ ⊆ F , α is a semantic consequence of Γ (in symbols: Γ |=CB1 α) iff for any CB1-valuation v: if v(β) = 1 for
any β ∈ Γ, then v(α) = 1.

Theorem 7. For every Γ ⊆ F and α ∈ F : Γ `CB1 α iff Γ |=CB1 α.

Proof. We refer the reader to op. cit., pp. 230–231, for details.

Since ¬p1 → (¬¬p1 → p2) of the form (DS¬) is not a thesis of BE1 and (p1 → p2) → (¬(p1 →
p2) → p3) of the form (DS‡) is not provable in CB1, it follows that CB1 6@ BE1 and BE1 6@ CB1.
There exists, however, some paraconsistent calculi in which (DS¬) does not fail (see [15], for discussion
on the topic). The example of such a calculus is P1.

2.5. Sette’s Calculus P1

The calculus P1, proposed in [16], is defined in the language with negation and implication
as primitives by (A1), (A2), (AN1) (¬α → ¬β) → ((¬α → ¬¬β) → α), (AN2) ¬(α → ¬¬α) → α,
(NN2→) (α→ β)→ ¬¬(α→ β). The sole rule of inference is (MP). Some alternative axiomatizations
of P1 have been developed since then (see e.g., [9,17–22]).

Sette’s calculus is sound and complete with respect to the matrixMP1 =
〈
{1, 2, 0}, {1, 2},¬,→

〉
,

where {1, 2, 0} and {1, 2} are the sets of logical and designated values, respectively. The connectives of
→ and ¬ are determined by the following truth tables (cit. per [16], p. 176):

→ 1 2 0

1 1 1 0
2 1 1 0
0 1 1 1

¬

1 0
2 1
0 1.

A P1-valuation is any function v from the set of formulas to the set of logical values, i.e., v : F −→
{1, 2, 0}, compatible with the above truth tables. A P1-tautology is a formula which under every
valuation v takes on the designated values {1, 2}. Conjunction and disjunction are definable
connectives: α ∧ β =d f ¬(α→ ¬(¬β→ β)); α ∨ β =d f ¬(¬α→ α)→ β (cit. per [9,20]).

Remark 4. The calculus P1 is axiomatizable by CPC+, (ExM), (DS¬), (DS‡), where ‡ ∈ {∧,∨,→},
and (MP).

Proof. The proof splits into two steps. To show that the axioms (A1)–(A9), (ExM), (DS¬) and (DS‡)
are P1-tautologies, and (MP) preserves tautologicality, it suffices to apply the three-valued semantics
for P1 (plus the definitions of ‘missing’ connectives). Next we need to demonstrate that (AN1), (AN2)
and (NN2→) are provable in the proposed axiomatization. This in turn follows from the results of [17],
pp. 270–272, and [19], pp. 1111–1113.

Sette’s calculus is maximal with respect to CPC (see [16], pp. 179–180). Consequently, it is the top
extension of all gently paraconsistent calculi discussed in this paper.
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3. Final Remarks

We considered several paraconsistent calculi that admitted the principle of gentle
explosion, namely

A1 = CPC+ + (DS2) + (MP)
E1 = CPC+ + (DS2) + (DS‡) + (MP)
B1 = CPC+ + (DS2) + (ExM) + (MP)
BE1 = CPC+ + (DS2) + (ExM) + (DS‡) + (MP)
CB1 = CPC+ + (DS¬) + (ExM) + (MP)
P1 = CPC+ + (DS¬) + (ExM) + (DS‡) + (MP).

They all form together the lattice structure shown in Figure 1.

Figure 1. Gently paraconsistent calculi.

It is noteworthy that some well-known (not-gently) paraconsistent logics can be obtained by
eliminating (DS2) from the axiom schemas. For instance, dropping (DS2) from B1 results in obtaining
the logic CLuN (see [3], for details); dropping (DS2) from CB1 results in obtaining in the logic
Cmin(see [23]) . The calculi form together the lattice structure shown in Figure 2.

Figure 2. Paraconsistent extensions of CPC+.
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