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Abstract: In this paper we investigate analytic functions of unbounded type on a complex infinite
dimensional Banach space X. The main question is: under which conditions is there an analytic
function of unbounded type on X such that its Taylor polynomials are in prescribed subspaces of
polynomials? We obtain some sufficient conditions for a function f to be of unbounded type and show
that there are various subalgebras of polynomials that support analytic functions of unbounded type.
In particular, some examples of symmetric analytic functions of unbounded type are constructed.
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1. Introduction and Preliminaries

Let X be an infinite dimensional complex Banach space. A function P : X → C is an
n-homogeneous polynomial if there exists a symmetric n-linear map BP defined on the Cartesian
power Xn to C such that P(x) = BP(x, . . . , x). The mapping BP is called n-linear form associated with
P and is necessary and unique because of the well-known polarization formula (see, e.g., p. 4 [1]).
The Banach space of all continuous n-homogeneous polynomials on X with respect to the norm

‖P‖ = sup
‖x‖≤1

|P(x)|

is denoted by P(nX). For us the following version of the polarization inequality is important (p. 8 [1]).

|BP(xn1
1 , . . . , xnk

k )| ≤ n1! · · · nk!mm

nn1
1 · · · n

nk
k m!

‖P‖‖x1‖n1 · · · ‖xk‖nk , (1)

where n1, . . . , nk are positive integers with n1 + · · ·+ nk = m.
A continuous function f : X → C is said to be an entire analytic function (or just entire function) if its

restriction on any finite dimensional subspace is analytic. The space of all entire analytic functions on X
is denoted by H(X). For every entire function f there exists a sequence of continuous n-homogeneous
polynomials (so-called Taylor polynomials) such that

f (x) =
∞

∑
n=0

fn(x) (2)
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and the series converges for every x ∈ X. Here f0 = f (0) is a constant. The Taylor series expansion (2)
uniformly converges on the open ball rB centered at zero with radius r = $0( f ), where

$0( f ) =
1

lim supn→∞ ‖ fn‖1/n .

The radius r = $0( f ) is called the radius of uniform convergence of f or the radius of boundedness of f
because the ball rB is the largest open ball at zero such that f is bounded on it. If $0( f ) = ∞, then f is
bounded on all bounded subsets of X and is called a function of bounded type. The set of all functions
of bounded type on X is denoted by Hb(X).

It is known that Hb(X) is a Fréchet algebra with respect to the topology of uniform convergence
on bounded sets. Algebras Hb(X) were considered first in [2,3] and studied by many authors for
various Banach spaces X.

A polynomial P on X is called a polynomial of finite type if it is a finite sum of finite products
of linear functionals and constants. We denote by An(X) the smallest closed subalgebra of Hb(X)

containing the space of all n-homogeneous polynomials Pn(X). In particular, A1(X) is the closure
of the space of finite type polynomials in Hb(X). In the general case, An(X) 6= Ak(X) if n 6= k. For
example, it is so for X = `1 (see [4] for details).

We say that a function f is an entire function of unbounded type if f ∈ H(X) \ Hb(X). It is known
that for given weak*-null sequences φn ∈ X∗, ‖φ‖ = 1, which always exists (see p. 157 [5]) the function

f (x) =
∞

∑
n=1

φn
n(x) (3)

is an entire function of unbounded type on X. It is easy to see that the Taylor polynomials fn = φn
n of f

are polynomials of finite type. In this paper we consider the following natural question.

Question 1. Let P0(
nX) be subspaces of P(nX), n ∈ N. Under which conditions is there a function f =

∑∞
n=0 fn ∈ H(X) \ Hb(X) such that fn ∈ P0(

nX)?

In Section 2 we obtain some general results on entire functions of unbounded type. In particular,
we show that if X is such that Am(X) 6= Am−1(X) for some m > 1, then there exists a function
f ∈ H(X) \ Hb(X) such that all its Taylor polynomials are in Am(X). Also, we establish some
sufficient conditions for a function f to be in H(X) \ Hb(X). In Section 3 the obtained results are
applied to construct examples of symmetric analytic functions of unbounded type on `p, 1 ≤ p ≤ ∞.
These examples can be considered as generalizations of the example, constructed in [6] on `1.
In addition, the paper contains some discussions and open questions.

For details on analytic functions of bounded type we refer the reader to [1,5,7]. Entire analytic
functions of unbounded type were investigated in [8–10]. Symmetric analytic functions on Banach
spaces were studied in [11–18].

2. General Results

Evidently, the set of entire functions of unbounded type is not a linear space. Moreover,
the following example shows that the product of two functions of unbounded type is not necessarily a
function of unbounded type because there are invertible analytic functions of unbounded type.

Example 1. Let X = `p or c0 for 1 ≤ p < ∞ and φn be the coordinate functionals multiplied by −1

φn : x = (x1, x2, . . . , xn, . . .) 7→ −xn.
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So the function f of the form (3) is of unbounded type. We set

g(x) = e f (x).

Clearly, g ∈ H(X) \ Hb(X) because it is unbounded on the bounded set

zj = (0, . . . , 0, 2︸ ︷︷ ︸
j

, 0, . . .), since g(z2j) = e22j
.

On the other hand,
1

g(z2j+1)
= e− f (z2j+1) = e22j+1

and so 1/g ∈ H(X) \ Hb(X). However, the product of g and 1/g equals 1, which is bounded.

Note that H(X) \Hb(X) surprisedly contains infinite dimension linear subspaces and subalgebras
without the zero vector [19].

The following proposition shows that the set of entire functions of unbounded type has some
kind of ideal property.

Proposition 1. Let

f (x) =
∞

∑
n=1

fn(x) ∈ H(X) \ Hb(X)

and Pn ∈ P(nX), 0 < c ≤ ‖Pn‖ ≤ C < ∞ for some constants c, C > 0, and n ∈ N. Then

g(x) :=
∞

∑
n=1

Pn(x) fn(x) ∈ H(X) \ Hb(X).

Proof. Let us show that g is well-defined on X. Note first that since f (x) is well-defined on X, the series

∞

∑
n=1
| fn(x)|

is convergent on X. Indeed, for every fixed x ∈ X the function γ(t) := f (tx), t ∈ C is in H(C) and so
the power series

∞

∑
n=1

tn fn(x)

is absolutely convergent. It is true, in particular, for t = 1.
For every x ∈ X

|g(x)| ≤
∞

∑
n=1
|gn(x)| =

∞

∑
n=1
|Pn(x) fn(x)| ≤ C

∞

∑
n=1
| fn(x)| < ∞.

To prove that g is analytic but not of bounded type we need to show that the radius of boundedness
$0(g) of g at zero satisfies 0 < $0(g) < ∞. One can check that

1
$0(g)

= lim sup
n→∞

‖gn‖1/n = lim sup
n→∞

‖Pn fn‖1/2n.

So
lim sup

n→∞
c1/2n‖ fn‖1/2n ≤ 1

$0(g)
≤ lim sup

n→∞
C1/2n‖ fn‖1/2n.

That is, $0(g) =
√

$0( f ) and so g ∈ H(X) \ Hb(X).
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Corollary 1. Let X be such that Am(X) 6= Am−1(X) for some m > 1. Then there exists a function
f ∈ H(X) \ Hb(X) such that all fn, n ≥ m are in Am(X).

Theorem 1. Let us suppose that there is a dense subset Ω ⊂ X and a sequence of polynomials Pn ∈ P(nX),
lim supn→∞ ‖Pn‖1/n = c, 0 < c < ∞ such that for every z ∈ Ω there exists m ∈ N such that for every y ∈ X,

BPn(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

) = 0

for all k > m and n > k. Then

g(x) =
∞

∑
n=1

Pn(x) ∈ H(X) \ Hb(X).

Proof. Note first that
$0(g) =

1
lim supn→∞ ‖Pn‖1/n =

1
c

and so 0 < $0(g) < ∞. Thus g is locally bounded and if it is well-defined on X, then it belongs to
H(X) \ Hb(X).

Let us show that g is well-defined on X. Let x ∈ X and z ∈ Ω such that ‖x − z‖ < 1/2c.
Let y = x− z. Then

g(x) = g(z + y) =
∞

∑
n=1

∑
k≤m

BPn(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

).

For every 0 ≤ k ≤ m we set

g[k](y) =
∞

∑
n=1

BPn(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

).

For the fixed z, g[k](y) is an entire function of y and its j-homogeneous Taylor polynomial is

g[k]j (y) = BPk+j(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
j

).

Taking into account inequality (1) we have

‖g[k]j ‖ = sup
‖y‖≤1

∣∣BPk+j(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
j

)
∣∣ ≤ k!j!‖z‖k(k + j)(k+j)

kk jj(k + j)!
‖Pk+j‖.

So, using the Stirling asymptotic formula for j!/jj, we have

lim sup
j→∞

‖g[k]j ‖
1/j = lim sup

j→∞

(
k!j!‖z‖k(k + j)(k+j)

kk jj(k + j)!
‖Pk+j‖

)1/j

= lim sup
j→∞

(
e(j+k)√2π j

ej
√

2π(j + k)
‖Pk+j‖

)1/j

= lim sup
j→∞

(‖Pk+j‖)1/j.

It is easy to check (c.f. Lemma 2 [6]) that

lim sup
j→∞

‖Pk+j‖1/j = lim sup
j→∞

‖Pj‖1/j.
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So the radius of boundedness of g[k] is equal to 1/c. Thus g[k] is defined at y because ‖y‖ < 1/2c. Since

g(x) = g(z + y) =
m

∑
k=0

g[k](y),

g is well-defined at x.

3. Symmetric Analytic Functions of Unbounded Type

Let X be a complex Banach space and S be a semigroup of isometric operators on X. A polynomial
P ∈ P(X) is said to be S-symmetric if it is invariant with respect to the action of S , that is,
P(σ(x)) = P(x) for every σ ∈ S . S-symmetric polynomials from the general point of view were
considered in [12,13].

Symmetric polynomials on `p, 1 ≤ p < ∞ can be defined as S-symmetric polynomials if S is the
group of permutation of the standard basis vectors in `p. Due to [20] we know that polynomials

Fk(x) =
∞

∑
i=1

xk
i , k = dpe, dpe+ 1 . . .

form an algebraic basis in the algebra of all symmetric polynomials on `p (here dpe is the smallest integer
that is greater than or equal to p), x = (x1, x2, . . . , xn, . . .) ∈ `p. For the case `1 we can use, also, another
algebraic basis

Gk(x) = ∑
n1<n2<···<nk

xn1 . . . xnk .

In [15] it is proved that ‖Gn‖ = 1/n!. Let Pn = n!Gn. It is easy to check that polynomials Pn satisfy the
condition of Theorem 1 if Ω is the subspace c00 of all finite sequences in `1. In [6] there is a direct proof
that the following function

g(x) =
∞

∑
n=1

Pn(x)

belongs to H(`1) \ Hb(`1). We will prove it for more general situation. For a given positive integer
number s we denote

G(s)
k (x) = ∑

n1<n2<···<nk

xs
n1

. . . xs
nk

.

Theorem 2. If s ≥ p, then G(s)
k ∈ P(

k+s`p) and polynomials

P(s)
n (x) =

G(s)
n (x)

‖G(s)
n ‖

satisfy the condition of Theorem 1 for Ω = c00. In particular,

g(s)(x) :=
∞

∑
n=1

P(s)
n (x) ∈ H(`p) \ Hb(`p).

Proof. If s ≥ p, then for every x ∈ `p, ‖x‖ ≤ 1 we have

|G(s)
k (x)| ≤

(
∞

∑
n=1
‖xn‖s

)k

≤ ‖x‖ps ≤ 1.

So ‖G(s)
k ‖ ≤ 1 for every k. Thus G(s)

k is continuous and well-defined on `p.
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Let z ∈ c00, z = (z1, . . . , zm, 0, . . . , 0). Then, for n > k > sm

B
P(s)

n
(z, . . . , z︸ ︷︷ ︸

k

, y, . . . , y︸ ︷︷ ︸
n−k

) = 0

because it is a linear span of elements

∑
j1<···<jn−k

zs1
1 · · · z

sm
m 0 · · · 0︸ ︷︷ ︸

k−s1−···−sm

yj1 · · · yjn−k = 0,

where 0 ≤ s1 + · · ·+ sn ≤ s. So P(s)
n satisfies the condition of Theorem 1 for Ω = c00.

From Theorem 3 it follows that there exists an entire function of unbounded type g(x) on `p such

that its Taylor polynomials P(s)
n are symmetric. From [4] it follows, also that P(s)

n ∈ Asn(X) for s ≥ p.
Using similar arguments like in Theorem 3, it is possible to construct examples of separately symmetric
and entire block-symmetric functions on a finite Cartesian power of `p, 1 ≤ p < ∞. For the definition
and properties of separately symmetric analytic functions we refer the reader to [21]. Block symmetric
polynomials on a Cartesian power of `p were studied in [22,23]. Here we consider the case of `∞.

Each vector x in `∞ is a bounded number sequence x = (x1, x2, . . . , xn, . . .). So we can consider
symmetric polynomials on `∞, that is, invariant polynomials with respect to all permutations σ : N→ N

(x1, x2, . . . , xn, . . .) 7→ (xσ(1), xσ(2), . . . , xσ(n), . . .).

In [17] it is proved that only constants are symmetric polynomials on `∞. However, `∞ admits
polynomials that are invariant with respect to the subgroup of finite permutations. Such polynomials
are called finitely symmetric. A permutation σ : N→ N is finite if there is m ∈ N such that σ(n) = n for
every n > m. The following example shows that there exists a finitely symmetric entire function of
unbounded type on `∞.

Example 2. Let us fix a presentation of the set of positive integers as a disjoint union

N =
∞

ä
i=1

Ni, |Ni| = ∞.

Let Ui be a free ultrafilter on Ni for every i ∈ N. We denote by

φi(x) := lim
Ui

xn, x = (x1, x2, . . . , xn, . . .) ∈ `∞.

Set
Q1(x) = φ1(x)− φ2(x), . . . , Qk(x) = ∏

i<j≤k
(φi(x)− φj(x)), . . . .

It is clear that Qk are nontrivial continuous n-homogeneous polynomials for

n =

(
k
2

)
=

k(k− 1)
2

, k ∈ N.

Let us define

Pn(x) =

{
Qk(x)
‖Qk‖

if n = (k
2)

0 otherwise.

Let
Ωm =

{
x ∈ `∞ : xj ∈ {c1, c2, . . . , cm}

}
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for some fixed constants c1, c2, . . . , cm and
Ω =

⋃
m∈N

Ωm.

In other words, if x ∈ Ω, then the function x(n) = xn has just a finite number of different values. By the
definition of Pn one can check that if x ∈ Ωm, then

Pn(x) = 0 for n >

(
m
2

)
=

m(m− 1)
2

.

Since Ω is dense in `∞, polynomials Pn satisfy the condition of Theorem 1. In addition, polynomials Pn, n ∈ N
are finitely symmetric because all functionals are evidently so.

4. Discussion, Conclusions and Open Questions

As a result, we can say that various classes of polynomials on Banach spaces support entire
analytic functions of unbounded type. However, does an entire symmetric analytic function of
unbounded type exist on L∞[0; 1]? A function on L∞[0; 1] is symmetric if it is invariant with respect to
measuring and preserving automorphisms of the interval [0; 1]. Polynomials

Rn(x) =
∫
[0;1]

(x(t))n dt, x(t) ∈ L∞[0; 1], n ∈ N

form an algebraic basis in the space of all symmetric polynomials on L∞[0; 1] [18]. It would be
interesting, also, to construct an entire supersymmetric function of unbounded type on `1(Z0),
where Z0 = Z \ {0}. Let us recall that a polynomial on `1(Z0) is supersymmetric if it is an algebraic
combination of polynomials

Tk(x) =
+∞

∑
n=1

xk
n −

−∞

∑
n=−1

xk
n, x = (. . . , x−n, . . . , x−1, x1, . . . , xn, . . .) ∈ `1(Z0)

(see [24]).
In a more general case, let P = (Pn), n ∈ N be a sequence of algebraically independent polynomials

on a Banach space X. Let us denote by HbP(X) the minimal subalgebra of Hb(X) containing all
polynomials in P. Algebras HbP(X) were studied in [16,25]. It is natural to ask:

Question 2. Under which conditions on P does there exist an entire functions f of unbounded type on X such
that its Taylor polynomials are in HbP(X)?

Note that algebras of symmetric (block-symmetric, supersymmetric) analytic functions of bounded
types are partial cases of HbP(X). Let us consider the following example.

Example 3. Let X = `p for 1 ≤ p ≤ ∞ and

Pn(x) = xn
n, x = (x1, . . . , xn, . . .) ∈ `p.

If p < ∞, then polynomials in HbP(`p) support a function of unbounded type, for example, f (x) = ∑∞
n=1 Pn(x).

However, if p = ∞, the function f is no longer defined on the whole space.

Question 3. Does there exist an entire function of unbounded type on `∞ with Taylor polynomials in HbP(`p),
where P is as in Example 3?

Let us make a note about products of functions of unbounded type. In [19] it is proved that if f is
a function of unbounded type on X of the form (3) and P is a nonzero continuous polynomial on X,
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then P f ∈ H(X) \ Hb(X). Example 1 shows that the product of two functions of unbounded type is
not necessarily of unbounded type.

Question 4. Does a nonzero function f ∈ Hb(X) and g ∈ H(X) \ Hb(X) exist such that f g ∈ Hb(X)?

By the following example we can see that the answer to this question is positive for the real case
but we do not know the answer for the complex case. Analytic functions of unbounded type on real
Banach spaces were studied in [26].

Example 4. Let f be a function of unbounded type defined by (3) on a real Banach space X. We set

g(x) = e( f (x))2
.

Clearly g ∈ H(X) \ Hb(X). However,
1
g
= e−( f (x))2

has a bounded range and so is of bounded type.

Author Contributions: The authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Research Foundation of Ukraine, 2020.02/0025, 0120U103996.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dineen, S. Complex Analysis in Locally Convex Spaces; Mathematics Studies; North-Holland: Amsterdam,
The Netherlands; New York, NY, USA; Oxford, UK, 1981.

2. Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine
Angew. Math. 1991, 51–94. [CrossRef]

3. Aron, R.M.; Cole, B.J.; Gamelin, T.W. Weak-star continuous analytic functions. Can. J. Math. 1995, 47, 673–683.
[CrossRef]

4. Dimant, V.; Gonzalo, R. Block diagonal polynomials. Trans. Am. Math. Soc. 2001, 353, 733–747. [CrossRef]
5. Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999;

p. 543. [CrossRef]
6. Chernega, I.; Zagorodnyuk, A. Unbounded symmetric analytic functions on `1. Math. Scand. 2018, 122, 84–90.

[CrossRef]
7. Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY,

USA; Oxford, UK, 1986.
8. Ansemil, J.M.; Aron, R.M.; Ponte, S. Behavior of entire functions on balls in a Banach space. Indag. Math.

2009, 20, 483–489. [CrossRef]
9. Ansemil, J.M.; Aron, R.M.; Ponte, S. Representation of spaces of entire functions on Banach spaces. Publ. Res.

Inst. Math. Sci. 2009, 45, 383–391. [CrossRef]
10. Aron, R.M. Entire functions of unbounded type on a Banach space. Boll. dell’Unione Mat. Ital. 1974, 9, 28–31.
11. Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebras of symmetric holomorphic functions on `p.

Bull. Lond. Math. Soc. 2003, 35, 55–64. [CrossRef]
12. Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space.

Bull. Lond. Math. Soc. 2016, 48, 779–796. [CrossRef]
13. Aron, R.M.; Falcó, J.; Maestre, M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018,

28, 393–404. [CrossRef]
14. Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra.

Proc. Edinb. Math. Soc. 2012, 55, 125–142. [CrossRef]

http://dx.doi.org/10.1515/crll.1991.415.51
http://dx.doi.org/10.4153/CJM-1995-035-1
http://dx.doi.org/10.1090/S0002-9947-00-02735-5
http://dx.doi.org/10.1007/978-1-4471-0869-6
http://dx.doi.org/10.7146/math.scand.a-102082
http://dx.doi.org/10.1016/S0019-3577(09)80021-9
http://dx.doi.org/10.2977/prims/1241553124
http://dx.doi.org/10.1112/S0024609302001431
http://dx.doi.org/10.1112/blms/bdw043
http://dx.doi.org/10.1007/s12220-017-9825-0
http://dx.doi.org/10.1017/S0013091509001655


Axioms 2020, 9, 133 9 of 9

15. Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric
analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [CrossRef]

16. Chernega, I.; Holubchak, O.; Novosad, Z.; Zagorodnyuk, A. Continuity and hypercyclicity of composition
operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2020, 6, 153–163.
[CrossRef]

17. Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Symmetric and finitely symmetric polynomials on the spaces
`∞ and L∞[0,+∞]. Math. Nachrichten 2018, 291, 1712–1726. [CrossRef]

18. Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Analytic structure on the spectrum of the algebra of symmetric
analytic functions on L∞. Rev. Real Acad. Cienc. Exact. Fís. Nat. Ser. A Mat. 2020, 114, 56. [CrossRef]

19. Lopez-Salazar Codes, J. Vector spaces of entire functions of unbounded type. Proc. Am. Math. Soc. 2011,
139, 1347–1360. [CrossRef]

20. González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function
spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [CrossRef]

21. Jawad, F. Note on separately symmetric polynomials on the Cartesian product of `1. Mat. Stud. 2018,
50, 204–210. [CrossRef]

22. Kravtsiv, V.; Vasylyshyn, T.; Zagorodnyuk, A. On algebraic basis of the algebra of symmetric polynomials
on `p(Cn). J. Funct. Spaces 2017. [CrossRef]

23. Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials on `p(Cs).
Carpathian Math. Publ. 2020, 12, 17–22. [CrossRef]

24. Jawad, F.; Zagorodnyuk, A. Supersymmetric polynomials on the space of absolutely convergent series.
Symmetry 2019, 11, 1111. [CrossRef]

25. Halushchak, S.I. Spectra of some algebras of entire functions of bounded type, generated by a sequence of
polynomials. Carpathian Math. Publ. 2019, 11, 311–320. [CrossRef]

26. Ansemil, J.M.; López-Salazar, J.; Ponte, S. On real analytic functions of unbounded type. Rev. Mat. Complut.
2013, 26, 549–560. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmaa.2012.04.087
http://dx.doi.org/10.1007/s40879-019-00390-z
http://dx.doi.org/10.1002/mana.201700314
http://dx.doi.org/10.1007/s13398-020-00791-w
http://dx.doi.org/10.1090/S0002-9939-2010-10817-1
http://dx.doi.org/10.1112/S0024610799007164
http://dx.doi.org/10.15330/ms.50.2.204-210
http://dx.doi.org/10.1155/2017/4947925
http://dx.doi.org/10.15330/cmp.12.1.17-22
http://dx.doi.org/10.3390/sym11091111
http://dx.doi.org/10.15330/cmp.11.2.311-320
http://dx.doi.org/10.1007/s13163-012-0095-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	General Results
	Symmetric Analytic Functions of Unbounded Type
	Discussion, Conclusions and Open Questions
	References

