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Abstract: In this paper, Non-Equilibrium Steady State that is induced by electric field and the
conductivity of non-interacting fermion systems under the dissipative dynamics is discussed. The
dissipation is taken into account within a framework of the quantum dynamical semigroup introduced
by Davies (1977). We obtain a formula of the conductivity for the stationary state, which is applicable
to arbitrary potentials. Our formula gives a justification of an adiabatic factor that is often introduced
in practical calculation while using the Kubo formula. In addition, the conductivity of crystals (i.e.,
periodic potentials) is also discussed.

Keywords: open quantum system; non-equilibrium physics; statistical mechanics; fermion system;
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1. Introduction

Given a macroscopic quantum system, its thermodynamical properties, such as energy, heat
capacity, and magnetization, are obtained from the microscopic information regarding the Hamiltonian
of the system by considering the Gibbs state. This theory is summarized as equilibrium quantum
statistical mechanics. Although there is no unified theory for general non-equilibrium systems, in
linear response regime there is a formula for response functions to perturbations, the Kubo formula [1].
An important application of linear response theory is the electric conductivity. Being applied the
electric field, the system in a stable equilibrium state is supposed to settle in another stable steady state
with non-vanishing electric current (non-equilibrium steady state). In fact, the electric conductivity is
discussed in [1] based on the above observation. However, from the rigorous point of view, there is a
subtle point in this discussion, as explained below:

If the Kubo formula (Equation (5.12) in [1]) is naively applied to the simplest case, independently
moving electrons, then the electric conductivity σ is infinite,

σ = ∞.

The reason is understood, as follows. The formula of linear response theory is derived from the
Hamiltonian dynamics of the closed system. Since the system is closed, the velocity of the electron
that is accelerated by the electric field is monotonically increasing and goes to infinite in the long
time limit. Thus, the electric conductivity becomes infinite finally. The issue comes from the absence
of the non-equilibrium steady state (NESS) in this dynamic. In fact, a small adiabatic factor is often
introduced in the practical calculation without any physical justification.

One may claim that this difficulty is due to the idealistic nature of the free electron system. In a
realistic circumstance, systems are not free from their environments, and therefore the dynamics must
be dissipative. The aim of this paper is to see how the Kubo formula is modified by considering the
dissipative dynamics. The dissipative dynamics of a particle under electric field is studeid in [2–4].
However, these studies deal with one-particle systems and do not have NESS. We would like to

Axioms 2020, 9, 128; doi:10.3390/axioms9040128 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-1235-1954
http://www.mdpi.com/2075-1680/9/4/128?type=check_update&version=1
http://dx.doi.org/10.3390/axioms9040128
http://www.mdpi.com/journal/axioms


Axioms 2020, 9, 128 2 of 12

construct a NESS in a many body system, an infinite quantum system. It is not a trivial task to
construct such a model. The dissipative dynamics of many body fermion systems is discussed in [5–7].
We will use the consequence of them, especially of [5], because the physical meaning of the dynamics
is clear.

This paper is organized, as follows. First, in Section 2, we explain the quantum dynamical
semigroup of Davies [5] and construct a NESS. Subsequently, we derive the formula of conductivity
in the lattice systems. The formula is almost the same as the Kubo formula with an adiabatic factor.
However, the parameter here represents the strengthen of the dissipation. Thus, our formula can
be regarded as a physical justification of the adiabatic factor. In the models that the potential is 0
(V = 0) the current is obtained concretely. This is the topic of Section 3. Finally, in Section 4, the
conductivity of crystals (that is the system with periodic potential) is discussed. It turns out that, in the
low temperature and small dissipation limit, the conductivity is given as the integral of the velocity
over the Fermi surface. In Appendix A, we will treat the free continuous model and show that the
Drude formula is obtained.

2. Non-Interacting Fermion Systems and Kubo Formula

We consider non-interacting many body systems of fermionic particles on d-dimensional lattice
Zd. One particle is described by the Hilbert space l2(Zd) and the Hamiltonian

(hφ)(x) = − ∑
|x−y|=1

φ(y) + V(x)φ(x), φ ∈ l2(Zd).

V is a real valued function on Zd called potential, and we assume V is bounded. Subsequently, h
is a bounded self adjoint operator. For a finite subset ΛN = [−N, N]d ∩ Zd (N ∈ N), denote the
corresponding projection by PN . That is, PN : l2(Zd)→ l2(Zd) is defined as

(PNφ)(x) =

{
φ(x) x ∈ ΛN

0 otherwise.

Define hN = PNhPN . Since hN is a finite-rank self-adjoint operator it is decomposed, as follows:

hN =
|ΛN |

∑
n=1

ε
(N)
n |φ(N)

n 〉〈φ(N)
n |

(here, we used the Dirac notation of physics). ε
(N)
n and φ

(N)
n are eigenvalues and the corresponding

eigenvectors with norm 1 and orthogonal each other. When the eigenvalue is degenerated,
this decomposition is not unique. However, the way of decomposition does not matter in the
following discussion.

Now, we consider many particle systems on Zd. The many body system is described by the CAR
algebra ACAR(l2(Zd)) (we denote simply A below) generated by the creation/annihilation operators
a∗( f ) / a( f ) satisfying the following canonical anti-commutation relations:

{a∗( f ), a(g)} = 〈g, f 〉1, f , g ∈ l2(Zd)

{a( f ), a(g)} = 0,

where {A, B} = AB + BA and 〈·, ·〉 is the inner product of l2(Zd). Suppose that the particles are
moving independently by the Hamiltonian h, then the automorphism of the non-interacting dynamics
on the many body system αt : A → A (Heisenberg picture) is given as

αt(a#( f1) · · · a#( fn)) = a#(eith f1) · · · a#(eith fn),
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where a# stands for a or a∗.
A state is given as a normalized positive linear functional on the algebra A. An important class of

states in the fermion systems is quasi-free state. A state ω is called a quasi-free state if the following
conditions are satisfied: for any n, m ∈ N, f1, · · · , fn, g1, · · · , gm ∈ l2(Zd),

ω(a∗( fn) · · · a∗( f1)a(g1) · · · a(gm)) = δnmdet((ω(a∗( fi)a(gj)))ij).

The property of quasi-free state is completely determined by its two-point functions. Because the
two-point function is always expressed by a positive operator 0 ≤ R ≤ 1 on l2(Zd) as

ω(a∗( f )a(g)) = 〈g, R f 〉,

the quasi-free state is completely decided by an operator R. Conversely, given an operator R on l2(Zd)

that satisfies 0 ≤ R ≤ 1, we have a quasi-free state by the above relations. For example, an equilibrium
state ωβ,µ (KMS state) at inverse temperature β and chemical potential µ of a non-interacting fermion
system with one-particle Hamiltonian h is the quasi-free state that corresponds to an operator fβ,µ(h),
where fβ,µ is the Fermi–Dirac distribution fβ,µ(ε) =

1
1+eβ(ε−µ) .

Next, we consider dissipative dynamics on A. We use the quantum dynamical semigroup
discussed in [5].

First, let us recall the definition of the quantum dynamical semigroup in general settings. A
quantum dynamical semigroup is a family of state transformations with the semigroup property.

Definition 1. Let A be a unital C*-algebra. A family of linear maps on A, {Tt}t≥0, is called a quantum
dynamical semigroup if it satisfies the following conditions:

(1) Tt is a unital CP (completely positive) map for every t ≥ 0.
(2) T0 = id (id is an identity map on A).
(3) Tt+s = Tt ◦ Ts (t, s ≥ 0).
(4) lim

t↓0
‖Tt(A)− A‖ = 0, A ∈ A.

In (1), unital means the relation Tt(I) = I and complete positivity is defined as follows; a linear
map T : A → A is completely positive if, for any N ∈ N, T ⊗ idN : A⊗M(N,C)→ A⊗M(N,C) is a
positive map, where M(N,C) is the algebra of N × N complex matrices. (1) is the condition that each
Tt is a state transformation. (2) implies that at time 0 the system dose not change. (3) is the semigroup
property. Here, we contain the strong continuity (4) in the definition.

Quantum dynamical semigroup is one of tools describing the dynamics of open quantum systems.
This is an approximation, because, in general, the dynamics of open systems does not have the
semigroup property (3). If the system is coupled to a large thermal reservoir with small relaxation time,
this approximation is expected to work well. Indeed it is shown that quantum dynamical semigroup is
obtained in the weak coupling limit in the physically natural settings [8].

One of the most important features of quantum dynamical semigroup is that it is determined by
its generator L, defined as

L(A) = lim
t↓0

Tt(A)− A
t

.

This is defined only for A ∈ A, such that the limit (the norm limit) of the right hand side exits.
The set of such elements D(L) (the domain of L) forms a dense subspace of A.

Now, we turn to the fermion systems on the lattice Zd and introduce a model. Here, we want to
deal with the system coupled to a heat reservoir. The dynamics must drive the states to an equilibrium
state determined by the reservoir. As the system itself is an infinite system, it is not a trivial task
to construct such a model. One of the possible models was given by Davies. Davies considered,
in [5], the dissipative dynamics on many body fermion systems, which is described by the language
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of one-particle Hilbert space. Let δ be the generator of the non-interacting dynamics αt. Define a
*-automorphism θ : A → A by θ(a#( f )) = −a#( f ). For each N ∈ N, define a linear map LN : A → A
by D(LN) = D(δ) and

LN(A) = δ(A)

+λ
|ΛN |

∑
n=1

fβ,µ(ε
(N)
n )

(
2a(φ(N)

n )θ(A)a∗(φ(N)
n )− a(φ(N)

n )a∗(φ(N)
n )A− Aa(φ(N)

n )a∗(φ(N)
n )

)
+λ

|ΛN |

∑
n=1

(
1− fβ,µ(ε

(N)
n )

) (
2a∗(φ(N)

n )θ(A)a(φ(N)
n )− a∗(φ(N)

n )a(φ(N)
n )A− Aa∗(φ(N)

n )a(φ(N)
n )

)
,

for A ∈ D(LN). λ is a positive real number representing the strengthen of dissipation. The first
term of the right hand side corresponds to the Hamiltonian dynamics, the second term represents the
creation of particles in the eigenstate of energy by the distribution fβ,µ, and the third term means the
annihilation of particles by the distribution (1− fβ,µ).

This map LN generates a quantum dynamical semigroup, we denote it {TN
t }t≥0. The limit

lim
N→∞

TN
t (A) exists for each t ≥ 0, A ∈ A and define a quantum dynamical semigroup Tt(A) =

lim
N→∞

TN
t (A).

It is shown that every state ψ converges to ωβ,µ, the equilibrium state at inverse temperature β

and chemical potential µ, in the weak* topology by the dynamics Tt:

lim
t→∞

ψ ◦ Tt(A) = ωβ,µ(A), A ∈ A.

Thus, Tt is considered to describe the dynamics of the system coupled to a thermal reservoir. For
the detail of this dynamics, see [5].

Now, suppose that the system is initially in the stable equilibrium state ωβ,µ under the dynamics
Tt and at time t = 0 applied the uniform electric field E in the direction e1 = (1, 0, · · · , 0) ∈ Zd.
SUbsequently, one-particle Hamiltonian is changed to hE = h− EQ1, where Q1 is the position operator;

the domain is D(Q1) =

{
φ ∈ l2(Zd)

∣∣∣∣∣ ∑
x∈Zd

|x1|2|φ(x)|2
}

and, for φ ∈ D(Q1), Q1, acts as

(Q1φ)(x) = x1φ(x),

where x1 is the first element of x ∈ Zd. Q1 is an unbounded self adjoint operator. Thus, hE is also
an unbounded self adjoint operator with the domain D(hE) = D(Q1). Let δE be the generator of
the non-interacting dynamics on A with the one-particle Hamiltonian hE, and define a quantum
dynamical semigroup TE,N

t by replacing δ in the definition of LN to δE. These maps also define a
quantum dynamical semigroup TE

t in the limit N → ∞. This dynamics maps a quasi-free state to
another quasi-free state. Let φ be a quasi-free state with the operator R, then φ ◦ TE

t is also a quasi-free
state and the corresponding operator is

e−2λte−ithE ReithE + 2λ
∫ t

0
e−2λse−ishE fβ,µ(h)eishE ds.

Thus, the system initially in the equilibrium state ωβ,µ finally converges to the stable
non-equilibrium steady state by the dynamics TE

t in the weak* topology (in fact the limit does not
depend on the initial state). We denote this state by ωλ,E

β,µ (apart from the case that E = 0; this limit

depends on λ). ωλ,E
β,µ is a quasi-free state corresponding to the operator

2λ
∫ ∞

0
e−2λse−ishE fβ,µ(h)eishE ds.



Axioms 2020, 9, 128 5 of 12

Now, let us consider the electric current. The increase of the number of particles at site x ∈ Zd per
unit time is expressed as

δ(a∗xax) = ∑
|x−y|=1

i(a∗xay − a∗yax).

Here, we write simply a#(ηx) as a#
x, where {ηx}x∈Zd is the standard basis of l2(Zd): ηx(y) = δxy.

Each term in the summation represents the number of particles flowing from the nearest neighbor site
of x ∈ Zd per unit time. Define the observable ĵ1,x representing the current at x in the direction e1 as
the average of the current flowing form x− e1 to x and the current from x to x + e1;

ĵ1,x =
i
2
(a∗xax+e1 − a∗x+e1

ax + a∗x−e1
ax − a∗xax+e1)

The current in the non-equilibrium steady state ωλ,E
β,µ is

jλ
1,x(E; β, µ) ≡ ωλ,E

β,µ ( ĵ1,x).

The following theorem, one of our main results, shows that the response of the current jλ1,x(E; β, µ)

to the electric field E is simply expressed by the formula while using the information of the one-particle
Hamiltonian.

Theorem 1. The current jλ1,x(E; β, µ) is differentiable at E = 0 and its derivative σλ
1,x(β, µ) (electric

conductivity) is expressed as

σλ
1,x(β, µ) = Re

∫ ∞

0
e−2λs〈ηx, e−ishi[Q1, fβ,µ(h)]eishv1ηx〉ds,

where Re is the real part and v1 = i[h, Q1] is the velocity (v1 is independent of the potential V).

Proof. First, let us calculate the two point functions ωλ,E
β,µ (a∗xay).

ωλ,E
β,µ (a∗xay) = 2λ

∫ ∞

0
e−2λs〈eishE ηy, fβ,µ(h)eishE ηx〉ds.

Because ηx, ηy ∈ D(Q1) = D(hE), 〈eishE ηy, fβ,µ(h)eishE ηx〉 is differentiable by s. Integrating by
parts we obtain

ωλ,E
β,µ (a∗xay) = 〈ηy, fβ,µ(h)ηx〉

+
∫ ∞

0
e−2λs

(
〈ihEeishE ηy, fβ,µ(h)eishE ηx〉+ 〈eishE ηy, fβ,µ(h)ihEeishE ηx〉

)
ds

= ωβ,µ(a∗xay)

+iE
∫ ∞

0
e−2λs

(
〈Q1eishE ηy, fβ,µ(h)eishE ηx〉 − 〈eishE ηy, fβ,µ(h)Q1eishE ηx〉

)
ds.

We have eishηz ∈ D(Q1) (z ∈ Zd) and, for any φ ∈ l2(Zd), lim
E→0

eishE φ = eishφ. In addition, because

|〈ηx, fβ,µ(h)ηy〉| decays exponentially with respect to |x− y| [9], for any φ ∈ D(Q1), fβ,µ(h)φ ∈ D(Q1)

and [Q1, fβ,µ(h)] ≡ Q1 fβ,µ(h)− fβ,µ(h)Q1 can be extended to a bounded operator. Thus,

lim
E→0
〈ηy, e−ishE [Q1, fβ,µ(h)]eishE ηx〉 = 〈ηy, e−ish[Q1, fβ,µ(h)]eishηx〉.
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In addition, one can exchange the limit and integral and obtain

lim
E→0

ωλ,E
β,µ (a∗xay)−ωβ,µ(a∗xay)

E
=
∫ ∞

0
e−2λs〈ηy, e−ishi[Q1, fβ,µ(h)]eishηx〉ds.

The relation
vlηz = i[h, Q1]ηz = iηz+e1 − iηz−e1

and the definition of ĵ1,x concludes the formula.

Here, we would like to mention the relation between the original Kubo formula and our formula.
According to the paper [1], when the perturbation f A (| f | � 1) is added to the Hamiltonian H, the
change of the first order ∆B of quantity B in NESS is

∆B =
1
i

∫ ∞

0
Tr[A, ρβ,µ]B(t)dt = i

∫ ∞

0
Trρβ,µ[A, B(t)]dt

where B(t) = eitH Be−itH and ρβ,µ is the Gibbs state. Or, adding the adiabatic factor e−εt to converges
the integral,

∆B = lim
ε↓0

i
∫ ∞

0
e−εtTrρβ,µ[A, B(t)]dt.

However, as discussed in the introduction, even though the adiabatic factor is added, if one takes
the limit ε ↓ 0, ∆B may diverge (for example the electric current in the free model). Additionally, the
physical meaning of the parameter ε is not clear. Our formula is changed to

i
∫ ∞

0
e−2λtωβ,µ

([
∑

n∈Z
na∗nan, ĵx(t)

])
dt,

where ĵx(t) = eitH ĵxe−itH (H is the total Hamiltonian without perturbation). This is same as the Kubo
formula with the adiabatic factor (not taking the limit λ ↓ 0) in the case A = ∑

n∈Z
na∗nan, B = ĵx. The

difference between the original Kubo formula and our approach is summarized, as follows:
original

• considering the Hamiltonian dynamics of closed system;
• NESS and the convergence to it are not discussed; and,
• the adiabatic factor e−εt is artificial and the physical meaning of the parameter ε is not clear;

ours

• considering the dissipative dynamics and discussing the convergence to NESS; and,
• the factor e−2λt emerges naturally from the dissipative model and the physical meaning of the

parameter λ is clear, the strengthening of the dissipation or the inverse of relaxation time.

Although, in this paper, we do not discuss the magnetic field, the formula can be extended easily
to the case that the magnetic field is present and it produces the TKNN formula [10,11] in the limit
β→ ∞, λ ↓ 0.

3. Solvable Model

In the previous section, we derived the formula of electric conductivity for the general form of
potential V. In fact, in the case where V = 0, one can calculate the current explicitly. Here for simplicity
we restrict the discussion to one-dimensional systems. Which is, the one-particle Hilbert space is l2(Z).
The one-particle Hamiltonian for potential V = 0 is the multiplication operator on the momentum
space L2(−π, π). Precisely the one-particle Hamiltonian is given by the multiplication operator on
L2(−π, π)

(ĥφ)(k) = (− cos k)φ(k), φ ∈ L2(−π, π)



Axioms 2020, 9, 128 7 of 12

and the Fourier transformation F : l2(Z)→ L2(−π, π) by h = F−1ĥF . As discussed in Section 2, the
system finally converges to a unique steady quasi-free state with the operator

Rλ,E
β,µ ≡ 2λ

∫ ∞

0
e−2λse−ishE fβ,µ(h)eishE ds.

Here, we will obtain the explicit form of Rλ,E
β,µ . In the following, we consider in the momentum

space and identify F−1hF as h. Note that Q is a differential operator on the momentum spaces, thus

(eishφ)(k) = eiε(k)sφ(k)

(eisQφ)(k) = φ(k + s),

where ε(k) = − cos k. Using the product formula [12]

eishE φ = lim
n→∞

(
ei s

n he−i s
n EQ

)n
φ,

we obtain

(eishE φ)(k) = exp
(

is
∫ 1

0
ε(k− Esξ)dξ

)
φ(k− Es),

and

〈ψ, Rλ,E
β,µ φ〉 = 2λ

∫
dk
∫ ∞

0
dse−2λsψ(k− sE) fβ,µ(ε(k))φ(k− sE)

= 2λ
∫ ∞

0
ds
∫

dkψ(k)e−2λs fβ,µ(ε(k + sE))φ(k)

=
∫

dkψ(k)
(

2λ
∫ ∞

0
e−2λs fβ,µ(ε(k + sE))ds

)
φ(k)dk.

Thus, Rλ,E
β,µ is the multiplication operator of the function

(
Rλ,E

β,µ

)
(k) = 2λ

∫ ∞

0
e−2λs fβ,µ(ε(k + sE))ds.

Now, let us calculate the current. Note that it is independent of the site (so we denote the current
by jλ(E; β, µ)) and corresponds to the integration of the velocity d

dk ε(k) = − sin k:

jλ(E; β, µ) =
1

2π

∫ π

−π
(− sin k)

(
2λ
∫ ∞

0
e−2λs fβ,µ(ε(k + sE))ds

)
dk

=
1

2π

∫ π

−π

(
2λ
∫ ∞

0
(− sin(k− sE))e−2λsds

)
fβ,µ(ε(k))dk

=
2λE

4λ2 + E2

∫ π

−π

− cos k
1 + e−β(cos k+µ)

dk
2π

.

The current becomes 0 in the limit E → 0 and λ ↓ 0, respectively. On the other hand, the
conductivity is

σλ
l (β, µ) =

1
2λ

∫ π

−π

− cos k
1 + eβ(− cos k−µ)

dk
2π

and it goes to infinite as λ ↓ 0.



Axioms 2020, 9, 128 8 of 12

4. Electric Conductivity in Crystals

In this section, we consider the electrons in crystals, which is the electrons under periodic
potentials. Suppose that the potential V has period pl ∈ N in the direction el (l = 1, 2, · · · , d);

V(x + p1e1) = V(x + p2e2) = · · · = V(x + pded) = V(x), x ∈ Zd.

Take Λ = {m1e1 + · · ·mded | 0 ≤ m1 < p1, · · · 0 ≤ md < pd} and B = Rd/(p1Z× · · · × pdZ) =(
− π

p1
, π

p1

]
× · · ·

(
− π

pd
, π

pd

]
. B is called the Brillouin zone. For periodic potentials, we can use the Bloch

theory. The Hilbert space l2(Zd) is decomposed as the following direct integral

l2(Zd) =
∫ ⊕
B
Hkdk,

whereHk = l2(Λ) ' C|Λ|. Additionally, by the periodicity of h, this is decomposed as

h =
∫ ⊕
B

hkdk,

where hk is an operator on l2(Λ) defined as

(hkφ)(x) = − ∑
|x−y|=1

φ(y) + V(x)φ(x), x ∈ Λ

with boundary conditions φ(x + pjej) = eikpj φ(x). By this decomposition, we also have

fβ,µ(h) =
∫ ⊕
B

fβ,µ(hk)dk.

Because the commutator with the position operator Q1 has the same periodicity, it is decomposed
and given by the derivative:

i[Q1, fβ,µ(h)] =
∫ ⊕
B

∂k1 fβ,µ(hk)dk.

The velocity v1 is also decomposed as

v1 = i[h, Q1] =
∫ ⊕
B

v1,kdk,

where v1,k = −∂k1 hk.
Consider the mean of the conductivity

σλ
1 (β, µ) =

1
|Λ| ∑

x∈Λ
σλ

1,x(β, µ),

then this is expressed as

σλ
1 (β, µ) = Re

∫ ∞

0
e−2λs

(∫
B

Tre−ishk ∂k1 fβ,µ(hk)eishk v1,kdk
)

ds.

In the following, we consider the low temperature and small dissipation regime. Here, we impose
some assumptions.

Let εn
k and ψn

k be eigenvalues and eigenvectors of hk (n = 1, 2, · · · , |Λ|). Suppose

• hk is nondegenerate for all k ∈ B
• the eigenvalues εn

k and eigenvectors ψn
k of hk are in C2-class.
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Theorem 2. Under the above assumptions, we have

σλ
1 (β, µ) =

1
2λ

|Λ|

∑
n=1

∫
B

fβ,µ(ε
n
k )∂

2
k1

εn
k dk + O(λ).

Especially in the low temperature limit β→ ∞, electric conductivity σλ
1 (∞, µ) is expressed as

σλ
1 (∞, µ) =

1
2λ

|Λ|

∑
n=1

∫
∂Bn

µ

〈ψn
k , v1,kψn

k 〉n1(k)dk + O(λ)

=
1

2λ

|Λ|

∑
n=1

∫
∂Bn

µ

∂k1 εn
k n1(k)dk + O(λ)

where Bn
µ = {k ∈ B | εn

k ≤ µ} and ∂Bn
µ is the boundary of Bn

µ and nl(k) is the l-th element of the unit normal
vector at k ∈ ∂Bn

µ. If µ is in the band gap, Bn
µ has no boundary and the above integral is 0.

This formula means that the main contribution to the conductivity in low temperature regime
is given by integral of the velocity over the Fermi surface. Additionally, if µ is in the band gap, the
conductivity is almost 0 (insulator).

Proof. Because Tre−ishk ∂k1 fβ,µ(hk)eishk ∂k1 hk is bounded for k, by the Fubini theorem, we have

σλ
1 (β, µ) = Re

∫
B

(∫ ∞

0
e−2λsTre−ishk ∂k1 fβ,µ(hk)eishk ∂k1 hkds

)
dk.

Put Pn
k = |ψn

k 〉〈ψ
n
k |. As hk is nondegenerate, we get∫ ∞

0
e−2λsTre−ishk ∂k1 fβ,µ(hk)eishk ∂k1 hkds

=
|Λ|

∑
n=1

|Λ|

∑
m=1

∫ ∞

0
e−(2λ+iεn

k−iεm
k )sdsTrPn

k ∂k1 fβ,µ(hk)Pm
k ∂k1 hk

=
1

2λ

|Λ|

∑
n=1

TrPn
k ∂k1 fβ,µ(hk)Pn

k ∂k1 hk

+ ∑
n 6=m

1
2λ + i(εn

k − εm
k )

TrPn
k ∂k1 fβ,µ(hk)Pm

k ∂k1 hk.

We estimate the right hand side using the following equations. In the sequel, we skip the index k
and write ∂k1 , εn

k as ∂, εn for short.
By differentiating Pn = PnPn, we have ∂Pn = (∂Pn)Pn + Pn∂Pn. Multiplying Pn from both side,

Pn(∂Pn)Pn = 0. Since PnPm = 0 for n 6= m, we have (∂Pn)Pm + Pn∂Pm = 0. Multiplying Pn from
both side, Pn(∂Pm)Pn = 0. From these equations, we obtain

|Λ|

∑
n=1

TrPn∂ fβ,µ(h)Pn∂h =
|Λ|

∑
n=1

∂ fβ,µ(ε
n)∂εn.

Additionally, if n 6= m, we have

Pn∂ fβ,µ(h)Pm =
|Λ|

∑
l=1

fβ,µ(ε
l)Pn(∂Pl)Pm

= fβ,µ(ε
m)Pn(∂Pm)Pm + fβ,µ(ε

n)Pn(∂Pn)Pm

= fβ,µ(ε
m)Pn∂Pm + fβ,µ(ε

n)(∂Pn)Pm.
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In addition, we obtain Pm∂hPn = εm(∂Pm)Pn + εnPm∂Pn similarly. Therefore, we have

TrPn∂ fβ,µ(h)Pm∂h = fβ,µ(ε
m)εmTrPn(∂Pm)2 + fβ,µ(ε

m)εnTrPn(∂Pm)Pm∂Pn

+ fβ,µ(ε
n)εmTr(∂Pn)Pm(∂Pm)Pn + fβ,µ(ε

n)εnTrPm(∂Pn)2

= fβ,µ(ε
m)(εm − εn)TrPn(∂Pm)2 + fβ,µ(ε

n)(εn − εm)TrPm(∂Pn)2.

Using the above equations

∑
n 6=m

1
2λ + i(εn

k − εm
k )

TrPn
k ∂k1 fβ,µ(hk)Pm

k ∂k1 hk = ∑
n 6=m

4λ(εn
k − εm

k )

4λ2 + (εm
k − εn

k )
2 fβ,µ(ε

m
k )TrPn

k (∂k1 Pm
k )2.

Because εn
k is continuous for k and εn

k 6= εm
k (n 6= m), there is a positive constant C, such that, for

all k ∈ B and n 6= m, |εn
k − εm

k | > C. Therefore, we obtain the µ-independent upper bound∣∣∣∣∣Re
∫
B

∑
n 6=m

1
2λ + i(εn

k − εm
k )

TrPn
k ∂k1 fβ,µ(hk)Pm

k ∂k1 hk

∣∣∣∣∣ ≤ 4λ

C ∑
n 6=m

∫
B

TrPn
k (∂k1 Pm

k )2dk.

σλ
1 (β, µ) = − 1

2λ

|Λ|

∑
n=1

∫
B

∂k1 fβ,µ(ε
n
k )∂k1 εn

k dk + O(λ) =
1

2λ

|Λ|

∑
n=1

∫
B

fβ,µ(ε
n
k )∂

2
k1

εn
k dk + O(λ).

Put Bn
µ = {k ∈ B | εn

k ≤ µ}, then

σλ
1 (∞, µ) = lim

β→∞
σλ

1 (β, µ) =
1

2λ

|Λ|

∑
n=1

∫
Bn

µ

∂2
k1

εn
k dk + O(λ),

=
1

2λ

|Λ|

∑
n=1

∫
∂Bn

µ

∂k1 εn
k n1(k)dk + O(λ).

In one-dimensional case (d = 1), the absence of degeneracy of eigenvalues εn
k implies the fact that

all of the gaps are open. Thus, µ is either in the gap or in the only one band (n-th band). Furthermore
εn

k is an even function and monotonically increasing or decreasing on 0 ≤ k ≤ π
p . Denote kµ ∈ [0, π

p ]

the solution of εn
k = µ. The conductivity is, as follows, in each case

σλ(∞, µ) =
1
λ

∂kεn
k |k=kµ

+ O(λ)

(
εn

k is increasing on 0 ≤ k ≤ π

p

)

σλ(∞, µ) = − 1
λ

∂kεn
k |k=kµ

+ O(λ)

(
εn

k is decreasing on 0 ≤ k ≤ π

p

)
.

5. Discussion

In this paper, we considered the conductivity of non-interacting lattice fermion system coupled to
a heat reservoir. We dealt with this open system by the quantum dynamical semigroup discussed by
Davies and constructed a NESS. The main result is the formula in Theorem 2.1 and the justification
of an adiabatic factor, e−2λt, of the Kubo formula. In our approach, the parameter λ is naturally
emerged by considering the dissipative dynamics and has the physical meaning, the strengthening of
the dissipation, or the inverse of relaxation time.

In the case of periodic potentials, we showed that the conductivity is given by the integral of the
velocity over the Fermi surface in the low temperature and small dissipation limit.
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Non-equilibrium statistical mechanics is a frontier of physics. Especially, NESS with a
non-vanishing current is one of main themes of it [13–17]. However, there are a few concrete
models [18,19]. Our derivation of the Kubo formula provides a new example of NESS.

Justifying our model from more realistic setting is our future work.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Continuous Model and Drude Formula

In this paper we discussed lattice models. One can also consider the dissipative dynamics
introduced in Section 2 on continuous models. In this appendix we discuss the free continuous model
and show that Drude formula is obtained from this model.

For simplicity, here we consider a one-dimensional system as in Section 3. In free continuous
model, the one-particle Hilbert space is L2(R) and the one-particle Hamiltonian is the Fourier
transformation of the multiplication operator:

(ĥφ)(k) =
k2

2
φ(k), φ ∈ L2(R)

The domain of h is D(h) = {φ ∈ L2(R) |
∫
R k4|(Fφ)(k)|2dk < ∞}. In the continuous model, both

Q and h are unbounded and we have to consider the domain of h− EQ carefully. The operator h− EQ
defined on D(h− EQ) = D(h) ∩D(Q) as

(h− EQ)φ = hφ− EQφ, φ ∈ D(h− EQ),

is essentially self-adjoint [20], that is, the closure of it (we denote hE) is a self-adjoint operator.
As in Section 2, one can introduce the dissipative dynamics. The NESS is a quasi-free state

generated by the following operator on L2(R):

2λ
∫ ∞

0
e−2λse−ishE fβ,µ(h)eishE ds.

As the calculation in Section 3 shows, this operator is the multiplication operator on momentum
space of the function: (

Rλ,E
β,µ

)
(k) = 2λ

∫ ∞

0
e−2λs fβ,µ(ε(k + sE))ds.

Here we calculate the current density as the integral of the momentum k (this corresponds to our
definition of current in lattice models ).

jλ(E; β, µ) =
∫
R

k
(

2λ
∫ ∞

0
e−2λs fβ,µ(ε(k + sE))ds

)
dk

=
∫
R

(
2λ
∫ ∞

0
(k− sE)e−2λsds

)
fβ,µ(ε(k))dk

=
E

2λ

∫
R

1
1 + eβ(k2−µ)

dk.

∫
R

1
1+eβ(k2−µ)

dk is the density of particles per unit volume, and we denote it by ρ. Writing the mass m
and the charge q explicitly, the last equation becomes

jλ(E; β, µ) =
1

2λ

ρq2

m
E.
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Noting that (2λ)−1 means the relaxation time, this is the same as the formula known as the
Drude formula.
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