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Abstract: In this paper, we present a new self-adaptive inertial projection method for solving
split common null point problems in p-uniformly convex and uniformly smooth Banach spaces.
The algorithm is designed such that its convergence does not require prior estimate of the norm of
the bounded operator and a strong convergence result is proved for the sequence generated by our
algorithm under mild conditions. Moreover, we give some applications of our result to split convex
minimization and split equilibrium problems in real Banach spaces. This result improves and extends
several other results in this direction in the literature.

Keywords: split common null point; strong convergence; resolvent; metric resolvent; split
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1. Introduction

Let H1 and H2 be real Hilbert spaces and C and Q be nonempty, closed and convex subsets of
H1 and H2, respectively. We consider the Split Common Null Point Problem (SCNPP) which was
introduced by Byrne et al. [1] as follows:

Find z ∈ H1 such that z ∈ A−1(0)
⋂

T−1(B−1(0)), (1)

where A : H1 → 2H1 and B : H2 → 2H2 are maximal monotone operators and T : H1 → H2 is
a linear bounded operator. The solution set of SCNPP (1) is denoted by Ω. The SCNPP contains
several important optimization problems such as split feasibility problem, split equilibrium problem,
split variational inequalities, split convex minimization problem, split common fixed point problems,
etc., as special cases (see, e.g., [1–5]). Due to their importance, several researchers have studied
and proposed various iterative methods for finding its solutions (see, e.g., [1,4–9]). In particular,
Byrne et al. [1] introduced the following iterative scheme for solving SCNPP in real Hilbert spaces:{

x0 ∈ H1, λ > 0,

xn+1 = JA
λ (xn + λT∗(JλB)Txn), n ≥ 0,

(2)
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where JA
λ x = (I + λA)−1x, for all x ∈ H1. They also proved that the sequence {xn} generated by (2)

converges weakly to a solution of SCNPP provided the step size λ satisfies

λ ∈
(

0,
2
L

)
, (3)

where L is the spectral radius of T. Furthermore, Kazmi and Rizvi [10] proposed a viscosity method
which converges strongly to a solution of (1) as follows:

x0 ∈ H1, λ > 0,

un = JA
λ (xn + λT∗(JB

λ − I)Axn),

xn+1 = αn f (xn) + (1− αn)Sun, n ≥ 0,

(4)

where {αn} ⊂ (0, 1) satisfies some certain conditions and S : H1 → H1 is a nonexpansive mapping.
It is important to emphasize that the convergence of (4) is achieved with the aid of condition (3). Other
similar results can be found, for instance, in [11,12] (and references therein). However, it is well known
that the norm of bounded linear operator is very difficult to find (or at least estimate) (see [13–15]).
Hence, it becomes necessary to find iterative methods whose step size selection does not require
prior estimate of the norm of the bounded linear operator. Recently, some authors have provided
breakthrough results in the framework of real Hilbert spaces (see, e.g., [13–15]).

On the other hand, Takahashi [8,16] extends the study of SCNPP (1) to uniformly convex and
smooth Banach spaces as follows: Let E1 and E2 be uniformly convex and uniformly smooth real
Banach spaces with dual E∗1 and E∗2 , respectively, and T : E1 → E2 be a bounded linear operator.
Let A : E1 → 2E∗1 and B : E2 → 2E∗2 be maximal monotone operators such that A−1(0) 6= ∅,
B−1(0) 6= ∅ and Qµ is a metric resolvent operator with respect to B and parameter µ > 0. Takahashi
and Takahashi [17] introduced the following shrinking projection method for solving SCNPP in
uniformly convex and smooth Banach spaces:

x1 ∈ C, µ1 > 0,

zn = xn − Jλn J−1
E1

T∗ JE2(Txn −Qµn Txn),

Cn+1 = {z ∈ Cn : 〈zn − z, JE1(xn − zn)〉 ≥ 0},
xn+1 = PCn+1 x1, for all n ∈ N,

(5)

where JEi are the normalized duality mapping with respect to Ei for i = 1, 2 (defined in the next
section). They proved a strong convergence result with the condition that the step size satisfies

0 < a ≤ λn‖T‖2 < b < 1 and 0 < c ≤ µn for all n ∈ N.

Furthermore, Suantai et al. [18] introduced a new iterative scheme for solving SCNPP in a real
Hilbert space H and a real Banach space E as follows:

x1 ∈ H,

yn = JA
λn
(xn + λnT∗ JE(Qµn − I)Txn),

xn+1 = αn f (xn) + βnxn + γnyn, n ≥ 1,

(6)

where {αn}, {βn}, {γn} ⊂ (0, 1) such that αn + βn + γn = 1 and f : H → H is a contraction mapping.
They also proved a strong convergence result under the condition that the step size satisfies

0 < λn‖T‖2 < 2.
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Recently, Takahashi [19] introduced a new hybrid method with generalized resolvent operators
for solving the SCNPP in real Banach spaces as follows:

zn = J−1(JExn − rnT∗(JFTxn − JFQµn Txn)),

yn = Jλn zn,

Cn = {z ∈ E : 2〈xn − z, JExn − JEzn〉 ≥ rn ϕF(Txn, Qµn Txn)},
Dn = {z ∈ E : 〈yn − z, JEzn − JEyn〉 ≥ 0},
Qn = {z ∈ E : 〈xn − z, JEx1 − JExn〉 ≥ 0},
xn+1 = ΠCn∩Dn∩Qn x1, for all n ∈ N.

(7)

He also proved that the sequence generated by Algorithm (7) converges strongly to a solution of
SCNPP provided the step sizes satisfy

0 < a ≤ rn ≤
1
‖T‖2 , and 0 < b ≤ λn, µn for all n ∈ N.

It is evident that the above methods and other similar ones (see, e.g., [6,9,20]) require prior
knowledge of the operator norm, which is very difficult to find. Thus, the following natural
question arises.

Problem 1. Can we provide a new iterative method for solving SCNPP in real Banach spaces such that the step
size does not require prior estimate of the norm of the bounded linear operator?

Let us also mention the inertial extrapolation process which is considered as a means of speeding
up the rate of convergence of iterative methods. This technique was first introduced by Polyak [21] as
a heavy-ball method of a two-order time dynamical system and has been employed by many authors
recently (see, e.g., [22–27]). Moreover, Dong et al. [27] introduced a modified inertial hybrid algorithm
for approximating the fixed points of non-expansive mappings in real Hilbert spaces as follows:

x0, x1 ∈ C,

wn = xn + θn(xn − xn−1),

zn = (1− βn)wn + βnTwn,

Cn = {x ∈ C : ‖zn − x‖2 ≤ ‖xn − x‖2},
Qn = {x ∈ C : 〈xn − x, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn x0,

(8)

where {θn} ⊂ [a1, a2], a1 ∈ (−∞, 0], a2 ∈ [0,+∞), {βn} ⊂ (0, 1) are suitable parameters.
More recently, Cholamjiak et al. [28] introduced an inertial forward-backward algorithm for

finding the zeros of sum of two monotone operators in Hilbert spaces as follows:

x0, x1 ∈ H, rn > 0,

yn = xn + θn(xn − xn−1),

zn = αnyn + (1− αn)Tyn,

vn = βnzn + (1− βn)JB
rn(I − rn A)zn,

Cn+1 = {v ∈ Cn : ‖vn − v‖2 ≤ ‖xn − v‖2 + Kn},
xn+1 = PCn+1 x1, n ≥ 1,

(9)
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where Kn = 2θ2
n‖xn − xn−1‖ − 2θn〈xn − z, xn−1 − xn〉, JB

rn = (I + rnB)−1, {θn} ⊂ [0, θ] for some
θ ∈ [0, 1) and {αn}, {βn} are sequences in [0, 1]. The authors proved that the sequence {xn} generated
by (9) converges strongly to a solution x ∈ (A + B)−1(0) under some mild conditions.

Motivated by the above results, in this paper, we aim to provide an affirmative answer to
Problem 1. We introduce a new inertial shrinking projection method for solving SCNPP in p-uniformly
convex and uniformly smooth real Banach spaces. The algorithm is designed such that its step size
is determined by a self-adaptive technique and its convergence does not require prior knowledge
of the norm of the bounded operator. We also prove a strong convergence result and provide some
applications of our main theorem to solving other nonlinear optimization problems. This result
improves and extends the results in [6,8,9,11,12,16,19,20] and many other recent results in the literature.

2. Preliminaries

Let E be a real Banach space with dual E∗ and norm ‖ · ‖. We denote the duality pairing between
f ∈ E and g∗ ∈ E∗ as 〈 f , g∗〉. The weak and strong convergence of {xn} ⊂ E to a ∈ E are denoted by
xn ⇀ a and xn → a, respectively, ∀ by “for all” and⇔ by “if and only if”. The function δE : [0, 2]→
[0, 1] defined by

δE(α) = inf
{

1− ‖ f + g‖
2

: ‖ f ‖ = 1 = ‖g‖, ‖ f − g‖ ≥ α

}
is called the modulus of convexity of E. The Banach space E is said to be uniformly convex if δE(α) > 0.
If there exists a constant Cp > 0 such that δE(α) ≥ Cpαp for any α ∈ (0, 2], then we say E is p-uniformly
convex. In addition, the function ρE(β) : [0, ∞)→ [0,+∞) defined by

ρE(β) =

{
‖ f + βg‖+ ‖ f − βg‖

2
− 1 : ‖ f ‖ = ‖g‖ = 1

}
is called the modulus of smoothness of E. The Banach space E is said to be uniformly smooth if
limβ→+∞

ρE(β)
β = 0. If there exists a constant Dq > 0 such that ρE(β) ≤ Dqβq for any β > 0, then E

is called q-uniformly smooth Banach space. Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. We Remark that
a Banach space E is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth. Examples
of q-uniformly smooth Banach spaces include Hilbert spaces, Lq(or lp) spaces, 1 < p < ∞ and the
Sobolev spaces, Wp

m, 1 < p < ∞ (see [29]). Moreover, the Hilbert spaces are uniformly smooth while

Lp(or lp) or Wp
m is

{
p− uniformly smooth if 1 < p ≤ 2

2− uniformly smooth if p ≥ 2.

Let ϕ : R+ → R+ be a continuous strictly increasing function. ϕ is called a gauge function if

ϕ(0) = 0, lim
t→∞

ϕ(t) = +∞.

The duality mapping with respect to ϕ, i.e., Jϕ : E→ E∗ is defined by

Jϕ(x) = {j ∈ E∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ϕ(‖x‖)}, x ∈ E.

When ϕ(t) = t, then we call Jϕ = J a normalized duality mapping. In addition, if ϕ(t) = tp−1

where p > 1, then, Jϕ = Jp is called a generalized duality mapping defined by

Jp(u) = { f ∈ E∗ : 〈u, f 〉 = ‖u‖‖ f ‖∗, ‖ f ‖∗ = ‖u‖p−1}, x ∈ E.

In the sequel, C is a nonempty closed convex subset of E and F(T) = {x ∈ C : Tx = x} is the set
of fixed point of T : C → C.
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Definition 1. Ref. [30] Let E be a Banach space, Jϕ : E → E∗ a duality mapping with gauge function ϕ,
and C a nonempty subset of E. A mapping T : C → E is said to be

(i) ϕ-firmly non-expansive if

〈Tu− Tv, Jϕ(Tu)− Jϕ(Tv)〉 ≤ 〈Tu− Tv, Jϕ(u)− Jϕ(v)〉

for all u, v ∈ C.
(ii) ϕ-firmly quasi-non-expansive if F(T) 6= ∅ and

〈Tu− z, Jϕ(u)− Jϕ(Tu)〉 ≥ 0

for all u in C and z in F(T).

Definition 2. Given a Gâteaux differentiable and convex function f : E→ R, the function

∆ f (u, v) := f (v)− f (u)− 〈 f ′(u), v− u〉, for all u, v ∈ E (10)

is called the Bregman distance of u to v with respect to the function f .

Moreover, since Jp
E is the derivative of the function fp(u) = 1

p‖u‖p, in that case, the Bregman
distance with respect to fp becomes

∆p(u, v) =
1
q
‖u‖p − 〈Jp

Eu, v〉+ 1
p
‖v‖p

=
1
p
(‖v‖p − ‖u‖p) + 〈Jp

Eu, u− v〉

=
1
q
(‖u‖p − ‖v‖p)− 〈Jp

Eu− Jp
Ev, v〉.

Remark 1. It follows from the Definition of ∆p that

∆p(u, v) = ∆p(u, z) + ∆p(z, v) + 〈z− v, Jp
Eu− Jp

Ez〉, for all u, v, z ∈ E, (11)

and

∆p(u, v) + ∆p(v, u) = 〈u− v, Jp
Eu− Jp

Ev〉, for all u, v, z ∈ E. (12)

Although the Bregman is not symmetrical, it however has the following relationship with ‖ · ‖ distance:

α‖u− v‖p ≤ ∆p(u, v) ≤ 〈u− v, Jp
Eu− Jp

Ev〉, for all u, v ∈ E, α > 0. (13)

This indicates that Bregman distance is non-negative.

Definition 3. The Bregman projection mapping ΠC : E→ C is defined by

ΠCu = arg min
v∈C

∆p(u, v), for all u ∈ E. (14)

The Bregman projection can also be characterized by the following inequality

〈Jp
Eu− Jp

EΠCu, z−ΠCu〉 ≤ 0, for all z ∈ C, (15)
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This is equivalent to

∆p(ΠCu, z) ≤ ∆p(u, z)− ∆p(u, ΠCu), for all z ∈ C. (16)

Lemma 1. Ref. [31] Let E be a q-uniformly smooth Banach space with q-uniformly smoothness constant cq > 0.
For any u, v ∈ E, the following inequality holds:

‖u− v‖q ≤ ‖u‖q − q〈v, Jq
Eu〉+ cq‖v‖q.

Definition 4. A mapping T : C → C is said to be closed or has a closed graph if a sequence {xn} ⊂ C
converges strongly to a point x ∈ C and Txn → y, then Tx = y.

Lemma 2. Ref. [29] It is known that the generalized duality has the following properties:

(I) Jp
E(x) is nonempty bounded closed and convex, for any x ∈ E.

(II) If E is a reflexive Banach space, then Jp
E is a mapping from E onto E∗.

(III) If E is smooth Banach space, then Jp
E single valued.

(IV) If E is a uniformly smooth Banach space, then Jp
E is norm-to-norm uniformly continuous on each bounded

subset of E.

Lemma 3. Ref. [32] For any {xn} ⊂ E, {tn} ⊂ (0, 1) with ∑N
n=1 tn = 1, the following inequality holds:

∆p(Jq
E∗ , (

N

∑
n=1

tn Jp
E(xn)), x) ≤

N

∑
n=1

tn∆p(xn, x) for all x ∈ E.

We now define some important operators which play key role in our convergence analysis.

Definition 5. Let A : E→ 2E∗ be a multi-valued mapping. We define the effective domain of A by D(A) =

{x ∈ E : Ax 6= 0} and range of A by <(A) =
⋃

x∈D(A) Ax. The operator A is said to be monotone if
〈x − y, u∗ − v∗〉 ≥ 0 for all x, y ∈ D(A), u∗ ∈ Ax and v∗ ∈ Ay. When the graph of A is not properly
contained in the graph of any other monotone operator, then we say that A is maximally monotone.
Let E be a smooth, strictly convex, and reflexive Banach space and A : E→ 2E∗ be a maximal monotone operator.
The metric resolvent operator with respect to A is defined by Qϕ

r (u) = (I + rJ−1
ϕ A)−1(u). It is easy to see that

0 ∈ Jϕ(Q
ϕ
r (u)− u) + rAQϕ

r (u), (17)

and F(Qϕ
r ) = A−10 for all r > 0 (see, e.g., [20]). Moreover, by the monotonicity of A, we can show that

〈Qϕ
r (u)−Qϕ

r (v), Jϕ(u−Qϕ
r (u))− Jϕ(v−Qϕ

r (v))〉 ≥ 0 (18)

for all u, v ∈ E. In addition, if A−10 6= ∅, then

〈Qϕ
r (u)− z, Jϕ(u−Qϕ

r (u))〉 ≥ 0 (19)

for all u ∈ E and z ∈ A−10. In the case ϕ(t) = tp−1 with p ∈ (1,+∞), we denote Qϕ
r by Qr = (I + rJ−1

p A)−1

(see, e.g., [33]).

Proposition 1. Ref. [30] Let A : E→ 2E∗ be an operator satisfying the following range condition

D(A) ⊂ C ⊂ J−1
ϕ <(Jϕ + λA) for all λ > 0.

Define the ϕ-resolvent operator Rϕ
λ : C → 2E associated with operator A by

Rϕ
λ(x) = {z ∈ X : Jϕ(x) ∈ (Jϕ + λA)z}, x ∈ C.
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Then, for any u ∈ C and λ > 0, we see that

0 ∈ Au ⇔ Jϕ(u) ∈ (Jϕ + λA)u

⇔ u ∈ (Jϕ + λA)−1 Jϕ(u)

⇔ u ∈ F(Rϕ
λ).

Proposition 2. Ref. [30] Let C be a nonempty, closed, and convex subset of a reflexive, strictly convex Banach
space E and let Jϕ : E → E∗ be the duality mapping with gauge ϕ. Let A : E → 2E∗ be a monotone operator
satisfying the condition D ⊂ C ⊂ J−1

ϕ <(Jϕ + λA), where λ > 0. Let Rϕ
λ be a resolvent operator of A; then,

(a) Rϕ
λ is ϕ-firmly non-expansive mapping from C into C.

(b) F(Rϕ
λ) = A−10.

Let E be a uniformly convex and smooth Banach space. Let A be a monotone operator of E into
2E∗ . From Browder [34], we know that A is maximal if and only if, for any r > 0,

<(Jϕ + rA) = E∗.

Remark 2.

(i) The smoothness and strict convexity of E ensures that Rϕ,A
λ is single-valued. In addition, the range

condition ensure that Rϕ
λ single-valued operator from C into D(A). In other words,

Rλ(x)ϕ(x) = (Jϕ + λA)−1 Jϕ(x), for all x ∈ C.

(ii) When A is maximal monotone, the range condition holds for C = D(A).

In the sequel, we denote Rϕ
λ by Rλ = (Jp + λA)−1 Jp for convenience.

Let E and F be real Banach spaces and let T : E → F be a bounded linear. The dual (adjoint)
operator of T, denoted by T∗, is a bounded linear operator defined by T∗ : F∗ → E∗

〈T∗ȳ, x〉 := 〈ȳ, Tx〉, for all x ∈ E, ȳ ∈ F∗

and the equalities ‖T∗‖ = ‖T‖ and ℵ(T∗) = <(T)⊥ are valid, where <(T)⊥ := {x∗ ∈ F∗ : 〈x∗, u〉 =
0, for all u ∈ <(T)} (see [35,36] for more details on bounded linear operators and their duals).

Lemma 4. Ref. [9] Let E and F be uniformly convex and smooth Banach spaces, Let T : E→ F be a bounded
linear operator with the adjoint operator T∗. Let Rλ be the resolvent operator associated with a maximal monotone
operator A on E and let Qr be a metric resolvent associated with a maximal monotone operator B on F. Assume
that A−10∩ T−1(B−10) 6= ∅. Let λ, µ, r > 0 and z ∈ E. Then, the following are equivalent:

(a) z = Rλ(Jq
E∗(Jp

E(z)− µT∗ Jp
F(Tz−Q− rTz))); and

(b) z ∈ A−0∩ T−1(B−10).

3. Main Results

In this section, we present our algorithm and its convergence analysis. In the sequel, we assume
that the following assumption hold.

(i) E1 and E2 are two p-uniformly convex and uniformly smooth real Banach spaces.
(ii) T : E1 → E2 is a bounded linear operator with T 6= 0 with adjoint T∗ : E∗2 → E∗1 .

(iii) A : E1 → 2E∗1 and B : E2 → 2E∗2 are maximal monotone operators.
(iv) Rλ is the resolvent operator associated with A and Qr is the metric resolvent operator associated

with B.
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In addition, we denote by Jp
E1

and Jp
E2

the duality mappings of E1 and E2, respectively, while Jq
E∗1

is the
duality mapping of E∗1 . It is worth mentioning that, when E∗1 and E∗2 are two q-uniformly smooth and
uniformly convex Banach spaces, Jp

E1
= (Jq

E∗1
)−1 where 1 < q ≤ 2 ≤ p < +∞ with 1

p + 1
q = 1.

Algorithm SASPM: Given initial values x0, x1 ∈ C1 = E1, the sequence {xn} generated by the
following iterative algorithm:

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−Qrn Twn))‖p T∗ Jp

E1
(Twn −Qrn Twn)

]
,

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
Rλn zn

)
,

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)},
xn+1 = ΠCn+1 x0

(20)

where {rn}, {λn} ⊂ (0, ∞), ΠCn+1 is a Bregman projection of E1 onto Cn+1, the sequence of real number
{αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), f (wn) := 1

p‖(I − Qrn)Twn‖p, and {ρn} ⊂
(0,+∞) satisfying

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

To prove the convergence analysis of Algorithm SASPM, we first prove some useful results.

Lemma 5. Let E1 be a p-uniformly convex and uniformly smooth real Banach space, and C1 = E1. Then,
for any sequence {yn}, {zn} and {wn} in E1, the set

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)}

is closed and convex for each n ≥ 1.

Proof. First, since C1 = E1, C1 is closed and convex. Then, we assume that Cn is a closed and convex.
For each u ∈ Cn, by the definition of the function ∆p, we have

∆p(yn, u) ≤ ∆p(zn, u) if and only if 2〈Jp
E1

zn − Jp
E1

yn, u〉 ≤ 1
q
(‖zn‖p − ‖yn‖p),

and
∆p(zn, u) ≤ ∆p(wn, u) if and only if 2〈Jp

E1
wn − Jp

E1
zn, u〉 ≤ 1

q
(‖wn‖p − ‖zn‖p).

Hence, we know that Cn+1 is closed. In addition, we easily prove that Cn+1 is convex. The proof is
completed.

Lemma 6. Let E1, E2, T T∗ A, B, and Jp
E1

, Jp
E2

. Jp
E2

, Jq
E∗1

be the same as above such that Conditions (1)–(4) are

satisfied. If Υ = {z : z ∈ A−10∩ T−1(B−10)}, then Υ ⊆ Cn for any n ≥ 1.

Proof. If Υ = ∅, it is obvious that Υ ⊆ Cn. Conversely, for any z ∈ Γ, according to Lemma 3 and using
the fact that the resolvent Rλn is non-expansive, we easily obtain

∆p(yn, z) = ∆p(Jq
E∗1
(αn Jp

E1
zn + (1− αn)Jp

E1
Rλn zn), z)

≤ αn∆p(zn, z) + (1− αn)∆p(Rλn zn, z)

≤ ∆p(zn, z). (21)
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From (20), let un = Jp
E1
(wn) − ρn

f p−1(wn)
‖g(wn)‖p g(wn) for all n ≥ 1, where g(wn) = T∗ Jp

E1
(Twn −

Qrn Twn). We see from Lemma 1 that

‖un‖q
E∗1

= ‖Jp
E1
(wn)− ρn

f p−1(wn)

‖g(wn)‖p g(wn)‖q
E∗1

≤ ‖wn‖p − qρn
f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f (p−1)q(wn)

‖g(wn)‖pq ‖g(wn)‖q

= ‖wn‖p − qρn
f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f p(wn)

‖g(wn)‖p . (22)

Then, by (16) and (22), we get

∆p(zn, z) ≤ ∆p(Jp
E1
(un), z)

=
‖z‖p

p
+

1
q
‖Jp

E1
(un)‖p − 〈z, u〉

=
‖z‖p

p
+

1
q
‖un‖(q−1)p − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖

(q−1) q
(q−1) − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖q − 〈z, un〉

=
‖z‖p

p
+

1
q
‖un‖q −

〈
z, Jp

E1
(wn)

〉
+ ρn

f p−1(wn)

‖g(wn)‖p 〈z, g(wn)〉

≤ ‖z‖p

p
+

1
q

(
‖wn‖p − qρn

f p−1(wn)

‖g(wn)‖p 〈wn, g(wn)〉+ cqρ
q
n

f p(wn)

‖g(wn)‖p

)
−
〈

z, Jp
E1
(wn)

〉
+ ρn

f p−1(wn)

‖g(wn)‖p 〈z, g(wn)〉

=
‖z‖p

p
+
‖wn‖p

q
−
〈

z, Jp
E1
(wn)

〉
+

cqρ
q
n

q
f p(wn)

‖g(wn)‖p + ρn
f p−1(wn)

‖g(wn)‖p 〈z− wn, g(wn)〉

= ∆p(wn, z) +
cqρ

q
n

q
f p(wn)

‖g(wn)‖p + ρn
f p−1(wn)

‖g(wn)‖p 〈z− wn, g(wn)〉 (23)

On the other hand, observe that

〈g(wn), z− wn〉 = 〈T∗ Jp
E2
(I −Qrn Twn), z− wn〉

= 〈Jp
E2
(I −Qrn Twn), Tz− Twn〉

= 〈Jp
E2
(wn)(I −Qrn)Twn, Qrn Twn − Twn〉+ 〈Jp

E2
(I −Qrn)Twn, Tz−Qrn Twn〉

≤ −‖(I −Qrn)Twn‖p = −p f (wn). (24)

By using (23) and (24), we get

∆p(zn, z) ≤ ∆p(wn, z) +

(
cqρ

q
n

q
− ρn p

)
f p(wn)

‖g(wn)‖p , (25)

which implies by our assumption that

∆p(zn, z) ≤ ∆p(wn, z). (26)

From (21) and (26), we have that z ∈ Cn+1, that is, Υ ⊆ Cn, for all n ≥ 1.
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Theorem 1. Let E1, E2 T, T∗, A, B, and Jp
E1

, Jp
E2

, Jq
E∗1

be the same as above such that Conditions (1)–(4) are

satisfied. If Υ = {z : z ∈ A−10∩ T−1(B−10)} 6= ∅, then the sequence generated by Algorithm (20) converges
strongly to a point z = ΠΥx0 ∈ Υ.

Proof. By Lemmas 5 and 6, we know that ΠCn+1 x0 is well defined and Υ ⊂ Cn. According to
Algorithm (20), we know that xn = ΠCn x0 and xn+1 = ΠCn+1 x0 for each n ≥ 1. Using Υ ⊂ Cn

and (16), we have

∆p(x0, xn) = ∆p(x0, ΠCn x0) ≤ ∆p(x0, z) z ∈ Υ, ∀n ≥ 1. (27)

It implies that {∆p(x0, xn)} is bounded. Reusing (16), we also have

∆p(xn, xn+1) = ∆p(ΠCn x0, xn+1) ≤ ∆p(x0, xn+1)− ∆p(x0, ΠCn x0)

= ∆p(x0, xn+1)− ∆p(x0, xn). (28)

It follows that {∆p(x0, xn+1)} is nondecreasing. Hence, the limit lim
n→+∞

∆p(x0, xn) exists, and

lim
n→+∞

∆p(xn, xn+1) = 0 (29)

It follows from (13) that

lim
n→+∞

‖xn+1 − xn‖ = 0 (30)

For some positive m, n with m ≥ n, we have xm = ΠCm x1 ⊆ Cn. Using (16), we obtain

∆p(xn, xm) = ∆p(ΠCn x0, xm) ≤ ∆p(x0, xm)− ∆p(x0, ΠCn x0)

= ∆p(x0, xm)− ∆p(x0, xn). (31)

Since the limit lim
n→+∞

∆p(x0, xn) exists, it follows from (31) that lim
n→+∞

∆p(xn, xm) = 0 and

lim
n→+∞

‖xn − xm‖ = 0. Therefore, {xn} is Cauchy sequence. Further, there exists a point x∗ ∈ C

such that xn → x∗.
From Algorithm (20), Definition 2, and Lemma 1, we have

∆p(wn, z) =
1
q
‖Jp

E∗1
(Jp

E1
xn + θn Jp

E1
(xn − xn−1))‖p +

1
p
‖z‖p

−〈Jp
E1

xn + θn Jp
E1
(xn − xn−1), z〉

=
1
q
‖Jp

E1
xn + θn Jp

E1
(xn − xn−1)‖q +

1
p
‖z‖p

−〈Jp
E1

xn + θn Jp
E1
(xn − xn−1), z〉

≤ 1
q
‖Jp

E1
xn‖q +

1
p
‖z‖p − 〈Jp

E1
xn, x∗〉 − θn〈Jp

E1
(xn − xn−1), z〉

+θn〈Jp
E1
(xn − xn−1), xn〉+

cq(θn)q

q
‖Jp

E1
(xn − xn−1)‖q

=
1
q
‖xn‖q +

1
p
‖z‖p − 〈Jp

E1
xn, x∗〉 − θn〈Jp

E1
(xn − xn−1), z〉

+θn〈Jp
E1
(xn − xn−1), xn〉+

cq(θn)q

q
‖Jp

E1
(xn − xn−1)‖q

= ∆p(xn, z) + θn〈Jp
E1
(xn − xn−1), xn − x∗〉+

cq(θn)q

q
‖xn − xn−1‖p. (32)
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By virtue of Remark 1 and the definition of wn, we know

∆p(wn, z) = ∆p(wn, xn) + ∆p(xn, z) + 〈xn − z, Jp
E1

wn − Jp
E1

xn〉

= ∆p(wn, xn) + ∆p(xn, z) + θn〈xn − z, Jp
E1
(xn − xn−1)〉. (33)

By (32) and (33), we get ∆p(wn, xn) ≤
cq(θn)q

q ‖xn − xn−1‖p. Then, using (13) and (30) and the
boundedness of the sequence {θn}, we can obtain

lim
n→+∞

‖wn − xn‖ = 0. (34)

Using a similar method, we can get

∆p(wn, xn+1) = ∆p(wn, xn) + ∆p(xn, xn+1) + 〈xn − xn+1, Jp
E1

wn − Jp
E1

xn〉.

By setting n→ +∞, we have

lim
n→+∞

‖wn − xn+1‖ = 0. (35)

Since xn+1 = ΠCn+1 x0 ∈ Cn+1 ⊆ Cn, we have

∆p(yn, xn+1) ≤ ∆p(zn, xn+1) ≤ ∆p(wn, xn+1).

According to (35), we obtain

lim
n→+∞

∆p(yn, xn+1) = 0, lim
n→+∞

∆p(zn, xn+1) = 0, (36)

which implies that lim
n→+∞

‖yn − xn+1‖ = 0, lim
n→+∞

‖zn − xn+1‖ = 0. Hence,

‖xn − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − zn‖ → 0, as n→ +∞, (37)

and

‖yn − zn‖ ≤ ‖xn+1 − yn‖+ ‖xn+1 − zn‖ → 0, as n→ +∞. (38)

We also get from (34) and (37) that

‖wn − zn‖ ≤ ‖wn − xn‖+ ‖xn − zn‖ → 0, as n→ ∞. (39)

As Jp
E1

is norm to norm uniformly continuous on a bounded subset of E1, we obtain

‖Jp
E1
(wn)− Jp

E1
(zn)‖ → 0, as n→ +∞. (40)

Since E1 is a p-uniformly convex and uniformly smooth real Banach space, then Jp
E1

is uniformly
norm-to-norm continuous. Thus, it follows from Algorithm (20) and real number sequence {αn} in
[a, b] ⊂ (0, 1) that

lim
n→+∞

‖Jp
E1

Rλn zn − Jp
E1

zn‖ = 0 = lim
n→+∞

1
1− αn

‖Jp
E1

yn − Jp
E1

zn‖ = 0,
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which also implies that lim
n→+∞

‖Rλn zn − zn‖ = 0. From (25), and z being in Υ, we get

∆p(zn, z) ≤ ∆p(wn, z) + ρn

(
cqρ

q−1
n

q
− p

)
f p(wn)

‖g(wn)‖p

= ∆p(wn, z)− ρn

(
p−

cqρ
q−1
n

q

)
f p(wn)

‖g(wn)‖p .

This implies that

ρn

(
p−

cqρ
q−1
n

q

)
f p(wn)

‖g(wn)‖p ≤ ∆p(wn, z)− ∆p(zn, z)

=
1
q
‖wn‖p − 1

q
‖zn‖p − 〈Jp

E1
wn − Jp

E1
zn, z〉

= ∆p(wn, zn) + 〈Jp
E1

wn − Jp
E1

zn, zn − z〉

≤ (‖wn − zn‖+ ‖zn − z‖)‖Jp
E1

wn − Jp
E1

zn‖.

By setting of n→ +∞, the right-hand side of the last inequality tends to 0. This implies that

ρn

(
p−

cqρ
q−1
n

q

)
f p(wn)

‖g(wn)‖p → 0, n→ +∞. (41)

Since lim inf
n→+∞

ρn

(
p− cq

ρ
q−1
n
q

)
> 0, we get

f p(wn)

‖g(wn)‖p → 0, n→ +∞

and hence

f (wn)

‖g(wn)‖p → 0, n→ +∞ (42)

Furthermore, since {g(wn)} is bounded, we obtain from (42) that

0 ≤ g(wn) = ‖g(wn)‖
f (wn)

‖g(wn)‖

≤ M1
f (wn)

‖g(wn)‖
→ 0, n→ +∞,

for some M1 > 0. Therefore,
lim

n→+∞
f (wn) = 0.

Hence,
lim

n→+∞
‖(I −Qrn)Twn‖ = 0.

In addition,

‖T∗ Jp
E2
(I −Qrn)Twn‖ ≤ ‖T‖‖(I −Qrn)Twn‖ → 0, n→ +∞.

Since ‖xn − wn‖ → 0, as n → +∞, there exists a subsequence {xnj} of {xn} such that xnj ⇀

w ∈ E1, as well as ‖xn − wn‖ → 0, as n → +∞ there exists a subsequence {wnj} of {wn} such that
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wnj ⇀ w ∈ E1. From ‖Twn − Qrn Twn‖ → 0 and by the boundedness and linearity of T, we have
Twnj ⇀ Tw and Qrnj

Twnj ⇀ Tw. Since Qrn is a metric resolvent on B for rn > 0, we have

Jp
E2
(Twn −Qrn Twn)

rn
∈ BQrn Twn

for all n ∈ N, thus we obtain

0 ≤
〈

v−Qrnj
Twnj Twnj , v∗ −

Jp
E2
(Twnj −Qrnj

Twnj)

rnj

〉
for all (v, v∗) ∈ B. It follows that

0 ≤ 〈v− Tw, v∗ − 0〉

for all (v, v∗) ∈ B. Since B is maximal monotone, Tw ∈ B−10 and hence w ∈ T−1(B−10).
Let bn = Rλn zn and kn = Twn −Qrn Twn ∀n ∈ N

bn = Jλn

(
Jq
E∗1

(
Jp
E1
(wn)− λnT∗ Jp

E2
(kn)

))
⇐⇒ bn =

(
Jp
E1

+ λn A
)−1

Jp
E1

(
Jq
E∗1
(Jp

E1
(wn)− λnT∗ Jp

E2
(kn))

)
⇐⇒ bn =

(
Jp
E1

+ λn A
)−1 (

Jp
E1
(wn)− λnT∗ Jp

E2
(kn)

)
⇐⇒ Jp

E1
(wn)− λnT∗ Jp

E2
(kn) ∈ Jp

E1
(bn) + λn Abn

⇐⇒
Jp
E1
(wn)− Jp

E1
(bn)

λn
− T∗ Jp

E2
(kn) ∈ Abn.

Note that

‖Jp
E1
(wn)− Jp

E1
(bn)‖ = ‖Jp

E1
(wn)− Jp

E1
(Rλn zn)‖

≤ ‖Jp
E1
(wn)− Jp

E1
(zn)‖+ ‖Jp

E1
(zn)− Jp

E1
(Rλn zn)‖ → 0, n→ +∞. (43)

By the monotonicity of A, it follows that

0 ≤
〈

v− bn, v∗ −
Jp
E1
(wn)− Jp

E1
(bn)

λn
+ T∗ Jp

E2
(kn)

〉

for all (v, v∗) ∈ A. Then,

0 ≤
〈

v− bn, v∗ −
Jp
E1
(wni )− Jp

E1
(bni )

λni

+ T∗ Jp
E2
(kni )

〉
.

Since bni ⇀ w, (40) and (43), it follows that 0 ≤ 〈v − w, v∗ − 0〉 and hence w ∈ A−10.
This concludes that w ∈ A−10∩ T−1(B−10). Then, from (28) and (20), we have

〈Jp
E1

x0 − Jp
E1

xn, p− xn〉, for all p ∈ Υ. (44)

By setting n→ +∞ in (44), we obtain

〈Jp
E1

x0 − Jp
E1

x∗, p− x∗〉 ≤ 0, for all p ∈ Υ. (45)

Again, from (15), we have x∗ = ΠΥx0. Definitely, we obtain that {xn} generated by Algorithm (20)
strongly converges to x∗ = ΠΥx0 ∈ Υ. The proof is completed.
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As a corollary of Theorem 1, when E1 and E2 reduces to Hilbert spaces, the function ∆p is equal
to 1

2‖x− y‖2 and the Bregman projection ΠC is equivalent to the metric projection PC. Then, we obtain
the following result.

Theorem 2. Let H1 and H2 be Hilbert spaces, A : H1 → 2H1 and B : H2 → 2H2 be maximal monotone
operators, T : H1 → H2 be a bounded linear operator with T 6= 0, and T∗ : H2 → H1 be the adjoint of T. Let
Rλ be the resolvent operator associated with a maximal monotone operator A on H1 and Qr be metric resolvent
associated with a maximal monotone operator B on H2. Suppose that Υ = A−10∩ T−1(B−10) 6= ∅. For fixed
x0 ∈ H1, let {xn}+∞

n=0 be iteratively generated by x1 ∈ H1 and

wn = xn + θn(xn − xn−1),

zn = wn − ρn
f (wn)

‖T∗(I−Qrn )Twn‖2 [T∗(I −Qrn)Twn]

yn = αnzn + (1− αn)Rλn zn

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖zn − u‖ ≤ ‖wn − u‖},
xn+1 = PCn+1 x0,

(46)

where PCn+1 is the metric projection of H1 onto Cn+1, the sequence of real numbers, {αn} ⊂ [a, b] ⊂ (0, 1)
and {θn} ⊂ [c, d] ⊂ (−∞,+∞). f (wn) := 1

2‖(I −Qrn)Twn‖2, and {ρn} ∈ (0, 4). Then, the sequence {xn}
generated by (46) converges strongly to a point z0 = PΥx0 ∈ Υ.

4. Applications

In this section, we provide some applications of our result to solving other nonlinear
optimization problems.

4.1. Application to Minimization Problem

First, we consider an application of our result to convex minimization problem in real Banach
space E. Let ϑ : E→ (−∞,+∞] be a proper, convex and lower semicontinuous function. The convex
minimization problem is to find x ∈ E such that

ϑ(x) ≤ ϑ(y), for all y ∈ E.

The set of minimizer of ϑ is denoted by Argmin ϑ. The subdifferential of ∂ϑ of ϑ is defined
as follows

∂ϑ(u) = {w ∈ E∗ : ϑ(u) + 〈v− u, w〉 ≤ ϑ(u), for all v ∈ E},

for all u ∈ E. From Rockafellar [37], it is known that ∂ϑ is a maximal monotone operator. Let C be a
nonempty, closed, and convex subset of E and let iC be the indicator function of C i.e.,

iC(u) =

{
0, u ∈ C

∞, u /∈ C.

Then, iC is a proper, convex, and lower semicontinuous function on E. Thus, the subdifferential
∂iC of iC is a maximal monotone operator. Then, we can define the resolvent Rλ of ∂iC for λ > 0 i.e.,

Rλu = (Jp + λ∂iC )
−1 Jpu
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for all u ∈ E and p ∈ (1,+∞). We have that for any x ∈ E and u ∈ C

u = Rλx if and only if Jpx ∈ Jpu + λ∂iC u

if and only if
1
λ
(Jpx− Jpu) ∈ ∂iC u

if and only if iCy ≥ 〈y− u,
1
λ
(Jpx− Jpu)〉+ iCu for all y ∈ C

if and only if 0 ≥ 〈y− u,
1
λ
(Jpx− J − pu)〉, for all y ∈ C

if and only if 〈y− u, Jpx− Jpu〉 ≤ 0, for all x ∈ C

if and only if u = ΠCx.

Let E1 and E2 be real Banach spaces and ϑ : E1 → (−∞,+∞] and ξ : E2 → (−∞,+∞] be proper,
lower semicontinuous, and convex functions such that Argminϑ 6= ∅ and Argminξ 6= ∅. Consider the
Split Proximal Feasibility Problem (SPFP) defined by: Find x ∈ E1 such that

x ∈ Argmin ϑ and Ax ∈ Argmin ξ, (47)

where Argmin ϑ := {x̄ ∈ E1 : ϑ(x̄) ≤ ϑ(x), for all x ∈ E1}, and Argmin ξ = {ȳ ∈ E2 : ξ(ȳ) ≤
ξ(y), for all y ∈ E2}. We denote the solution set of (47) by Ω. The PSFP is a generalization of the
split feasibility problem and has been studied extensively by many authors in real Hilbert space (see,
e.g., [38–42]).

By setting A = ∂ϑ and B = ∂ξ, we obtain a strong convergence result for solving (47) in real
Banach spaces.

Theorem 3. Let E1 be a p-uniformly convex and uniformly smooth Banach space and E2 be a uniformly convex
smooth Banach space. Let ϑ and ξ be proper, lower semicontinuous, and convex functions of E1 into (−∞,+∞]

and E2 into (−∞,+∞] such that (∂ϑ)−10 6= ∅ and (∂ξ)−10 6= ∅, respectively. Let T : E1 → E2 be a bounded
linear operator such that T 6= 0 and let T∗ be the adjoint operator T. Suppose that Ω 6= ∅. For fixed x0 ∈ E1,
let {xn}∞

n=0 be iteratively generated by x1 ∈ E1 and

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

vn = arg miny∈E2{ξ(y) +
1

µn
‖y‖2 − 1

µn
〈y, Jp

E2
Twn〉}

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−vn)‖p)

T∗ Jp
E1
(Twn − vn)

]
,

un = arg minx∈E1{ϑ(x) + 1
σn
‖x‖2 − 1

σn
〈x, Jp

E2
zn〉}

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
un

)
,

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)},
xn+1 = ΠCn+1 x0

(48)

where {σn}, {µn} ⊂ (0,+∞), ΠCn+1 is a Bregman projection of E1 onto Cn+1, the sequence of real number
{αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), f (wn) := 1

p‖Twn−vn‖p, and {ρn} ⊂ (0,+∞) satisfies

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

where cq is the uniform smoothness coefficient of E1. Then, xn → z0 ∈ (∂ϑ)−10∩ T−1((∂ξ)−10),
where z0 := Π(∂ϑ)−10∩T−1((∂ξ)−10)x0
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Proof. We know from [43] that

vn = arg min
y∈E2
{ξ(y) + 1

2µn
‖y‖2 − 1

µn
}〈y, Jp

E2
Twn〉

is equivalent to

0 ∈ (∂ξ)xn +
1

µn
Jp
E2

xn −
1

µn
Jp
E2

Twn

From this, we have Jp
E2

Twn ∈ Jp
E2

vn + µn(∂ξ)vn i.e., vn = Qrn Twn. Similarly, we have that

un = arg min
x∈E1
{ϑ(x) +

1
2σn
‖x‖2 − 1

σn
〈x, Jp

E1
zn〉}

is equivalent to un = Rλn zn. Using Theorem 1, we get the conclusion.

4.2. Application to Equilibrium Problem

Let C be a nonempty closed and convex subset of a Banach space E and let G : C× C → R be a
bifunction. For solving the equilibrium problem, we assume that G satisfies the following conditions:

(A1) G(x, x) = 0, ∀x ∈ C.
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for any x, y ∈ C.
(A3) G is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

G(tz + (1− t)x, y) ≤ G(x, y).

(A4) G(x, 0) is convex and lower semicontinuous for each x ∈ C.

The equilibrium problem is to find x∗ ∈ C such that

G(x∗, y) ≥ 0 for all y ∈ C.

The set of solution of this problem is denoted by EP(G).

Lemma 7. [44] Let g : E→ (−∞,+∞] be super coercive Legendre function, G be a bifunction of C× C into
R satisfying Conditions (A1)–(A4), and x ∈ E. Define a mapping Sg

G : E→ C as follows:

Sg
G(x) = {z ∈ C : G(z, y) + 〈y− z,∇g(z)−∇g(x)〉 ≥ 0 for all y ∈ C}.

Then,

(i) domSg
G = E.

(ii) Sg
G is single-valued.

(iii) Sg
G is a Bregman firmly nonexpansive operator.

(iv) The set of fixed point of S f
G is the solution set of the corresponding equilibrium problem,

i.e., F(Sg
G) = EP(G).

(v) EP(G) is closed and convex.
(vi) For all x ∈ E and for all u ∈ F(Sg

G), we have

Dg(u, Sg
G(x)) + Dg(S

g
G(x), x) ≤ Dg(u, x).
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Proposition 3. [45] Let g : E → (−∞,+∞] be a super coercive Legendre Frécht differentiable and totally
convex function. Let C be a closed and convex subset of E and assume that the bifunction G : C × C → R
satisfies the Conditions (A1)–(A4). Let AG be a set-valued mapping of E into 2E∗ defined by

AG(x) =

{
{z ∈ E∗ : G(x, y) ≥ 〈y− x, z〉 for all y ∈ C}, x ∈ C

∅, x ∈ E− C.

Then, AG is a maximal monotone operator, EP(G) = A−1
G (0) and Sg

G = Rg
AG

.

Let E1 and E2 real Banach spaces and C and Q be nonempty, closed, and convex subsets of E1

and E2, respectively. Let G1 : C× C → R and G2 : Q× Q → R be bifunctions satisfying Conditions
(A1)–(A4) and T : E1 → E2 be a bounded linear operator. We consider the Split Equilibrium Problem
(SEP) defined by: Find x ∈ C such that

x ∈ EP(G1) and Tx ∈ EP(G2). (49)

The SEP was introduced by Moudafi [46] and has been studied by many authors for Hilbert and
Banach spaces (see, e.g., [47–50]). We denote the set of solution of (49) by SEP(G1, G2).

Setting A = AG1 and B = AG2 in Algorithm (20), Lemma 7, and Proposition 3, we obtain a strong
convergence result for solving SEP in real Banach spaces.

Theorem 4. Let E1 be a p-uniformly convex and uniformly smooth Banach space, E2 be a uniformly smooth
Banach space, and C and Q be nonempty closed subsets of E1 and E2, respectively. Let G : C× C → R and
H : Q× Q → R be bifunctions satisfying Conditions (A1)–(A4) and g : E1 → R and h : E2 → R be super
coercive Legendre functions which are bounded, uniformly Frechet differentiable, and totally convex on bounded
subset of E2. Let T : E1 → E2 be a bounded linear operator with T 6= 0 and T∗ : E∗2 → E∗1 be the adjoint of T.
Suppose that SEP(G1, G2) 6= ∅ for fixed x0 ∈ E1, let {xn}∞

n=0 be iteratively generated by x1 ∈ E1, and

wn = Jq
E∗1

[
Jp
E1

xn + θn Jp
E1
(xn − xn−1)

]
,

zn = Jq
E∗1

[
Jp
E1
(wn)− ρn

f p−1(wn)

‖T∗(Jp
E2
(Twn−Sh

Hn Twn)‖p)
T∗ Jp

E1
(Twn − Sh

Hn
Twn)

]
,

yn = Jq
E1

(
αn Jp

E1
zn + (1− αn)Jp

E1
Sg

Gn
zn

)
,

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)},
xn+1 = ΠCn+1 x0

(50)

where {Hn} and {Gn} ⊂ (0,+∞), f (wn) =
1
p‖(I − Sh

Hn
)Tun‖p, ΠCn+1 is a Bregman projection of E1

onto Cn+1, the sequence of real number {αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞), and
{ρn} ⊂ (0,+∞) satisfies

lim inf
n→+∞

ρn

(
p− Cq

ρ
q−1
n
q

)
> 0.

where cq is the uniform smoothness coefficient of E1. Then, xn → z0 ∈ ΠSEP(G1,G2)
x0.

5. Conclusions

In this paper, we introduce a new inertial shrinking projection method for solving the split
common null point problem in uniformly convex and uniformly smooth real Banach spaces.
The algorithm is designed such that its step size does not require prior knowledge of the norm
of the bounded linear operator. A strong convergence result is also proved under some mild
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conditions. We further provide some applications of our result to other nonlinear optimization
problems. We highlight our contributions in this paper as follow:

1. A significant improvement in this paper is that a self-adaptive technique is introduced for selecting
the step size such that a strong convergence result is proved without prior knowledge of the
norm of the bounded linear operator. This improves the results in [6,8,9,11,12,16,19,20] and other
important results in this direction.

2. The result in this paper extends the results in [4,5,10,11] and several other results on solving split
common null point problem from real Hilbert spaces to real Banach spaces.

3. The strong convergence result in this paper is more desirable in optimization theory (see, e.g., [51]).
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