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Abstract: This paper addresses the solution of the incompressible second-grade fluid models.
Fundamental qualitative properties of the solution are primarily studied for proving the adequacy
of the physical interpretations of the proposed model. We use the Liouville-Caputo fractional
derivative with its generalized version that gives more comprehensive physical results in the analysis
and investigations. In this work, both the ρ-Laplace homotopy transform method (ρ-LHTM) and the
heat balance integral method (HBIM) are successfully combined to solve the fractional incompressible
second-grade fluid differential equations. Numerical simulations and their physical interpretations of
the mentioned incompressible second-grade fluid model are ensured to illustrate the main findings.
It is also proposed that one can recognize the differences in physical analysis of diffusions such as
ballistic diffusion, super diffusion, and subdiffusion cases by considering the impact of the orders ρ

and ϕ.

Keywords: generalized fractional derivative; second-grade fluid; ρ-Laplace homotopy perturbation
transform method; heat integral balance method

1. Introduction

Fractional calculus is a field trying to understand the real-world phenomena modeled with
non-integer-order derivatives [1,2], finance [3,4], biological processes and epidemic models [5–8],
science and engineering [9–17], mechanics, etc. There exist at present numerous fractional
operators which are defined by virtue of singular and nonsingular kernels. Since fractional
terminology began with Leibniz’s question in 1695, the list of the existing fractional operators is
naturally long. With singular kernels, we have the Caputo operator [18] and the Riemann–Liouville
operator [18]. Without singular kernels, we have two types: the fractional derivative with exponential
kernel [19,20] and the fractional operator which has Mittag–Leffler function as a kernel known as
the Atangana–Baleanu operator [21–23]. We also summarized the existing FDs, which are the most
popular in the literature. Some other types of derivatives as conformable [24], the Hilfer derivation [25],
the Erdélyi–Kober derivation, and others. Note the discrete forms of the fractional derivatives
previously cited exist in the literature; for more information, see the following investigations [26,27].

In the literature, there exist several investigations related to these fractional differential equations.
We briefly enumerate some of them. Reference [28] proposed a discretization of the Rayleigh and Stokes
equation for a heated generalized second-grade fluid (HGSGF). Reference [29] presented the numerical
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discretization for Stokes’ first problem for the HGSGF described by a fractional operator. Reference [30]
provided a discretization for Stokes’ equation for the HGSGF that contains the Riemann–Liouville
derivative. For further information about the HGSGF, one could see works in [1,31–33]. In addition,
there are many other investigations for fractional heat equations; some numerical studies exist as well.
Reference [34] investigated a numerical computation for the wave diffusion problem in fractional
context. Reference [35] illustrated the numerical technique for the diffusion problem with fractional
order derivative. Reference [36] proposed the numerical approximation with high order accuracy
for the fractional reaction-sub-diffusion equation. In [37], authors considered a heat conduction
equation with respect to the Caputo–Fabrizio fractional derivative (CFFD). In [38], authors formulated
a fractional optimal control problem for an anomalous diffusion process. We conclude the literature
review by giving the next remark. Many other works in terms of analytical solution and numerical
discretization for the fractional diffusion equation may also be found in the literature [35,39,40].

In this paper, we address the diffusion processes. We mainly investigate the solution of
the incompressible second-grade fluids model which is constructed with the generalization of a
fractional operator. The primary importance of this paper is the fractional aspect of the presented model.
We apply the generalized fractional operator in mechanics fluids. Our paper yields providing the
application of the fractional analysis in mathematical physics and mechanics fluids.

One of the main novelties of this paper is to propose new procedures which give the
semi-analytical solutions of the nanofluid equations as well. The process of getting the solutions
combines the heat integral balance method and the homotopy method (which is used classically
for getting the approximate solutions for nanofluid equations). In our paper, we prove when we
combine these two approaches, we obtain more accurate solutions for the fractional incompressible
second-grade fluids models. In addition, the structure of the obtained solutions is more useful, and the
graphical representations are most straightforward. As another contribution of the paper, we analyze
the behavior of the obtained solutions when the order ρ is into (0, 1) or outside (0, 1). In other words,
we consider the subdiffusion process and the superdiffusion process. In other words, what is the impact
of the order ρ into the behavior of the solutions of the fractional the incompressible second-grade
fluids models?

In Section 2, we offer the fractional-order derivatives that are used in our paper. In Section 3,
we provide and give the model presentations which are constructed with a fractional operator.
In Section 4, we present the fundamental qualitative properties of the fractional incompressible
second-grade fluids model and its solutions as well. In Section 5, we describe the solution
methods which are combination of two different methods that get the approximate solutions of
the fractional incompressible second-grade fluids model. In Section 6, we provide the solutions of the
mentioned problem. In Section 7, we illustrate our main results by the graphical representations and
discuss the impact of the order ρ when we fix the fractional order ϕ. In addition, finally, we give the
conclusions which we have pointed out in the paper and the corresponding perspectives in Section 8.

2. Basic Definitions on Fractional Derivations and Their Generalizations

In this section, we call to mind the fundamental definitions and features of the fractional analysis
and their generalized form recently proposed in the literature by Tomovski et al. [41], Sene and
Srivastava [42], Jarad and Abdeljawad [43,44] and Jarad et al. [45]. We first define the so-called
fractional integral proposed by Riemann and Liouville. Let g(t) be a strictly increasing function with
continuous derivative g′ on the interval (a, b). The left Riemann–Liouville fractional integral of f with
respect to the function g of order ϕ,< (ϕ) > 0 is defined by(

Iϕ
g f
)
(t) =

1
Γ(ϕ)

∫ t

0
(g(t)− g(λ))ϕ−1 f (λ)g′(λ)dλ. (1)
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It is clear that when g(t) = t, Equation (1) is the classical Riemann-Liouville fractional integral.
Taking the function f : [0, ∞[−→ R, we define the integral of order ϕ, of the function f starting at 0 as
the following construction [46]

(Iϕ f ) (t) =
(

Iϕ,1 f
)
(t) =

1
Γ(ϕ)

∫ t

0
(t− λ)ϕ−1 f (λ)dλ, (2)

where Γ(.) represents the Euler Gamma function and t > 0, and 0 < ϕ < 1.
Its generalized form introduced in the literature by the authors in [41,43–45] is described as follows.

From the function defined by f : [0, ∞[−→ R, and taking g(t) = tρ

ρ in Equation (1) we obtain a special
case of the the generalized integral of order ϕ, ρ > 0 of f starting at 0 as the following form

Iϕ,ρ f (t) =
1

Γ(ϕ)

∫ t

0

(
tρ − λρ

ρ

)ϕ−1
f (λ)

dλ

λ1−ρ
. (3)

We use these definitions above to define the Riemann–Liouville fractional operator in its classical
form and its generalized form. The left Riemann–Liouville fractional derivative of f with respect to
the function g of order ϕ,< (ϕ) > 0 is defined by

Dϕ,ρ
g f (t) =

1
g′(t)

d
dt

Γ(1− ϕ)

∫ t

0
(g(t)− g(λ))−ϕ f (λ)g′(λ)dλ. (4)

It can be easily noticed that when g(t) = t, Equation (4) is the classical Riemann-Liouville
fractional derivative. By using f : [0, ∞[−→ R, we define the Riemann-Liouville operator of order ϕ,
starting at 0 as the following form

Dϕ f (t) =
1

Γ(1− ϕ)

(
d
dt

) ∫ t

0
(t− λ)−ϕ f (λ)dλ. (5)

Its generalized form introduced in the literature by the authors in [41,43–45] is described as follows.
From the function defined by f : [0, ∞[−→ R, and taking g(t) = tρ

ρ in Equation (4) we obtain a special
case of the the generalized Riemann-Liouville derivative of order ϕ, ρ > 0 of f starting at 0 as the
following form.

Dϕ,ρ f (t) =
1

Γ(1− ϕ)

(
t1−ρ d

dt

) ∫ t

0

(
tρ − λρ

ρ

)−ϕ

f (λ)
dλ

λ1−ρ
. (6)

In the same way, the Liouville-Caputo fractional derivative of f with respect to the function g of
order ϕ,< (ϕ) > 0 is defined by

gDϕ,ρ
C f (t) = Dϕ,ρ

g

(
f (s)−

n−1

∑
k=0

f [k] (a+)
k!

(g(s)− g(0))k (t)

)
. (7)

It can be easily noticed that when g(t) = t, Equation (7) gives the classical Liouville-Caputo
fractional derivative which is given

Dϕ
C f (t) =

1
Γ(1− ϕ)

∫ t

0
(t− λ)−ϕ f ′(λ)dλ. (8)

From the function defined by f : [0, ∞[−→ R, and taking g(t) = tρ

ρ in Equation (7) we obtain a
special case of the the generalized Liouville-Caputo derivative of order ϕ, ρ > 0 of f starting at 0 as
the following form:

Dϕ,ρ
C f (t) =

1
Γ(1− ϕ)

∫ t

0

(
tρ − λρ

ρ

)−ϕ

γ f (λ)
dλ

λ1−ρ
. (9)
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Remark 1. Each of these generalized forms given in Equations (6) and (9) is derivable from the classical
Riemann-Liouville derivative given by Equation (5) and the Liouville-Caputo fractional derivative given by
Equation (8), respectively, by changing the variable, the parameter and the functional notation appropriately.
In other words, Dϕ,1 f (t) = Dϕ f (t) and Dϕ,1

C f (t) = Dϕ
C f (t).

In what follows, we recall the ρ-Laplace transform (ρ-LT) of a real-valued function and ρ-LT of
the Liouville-Caputo operator which we take into account throughout the paper in our investigations.
The ρ-Laplace transform of the real-valued function f : [0, ∞)→ R is described by

Lρ { f (t)} (s) =
∫ ∞

0
e−s tρ

ρ f (t)
dt

t1−ρ
, ρ > 0,

where for all s values the integral is valid.

Theorem 1. Let the function f (t) be continuous and of exponential order ec tρ
ρ such that γ f (t) is piecewise

continuous over every finite interval [0, T] . Then ρ-Laplace transform of γ f (t) exists for s > c and

Lρ {γ f (t)} (s) = sLρ { f (t)} − f (0), (10)

where ρ > 0 and γ = t1−ρ d
dt

.

Proof. The proof can be found in [43].

The ρ-LT of the Liouville-Caputo operator of order 0 < ϕ < 1 is defined by [43] with
Corollary 3.3 as:

Lρ

{
0Dϕ,ρ

C f (t)
}
(s) = sϕ

[
Lρ { f (t)} −

n−1

∑
k=0

s−k−1
(

γk f
)
(0)

]
, s > c,

where ϕ > 0, f ∈ ACn
γ [0, a] is the space of absolutely continuous functions on [0, a] for any a > 0 and

γk f , k = 0, 1, . . . , n is ρ-exponential order ec tρ
ρ .

Then the following Remark may be given:

Remark 2. ρ-generalized variation of the Laplace transform is derivable from the classical Laplace transform
itself by suitably changing the variable and the index and the functional notation.

The main relationship between the ρ-LT and the classical Laplace transform is given by [44] with
Theorem 3.2.

Lg { f (t)} (s) = L
{

f
(

g−1(t + g(a))
)}

(s).

where f , g : [a, ∞) → R are the real-valued functions such that g (t) is continuous and g′(t) > 0
on [0, ∞) such that the generalized Laplace transform of f exists and and ρ > 0. We now give the
following particular relationship which we will use in our calculations

Lρ {tp} (s) = ρ
p
ρ

Γ
(

1 + p
ρ

)
s1+ p

ρ

, p ∈ R, s > 0.

Remark 3. As the usual Laplace transform (1-Laplace) is a tool to solve classical fractional Riemann-Liouville
and Liouville-Caputo derivatives, we use the ρ-Laplace transform to solve the incompressible second-grade
fluids model in the frame of Riemann-Liouville and Liouville-Caputo type fractional generalized operators.
This confirms that these fractional generalized operators that can be used to produce more general types of
fractional derivatives with memory effect. Therefore, it is always of interest to introduce new local derivatives
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of arbitrary order and use them by a fractionalization process to produce new types of fractional derivatives of
different kernels [42].

The Mittag-Leffler function with the parameters ϕ and ζ is presented with the following sum

Eϕ,ζ (χ) =
∞

∑
ξ=0

χξ

Γ(ϕξ + ζ)
,

where ϕ > 0, ζ ∈ R and χ ∈ C. Note convergence of this series result from the assumptions ϕ > 0,
and ζ > 0.

The Mittag-Leffler approximation will be used for expressing the obtained approximate solution
of the fractional incompressible second grade fluid.

3. Model Presentation and Work Project

In this part, we combine two useful methods of obtaining the solutions of FDEs. We propose in our
investigations the approximate solution of the ISGF model which is covered with the left generalized
fractional operator expressed by the equations

Dϕ,ρ
C u =

(
1 + ηDϕ,ρ

C

) ∂2u
∂x2 + Grθ, (11)

PrDϕ,ρ
t θ =

∂2θ

∂x2 , (12)

where the conditions at t = 0 are
u(x, 0) = θ(x, 0) = 0, (13)

and furthermore, the function u represents the velocity of the fluid and θ represents the temperature of
the fluid. Moreover, these functions satisfy the following relations

u(0, t) = f H(t) sin wt, and θ(0, t) = 1. (14)

In the above equation, Gr = υgβT(Tw−T∞)
f 3 represents the Grashof number, Pr =

qCp
k represents

the Prandtl number and H represents the Heaviside function. f indicates the constant which has
the velocity’s dimension, Cp represents the heat capacity at constant pressure, k represents the
thermal conductivity and q the constant density. υ denotes the kinematic of the fluid, g shows the
gravitation acceleration, βT represents the volumetric number of the thermal expansion, Tw denotes
the plate temperature and T∞ represents the ambient fluid temperature of the plate [47]. The main
importance of our problem is two-equations constitute it. The first equation is used in nanofluid,
and the second is a fractional diffusion equation. The fractional diffusion Equation (12) represents an
exogenous input for the first problem Equation (11). The governing Equations (11) and (12) model the
heat transfer in a second grade fluid over and oscillating vertical plate. For more pieces of information

and the graphical description of the model can be found in [47]. Furthermore, η = α1 f 2

µυ is a constant
where α1 is the second grade parameter, and µ is the diffusion term. The solution of the model
presented by Equations (11) and (12) can be approximated by many methods: the homotopy perturbed
method and the homotopy analysis method. Equation (12) is a heat equation and many methods
can be considered to determine its analytical or approximate solutions. We can use the Fourier sine
transform, the Fourier transform, the integral balance method, and many others. Our motivation in
this paper is to bring a more precise solutions of the model presented by Equations (11) and (12) by
first solving Equation (11) using Homotopy perturbation method and the HBIM to give a more precise
approximate solution for Equation (12). The impact of the order ρ will be analyzed.
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4. Fundamental Qualitative Properties of the Solutions

In this section, we consider the Banach sketch (BS) to provide the conditions to obtain
the qualitative properties to the incompressible SGF constructed with the left generalized
fractional derivative.

Theorem 2. The solution of the fractional differential equation described by Equation (11) exists.

Proof. We begin with the first equation of the proposed model. We take into account the
following function.

Θ(u, x, t, θ) =
∂2u
∂x2 + ηDϕ,ρ

t
∂2u
∂x2 + Grθ(x, t). (15)

Let us prove that Θ is Lipschitz and continuous (L-C). Here for simplification, we use the
classical norm. By considering triangular inequality and taking the norm to both sides of Equation (15),
we get

‖Θ(u, x, t, θ)−Θ(v, x, t, θ)‖ ≤
∥∥∥∥∂2u

∂x2 −
∂2v
∂x2

∥∥∥∥+ ηDϕ,ρ
t

∥∥∥∥∂2u
∂x2 −

∂2v
∂x2

∥∥∥∥ .

Let us assume that u is Lipschitz and continuous. We obtain the following expression after
calculation when we consider the second term null

‖Θ(u, x, t, θ)−Θ(v, x, t, θ)‖ ≤
∥∥∥∥∂2u

∂x2 −
∂2v
∂x2

∥∥∥∥+ ηDϕ,ρ
t

∥∥∥∥∂2u
∂x2 −

∂2v
∂x2

∥∥∥∥
≤ a ‖u− v‖+ aηDϕ,ρ

t ‖u− v‖ (16)

≤ a ‖u− v‖ ,

where a is a constant. From the condition u(x, 0) = 0, we provide the Picard’s operator (PsO) as follows

Mu(x, t) = Iϕ,ρΘ(u, x, t, θ),

where Mu : H → H and H is a compact set. The operator M should be bounded before continuing
our reasoning. We recall the Euclidean norm, we have the expression

‖Mu(x, t)− u(x, 0)‖ = ‖Iϕ,ρΘ(u, x, t, θ)‖
≤ Iϕ,ρ ‖Θ(u, x, t, θ)‖
≤ ‖Θ(u, x, t, θ)‖ Iϕ,ρ(1).

Using the assumption that ‖Θ (x, t, θ)‖ is bounded by b and t ≤ T, we have the inequality

‖Mu(x, t)− u(x, 0)‖ ≤ ρ1−ϕ

Γ(ϕ)

(
Tρ

ρ

)ϕ

b. (17)

Equation (17) proves that the PsO is bounded. Let’s prove this operator is now a contraction
or we will provide a condition under which the PsO is a contraction. Applying the classical norm,
we obtain the following inequality

‖Mu(x, t)−Mv(x, t)‖ = ‖Iϕ,ρΘ(u, x, t, θ)−Θ(v, x, t, θ)‖
≤ ‖Θ(u, x, t, θ)−Θ(v, x, t, θ)‖ Iϕ,ρ(1).
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Using the fact that Θ is L-C (Equation (16)), we obtain the following relationships

‖Mu(x, t)−Mv(x, t)‖ ≤ ρ1−ϕ

Γ(ϕ + 1)

(
Tρ

ρ

)ϕ

a ‖u− v‖ .

From which the PsO is a contraction if the following relation is provided

ρ1−ϕ

Γ(ϕ + 1)

(
Tρ

ρ

)ϕ

<
1
a

.

We conclude the proof by taking into account the Banach Theorem. Thus, we prove the qualitative
properties of the solution to Equation (11). In conclusion, we can now give a semi-analytical solution
to Equation (11) because the problem of getting the exact solution is well defined.

Theorem 3. The solution of the fractional differential equation described by Equation (12) is unique.

Proof. For the heat Equation (12), we repeat the same procedures. We consider the following function

Σ(θ, x, t) =
∂2θ

∂x2 . (18)

Let us prove that Σ is Lipschitz and continuous with constant c. Here for simplification, we use
the classical norm. By considering triangular inequality and taking the norm of Equation (18), we get

∥∥Σ(θ, x, t)− Σ(θ′, x, t)
∥∥ ≤

∥∥∥∥ ∂2θ

∂x2 −
∂2θ′

∂x2

∥∥∥∥ .

Let us suppose that θ is Lipschitz continuous, and c is a constant such that the following
relationship holds

∥∥Σ(θ, x, t)− Σ(θ′, x, t)
∥∥ ≤

∥∥∥∥ ∂2θ

∂x2 −
∂2θ′

∂x2

∥∥∥∥
≤ c

∥∥θ − θ′
∥∥ .

From initial condition θ(x, 0) = 0, we define the Picard’s operator as follows

Nθ(x, t) = Iϕ,ρΣ(θ, x, t),

where Nθ : H → H and H is a Banach space. The operator N should be bounded before continuing
our reasoning. We recall the classical norm; we have the following expression

‖Nθ(x, t)− θ(x, 0)‖ = ‖Iϕ,ρΣ(θ, x, t)‖
≤ Iϕ,ρ ‖Σ(θ, x, t)‖
≤ ‖Σ(θ, x, t)‖ Iϕ,ρ(1).

By using the assumption that ‖Σ(θ, x, t)‖ is bounded by d and t ≤ T, we get the
following inequality

‖Nθ(x, t)− θ(x, 0)‖ ≤ ρ1−ϕ

Γ(ϕ)

(
Tρ

ρ

)ϕ

d. (19)
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Equation (19) proves that the PsO is bounded. We prove that this operator is now a contraction or
we will provide a condition under which the PsO is a contraction. If we apply the norm, we obtain the
following inequality∥∥Nθ(x, t)− Nθ′(x, t)

∥∥ =
∥∥Iϕ,ρΣ(θ, x, t)− Σ(θ′, x, t)

∥∥
≤ Iϕ,ρ ∥∥Σ(θ, x, t)− Σ(θ′, x, t)

∥∥
≤

∥∥Σ(θ, x, t)− Σ(θ′, x, t)
∥∥ Iϕ,ρ(1).

Using Σ(θ, x, t) is Lipschitz and continuous, we get the following connection

∥∥Nθ(x, t)− Nθ′(x, t)
∥∥ ≤ ρ1−ϕ

Γ(ϕ + 1)

(
Tρ

ρ

)ϕ

c
∥∥θ − θ′

∥∥ .

From which the PsO is a contraction if the following relation is ensured

ρ1−ϕ

Γ(ϕ + 1)

(
Tρ

ρ

)ϕ

<
1
c

.

Finally, this shows that the solution to the incompressible second grade fluid model which is
given in Equations (11) and (12) is unique.

In conclusion, we can now give an approximate solution of Equation (12) because the problem of
getting the exact solution is well defined.

5. Description of Proposed Solution Methods

5.1. Heat Balance Integral Method (HBIM)

In this subsection, we provide briefly the method that is used for obtaining the solution of the
second equations. The method exists in the literature and provided in different studies as in [1,48].
According to the HBIM method, we suppose the solution is regarded as the following form

θ(x, t) =
(

1− x
δ

)n
. (20)

where n represents the exponent and will be fixed to n = 2. However, as we will discuss later, there exist
techniques to get the approximate value of the exponent n proposed by Myers and Mitchell [49].
The technique which is used in the study provides a physical concept. The main argument is to
integrate the heat Equation (12) between 0 to the depth δ. That is

Pr
∫ δ

0
Dϕ,ρ

t θ(x, t)dx =
∫ δ

0

∂2θ(x, t)
∂x2 dx. (21)

The next step is to replace Equation (20) into Equation (21), and solve the equation using ρ-Laplace
of the obtained equation. The objective is to get the form of the depth δ. The solution of the heat (12) is
provided by replacing the expression of the δ into Equation (20).

5.2. ρ-Homotopy Perturbation Laplace Transformation

In this subsection, we define the ρ-Laplace homotopy transformation method (ρ-LHTM) to solve
the problem mentioned in Section 3. This method is combined with the classical homotopy technique
and ρ-Laplace transform and it was proposed firstly by Sene and Fall [50]. Consider the following PDE
in the generalized fractional sense:

Dϕ,ρ
C u(x, t) =

(
1 + η Dϕ,ρ

C

) ∂2u(x, t)
∂x2 + Grθ(x, t), (22)
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with Dirichlet initial and boundary conditions given by

u(x, 0) = 0, (23)

and
u(0, t) = f H(t) sin wt, (24)

where Dϕ,ρ
C shows the generalized-Caputo fractional operator (GCFO). Other variables stated in

Equation (22) are the same with those which were defined in Section 3. Using the ρ-Laplace transform,
we assign the Lρ{u(x, t)} = U(x, s). Then applying the homotopy to Equation (22) we derive the
homotopies for the GCFO. Taking the LT of both sides of Equation (22), yields

U(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)xx}+

1
sϕLρ{Grθ(x, t)}+ 1

s
u(x, 0). (25)

We assume that

U(x, s) =
∞

∑
m=0

zmUm(x, s), (26)

then substituting Equation (26) into Equation (25) and applying the homotopy steps, we have

∞

∑
m=0

zmUm(x, s) = z

[
1
sϕLρ

{ ∞

∑
m=0

zm
(

1 + η Dϕ,ρ
C

)
u(x, t)mxx

}]

+
1
sϕLρ{Grθ(x, t)}+ 1

s
u(x, 0), (27)

where u(x, t)mxx is mth iteration of the expression u(x, t)xx. If we compare the values of the powers
of z, we generate the homotopies for the generalized Caputo fractional operator as follows:

z0 : U0(x, s) =
1
sϕLρ{Grθ(x, t)}+ 1

s
u(x, 0),

z1 : U1(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)0xx},

z2 : U2(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)1xx},

...

zn+1 : Un+1(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)nxx}.

Then the corresponding solution of Equation (22) is given by

u(x, t) = Lρ
−1
{ ∞

∑
m=0

Um(x, s)
}

. (28)

6. Procedure Solutions

In this Part, we give the solution of the incompressible fluid described by the left GDD defined
in Equation (12). We begin the resolution by solving the fractional heat equation described by
Equation (12). We use the HBIM which consists of expressing the similarity variable of the heat
equation using the penetration depth denoted in this paper by δ. This technique is to integrate the
heat diffusion equation from 0 to the depth δ. We suppose the suggested solution of Equation (12) is
expressed as

θ(x, t) =
(

1− x
δ

)n
. (29)
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It follows the following identity

Pr
∫ δ

0
Dϕ,ρ

C θ(x, t)dx =
∫ δ

0

∂2θ(x, t)
∂x2 dx,

PrDϕ,ρ
C

∫ δ

0
θ(x, t)dx =

n
δ

, (30)

Pr
n + 1

Dϕ,ρ
C δ =

n
δ

,

PrDϕ,ρ
C δ =

n(n + 1)
δ

.

Considering the integration in the interval (0, δ), we arrive to the following relation

Pr
∫ δ

0
Dϕ,ρ

C δdx =
∫ δ

0

n(n + 1)
δ

dx,

PrDϕ,ρ
C δ2 = 2n(n + 1). (31)

For the rest of the paper we take Pr = 1 and f = 1, because in the present investigation its
influence in the dynamics of the considered model is not under consideretion. The LT to both sides of
Equation (31), we get the relationships with the condition δ(0) = 0,

sϕ δ̄2(s) =
2n(n + 1)

s
,

δ̄2(s) =
2n(n + 1)

s1+ϕ
. (32)

Inverting Equation (32), we have the approximate equivalent

δ2(t) =
2n(n + 1)
Γ (1 + ϕ)

(
tρ

ρ

)ϕ

,

δ(t) =

√
2n(n + 1)
Γ (1 + ϕ)

(
tρ

ρ

)ϕ/2
.

Thus, using Equation (29), the approximate solution of the heat Equation (12) can be formed in
the following expression

θ(x, t) =

1− x√
2n(n+1)
Γ(1+ϕ)

(
tρ

ρ

)ϕ/2


n

.

For the heat diffusion equation, we have a parabolic equation; thus, in this study, we stipulate
the exponent n = 2. There exist in the literature many discussions related to the good choose of
the exponent for the diffusion and the fractional diffusion equations. In this context, Myers [51]
provided an excellent method for getting the exponent n by minimizing the residual term of the
diffusion equation. However, in many cases, we choose n = 2, to obtain a more accurate profile. In our
study, the approximate solution of Equation (12) is clarified as the expression of

θ(x, t) =

1− x

2
√

3
Γ(1+ϕ)

(
tρ

ρ

)ϕ/2


2

. (33)
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The importance of our method is the physical propose. Our method gives the estimate of the
similarity variable of the diffusion equation of fractional order. That is

x

2
√

3
Γ(1+ϕ)

(
tρ

ρ

)ϕ/2 . (34)

Another importance of our method, is it propose a classification of the nature of the
diffusion processes. For classification, let’s the square penetration depth

δ2(t) =
2n(n + 1)
Γ (1 + ϕ)

(
tρ

ρ

)ϕ

. (35)

Here we give a brief classification. Some detail will be give in forthcoming paper. Note when
ϕ = ρ = 1, we have a normal diffusive. When ϕ < 1

ρ , we have a sub-diffusion process. When ϕ > 1
ρ ,

the diffusion is super-diffusion. In addition, when ϕ = 1
ρ , we have a ballistic diffusion. The solution of

Equation (12) can be expressed in the following form

θ(x, t) = 1− 2F−1/2
ϕ

(
tρ

ρ

)−ϕ/2
x + F−1

ϕ

(
tρ

ρ

)−ϕ

x2, (36)

where Fϕ = 12
Γ(1+ϕ)

. Thus, the first Equation (11), will have been solved using the ρ-LHTM.
Now considering the solution obtained in Equation (36) we aim to solve by homotopy technique
explained in Section 5.2 the following equation

Dϕ,ρ
C u(x, t) =

(
1 + ηDϕ,ρ

C

) ∂2u
∂x2 + 1− 2F−1/2

ϕ

(
tρ

ρ

)−ϕ/2
x + F−1

ϕ

(
tρ

ρ

)−ϕ

x2. (37)

For this aim, we apply the homotopy steps to the last equation. Then we have

z0 : U0(x, s) =
1
sϕLρ

{
1− 2F−1/2

ϕ

(
tρ

ρ

)−ϕ/2
x + F−1

ϕ

(
tρ

ρ

)−ϕ

x2
}

,

z1 : U1(x, s) =
1
sϕLρ

{ (
1 + η Dϕ,ρ

C

)
2.12−1/ρΓ(1− ϕ)

((
ρρ−1

)−ϕ
Γ(ϕ + 1)

)1/ρ }
,

z2 : U2(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)1xx} = 0, (38)

...

zn+1 : Un+1(x, s) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)nxx}} = 0.
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From the last homotopies and taking the inverse ρ-LT of each terms we can get the followings:

u0(x, t) = −
3−

1
2ρ xρ−

ϕ
2 Γ
(
1− ϕ

2
) ( (ρρ−1)

− ϕ
2√

1
Γ(ϕ+1)

)1/ρ

t
ϕρ
2

Γ
( ϕ

2 + 1
)

+12−1/ρx2Γ(1− ϕ)

((
ρρ−1

)−ϕ
Γ(ϕ + 1)

)1/ρ

+
ρ−ϕtϕρ

Γ(ϕ + 1)
,

u1(x, t) =
21− 2

ρ 3−1/ρρ−ϕΓ(1− ϕ)
((

ρρ−1)−ϕ Γ(ϕ + 1)
)1/ρ

tϕρ

Γ(ϕ + 1)
,

u2(x, t) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)1xx} = 0,

...

un+1(x, t) =
1
sϕLρ{

(
1 + η Dϕ,ρ

C

)
u(x, t)nxx} = 0.

Then the solution of the incompressible fluid equation is given by

u(x, t) = −3−
1

2ρ xρϕ/2Γ
( ϕ

2
+ 1
)

Γ
(

1− ϕ

2

)(ρρ−1)− ϕ
2√

1
Γ(ϕ+1)

1/ρ

t−
1
2 (ϕρ) (39)

+12−1/ρx2Γ(1− ϕ)

((
ρρ−1

)−ϕ
Γ(ϕ + 1)

)1/ρ

+
ρ−ϕtϕρ

Γ(ϕ + 1)
,

+
21− 2

ρ 3−1/ρρ−ϕΓ(1− ϕ)
((

ρρ−1)−ϕ Γ(ϕ + 1)
)1/ρ

tϕρ

Γ(ϕ + 1)
.

7. Graphics and Discussions

In this part, we have the graphical representations of super-diffusion, ballistic-diffusion,
and sub-diffusion cases. Also, we discuss the results of the solutions obtained in this study.

We first depict and analyze the solution of fractional diffusion equation (FDE) (12), which has been
represented in Equation (33). We make the following assumptions t = 0.3 and ϕ = 1, and we depict
the solution according to the state variable x of the diffusion process. In Figure 1, we demonstrate
the solutions of FDE for different values of the order ρ ≤ 1. We observe the solutions decrease
considerably and converge the normal diffusion obtained with the values (ϕ = 1 = ρ) when the order
ρ increases to 1. We note the order ρ has a prominent effect on the diffusion processes. In general,
it generates a retardation impact on the diffusion processes. Physically, the behaviors are explained by
the sub-diffusion process generated by the fractional heat equation when ρ ≤ 1.

In Figure 2, we present the solutions of the heat equation for varied values of the order ρ satisfying
the condition ρ ≥ 1. We note the solutions decrease according to the state variable x. Analyzing the
behaviors of the solutions according to one another, we observe when the order increases and satisfies
the condition ρ ≥ 1; all the curves increase as well and converge to the normal diffusion. The arrow
in Figure 2 indicates these observations. The super-diffusion process explains the behaviors of the
solutions when we fix ϕ and ρ ≥ 1. Here we note the order ρ generates an acceleration impact.

We fix x = 0.3 and ϕ = 1, and we depict the solutions according to time t of the diffusion process.
We obtain the opposite behaviors, contrary to the previous cases. We note after certain times, all the
curves increase and converge to infinity. See the example in Figure 3. Please note that the effects of the
order ρ are the same as in previous analysis: retardation and acceleration effects.
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Figure 1. Solution of Equation (12) for θ versus x when ϕ = 1 and ρ ≤ 1.
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Figure 2. Solution of Equation (12) when ϕ = 1 and ρ ≥ 1.
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Figure 3. Solution of Equation (12) for θ versus t when ϕ = 1 and ρ ≤ 1.

In Figures 4–6, we point out the solutions with respect to the Super-diffusion, Ballistic-diffusion
and Sub-diffusion cases, respectively. These mentioned graphical representations have been obtained
by using the exact solution which is defined with the ρ-Laplace homotopy perturbation transform
method and given in Equation (39). This mentioned method is very influential and accurate in finding



Axioms 2020, 9, 123 14 of 18

the analytical solution of the ISGF equation of fractional order. Since, when looking at the solution,
one can understand that by using only the first two iterations the solution has been provided.
The truncation error does not need to have occurred for this problem. This situation may be possible
for the solution of some kind of linear problems as well as it is may differ according to the nature of
the problem [52].

Figure 4. Super-diffusion case of incompressible second grade fluid dynamics.

Figure 5. Ballistic-diffusion case of incompressible second grade fluid dynamics.

Figure 6. Sub-diffusion case of incompressible second grade fluid dynamics.



Axioms 2020, 9, 123 15 of 18

In Figure 4, we obtain the super-diffusion-type process which is considered when ϕ < 1
ρ . In this

graphical representation we took ϕ = 0.8 and ρ = 3. In Figure 5, we have the ballistic-type diffusion
process which is obtained when ϕ = 1

ρ and here we have ϕ = 0.9 and ρ = 10/9. In Figure 6, we have

regarded as sub-diffusion-type process which is taken into account when ϕ > 1
ρ . For this representation

we take ϕ = 0.95 and ρ = 0.5.
In Figure 7, we can see the effect of diffusion parameter ρ for different values of the space variable

when ϕ = 0.99 and t = 0.3. It is clear to recognize that when ρ values increase, the diffusion process
approaches to the normal diffusion.

Figure 7. Solution of Equation (11) when ϕ = 0.99 and t = 0.3.

In Figure 8, we represent the solution of the problem in Equation (11) for different values of the
fractional parameter and diffusion term. It is concluded that both of the fractional parameter and
diffusion term approach to the unit, the process designates to the normal diffusion case.

Figure 8. Solution of Equation (11) for various values of ϕ and ρ.
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8. Concluding Remarks

In this study, the existence and uniqueness have been investigated for the FDD described by
a fractional operator with its generalized form. The approximate solutions of the incompressible
second-grade fluid have been provided. The ρ-Laplace homotopy perturbation transform method
and the HBIM have been combined for proposing a new procedure to obtain the solution of the
second-grade fluid model. In conclusion, our approach is useful and can be considered for the second
grade fluids models, because the obtained solutions converge as well. They approach the exact solution
as well. We represented the solutions of the equations composing the second-grade model studied
in this paper. We pointed out the physical aspect of the considered model. We note the order ρ

has retardation or acceleration impact in the diffusion processes. The numerical simulations and
interpretations of the main results were presented. According to the numerical computations we have
pointed out that the behavior of the temperature of the fluid has an important effect on the behavior of
the velocity of the fluid. In other words, the type of the diffusion process in the fractional heat equation
generates the same diffusion process in the fractional velocity equation. Another result in this paper
concerns the exponent n = 2 for the heat balance integral method. The exponent n = 2 considered in
this paper can be revised according to Myers method related to the exponent in future works. Future
direction of investigation is to find a the best value of the exponent n for the semi-analytical solution of
the second grade model considered in this paper using Myers method.

Author Contributions: Conceptualization, M.Y. and N.S.; methodology, N.S.; investigation, M.Y. and N.S.;
writing—original draft preparation, M.Y. and N.S.; writing—review and editing, M.Y. and N.S.; visualization, M.Y.
and N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: M. Yavuz was supported by TUBITAK (The Scientific and Technological Research Council
of Turkey).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193,
229–243. [CrossRef]

2. Darzi, R.; Agheli, B. An analytical approach for systems of fractional differential equations by means of the
innovative homotopy perturbation method. Math. Moravica 2018, 22, 93–105. [CrossRef]

3. Yavuz, M.; Ozdemir, N. European vanilla option pricing model of fractional order without singular kernel.
Fractal Fract. 2018, 2, 3. [CrossRef]

4. Bas, E.; Acay, B.; Ozarslan, R. The price adjustment equation with different types of conformable derivatives
in market equilibrium. AIMS Math. 2019, 47, 805. [CrossRef]

5. Yavuz, M.; Bonyah, E. New approaches to the fractional dynamics of schistosomiasis disease model. Phys. A
Stat. Mech. Appl. 2019, 525, 373–393. [CrossRef]

6. Naik, P.A.; Owolabi, K.M.; Yavuz, M.; Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving
AIDS-related cancer cells. Chaos Solitons Fract. 2020, 140, 110272. [CrossRef]

7. Yavuz, M.; Sene, N. Stability Analysis and Numerical Computation of the Fractional Predator–Prey Model
with the Harvesting Rate. Fract. Fract. 2020, 4, 35. [CrossRef]

8. Yavuz, M.; Ozdemir, N. Analysis of an epidemic spreading model with exponential decay law. Math. Sci.
Appl. E-Notes 2020, 8, 142–154. [CrossRef]

9. Santos, M.D. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting.
Physics 2019, 1, 40–58. [CrossRef]

10. Hristov, J. The heat radiation diffusion equation: Explicit analytical solutions by improved integral-balance
method. Ther. Sci. 2018, 22, 777–788. [CrossRef]

11. Khader, M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci.
Numer. Simul. 2011, 16, 2535–2542. [CrossRef]

http://dx.doi.org/10.1140/epjst/e2011-01394-2
http://dx.doi.org/10.5937/MatMor1801093D
http://dx.doi.org/10.3390/fractalfract2010003
http://dx.doi.org/10.3934/math.2019.3.805
http://dx.doi.org/10.1016/j.physa.2019.03.069
http://dx.doi.org/10.1016/j.chaos.2020.110272
http://dx.doi.org/10.3390/fractalfract4030035
http://dx.doi.org/10.36753/mathenot.691638
http://dx.doi.org/10.3390/physics1010005
http://dx.doi.org/10.2298/TSCI171011308H
http://dx.doi.org/10.1016/j.cnsns.2010.09.007


Axioms 2020, 9, 123 17 of 18

12. Tasbozan, O.; Esen, A.; Yagmurlu, N.M.; Ucar, Y. A Numerical Solution to Fractional Diffusion Equation for
Force-Free Case. Abstr. Appl. Anal. 2013, 2013, 6. [CrossRef]

13. Yokus, A.; Bulut, H. On the numerical investigations to the Cahn-Allen equation by using finite
difference method. Int. J. Optim. Control Theor. Appl. 2018, 9, 18–23. [CrossRef]

14. Sene, N. Second-grade fluid model with Caputo–Liouville generalized fractional derivative.
Chaos Solitons Fract. 2020, 133, 109631. [CrossRef]

15. Pendra, S.K.; Abdeljawad, T.; Ravichandran, C.; Jarad, F. A complex valued approach to the solution of
Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed
point method. Chaos Solitons Fract. 2020, 130, 109439.

16. Evirgen, F.; Yavuz, M. An alternative approach for nonlinear optimization problem with Caputo-Fabrizio
derivative. ITM Web Conf. 2018, 22, 01009. [CrossRef]

17. Usta, F.; Budak, H.; Sarikaya, M.Z. Yang-Laplace Transform Method Volterra and Abels Integro-Differential
Equations of Fractional Order. Int. J. Nonlinear Anal. Appl. 2017, 9, 203–214.

18. Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int.
1967, 13, 529–539. [CrossRef]

19. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract.
Differ. Appl. 2015, 1, 1–15.

20. Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive
equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Ther. Sci. 2016, 20, 757–762.
[CrossRef]

21. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model. Ther. Sci. 2016, 20, 763–769. [CrossRef]

22. Abro, K.A.; Gomez-Aguilar, J.F. A comparison of heat and mass transfer on a Walter’s-B fluid via
Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys.
J. Plus 2019, 134, 101. [CrossRef]

23. Yavuz, M.; Abdeljawad, T. Nonlinear regularized long-wave models with a new integral transformation
applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 2020, 367.
[CrossRef]

24. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput.
Appl. Math. 2014, 264, 65–70. [CrossRef]

25. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 1999; pp. 87–130.
26. Abdeljawad, T.; Al-Mdallal, Q.M. Discrete Mittag-Leffler kernel type fractional difference initial value

problems and Gronwall’s inequality. J. Comput. Appl. Math. 2018, 339, 218–230. [CrossRef]
27. Abdeljawad, T.; Baleanu, D. Discrete fractional differences with non-singular discrete Mittag-Leffler kernels.

Adv. Differ. Equ. 2016, 2016, 232. [CrossRef]
28. Zhuang, P.H.; Liu, Q.X. Numerical method of Rayleigh-Stokes problem for heated generalized second grade

fluid with fractional derivative. Appl. Math. Mech. 2009, 30, 1533–1546. [CrossRef]
29. Wu, C. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with

fractional derivative. Appl. Num. Math. 2009, 59, 2571–2583. [CrossRef]
30. Ye, C.; Luo, X.; Wen, L. High-order numerical methods of fractional-order Stokes’ first problem for heated

generalized second grade fluid. Appl. Math. Mech. Engl. 2012, 33, 65–80. [CrossRef]
31. Hristov, J. Integral-balance solution to nonlinear subdiffusion equation. In Frontiers in Fractional Calculus,

1st ed.; Bhalekar, S., Ed.; Bentham Science Publishers: Sharjah, UAE, 2017; Volume 1, pp. 71–106.
32. Hashemi, M.S.; Baleanu, D.; Haghighi, M.P. Solving the time fractional diffusion equation using a lie

group integrator. Ther. Sci. 2015, 19, 77–83. [CrossRef]
33. Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion

flow equations. J. Comput. Appl. Math. 2004, 172, 65–67. [CrossRef]
34. Delic, A. Fractional in Time Diffusion-Wave Equation and its Numerical Approximation. Filomat 2016,

30, 1375–1385. [CrossRef]
35. Sene, N. Analytical solutions and numerical schemes of certain generalized fractional diffusion models.

Eur. Phys. J. Plus 2019, 134, 199. [CrossRef]
36. Bhrawy, A.H.; Baleanu, D.; Mallawi, F. A new numerical technique for solving fractional sub-diffusion and

reaction sub-diffusion equations with a nonlinear source term. Ther. Sci. 2015, 19, 25–34. [CrossRef]

http://dx.doi.org/10.1155/2013/187383
http://dx.doi.org/10.11121/ijocta.01.2019.00561
http://dx.doi.org/10.1016/j.chaos.2020.109631
http://dx.doi.org/10.1051/itmconf/20182201009
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.2298/TSCI160112019H
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1140/epjp/i2019-12507-4
http://dx.doi.org/10.1186/s13662-020-02828-1
http://dx.doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/10.1016/j.cam.2017.10.021
http://dx.doi.org/10.1186/s13662-016-0949-5
http://dx.doi.org/10.1007/s10483-009-1205-7
http://dx.doi.org/10.1016/j.apnum.2009.05.009
http://dx.doi.org/10.1007/s10483-012-1534-8
http://dx.doi.org/10.2298/TSCI15S1S77H
http://dx.doi.org/10.1016/j.cam.2004.01.033
http://dx.doi.org/10.2298/FIL1605375D
http://dx.doi.org/10.1140/epjp/i2019-12531-4
http://dx.doi.org/10.2298/TSCI15S1S25B


Axioms 2020, 9, 123 18 of 18

37. Avci, D.; Yavuz, M.; Ozdemir, N. Fundamental Solutions to the Cauchy and Dirichlet Problems for a Heat
Conduction Equation Equipped with the Caputo-Fabrizio Differentiation. In Heat Conduction: Methods,
Applications and Research, 1st ed.; Hristov, J., Bennacer, R., Eds.; Nova Science Publishers: New York, NY, USA,
2019; Volume 1, pp. 95–107.

38. Avci, D.; Ozdemir, N.; Yavuz, M. Fractional Optimal Control of Diffusive Transport Acting on a
Spherical Region. In Methods of Mathematical Modelling: Fractional Differential Equations, 1st ed.; Singh, H.,
Kumar, D., Baleanu, D., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Volume 1, pp. 63–82.

39. Hristov, J. A transient flow of a non-newtonian fluid modelled by a mixed time-space derivative:
An improved integral-balance approach. In Mathematical Methods in Engineering, 1st ed.; Tas, K., Baleanu, D.,
Tenreiro Machado, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 153–174.

40. Ravichandran, C.; Logeswari, K.; Jarad, F. New results on existence in framework of Atangana-Baleanu
derivative for fractional integro-differential equations. Chaos Solitons Fract. 2019, 125, 194–200. [CrossRef]

41. Tomovski, Z.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional
derivative operators and Mittag–Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814.
[CrossRef]

42. Sene, N.; Srivastava, G. Generalized Mittag-Leffler input stability of the fractional differential equations.
Symmetry 2019, 11, 608. [CrossRef]

43. Jarad, F.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators.
Res. Nonlinear Anal. 2018, 2, 88–98.

44. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn.
Syst. S 2020, 13, 709–722. [CrossRef]

45. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification.
J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [CrossRef]

46. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier:
Amsterdam, The Netherlands, 2006; Volume 204.

47. Shah, N.A.; Khan, I. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using
fractional Caputo–Fabrizio derivatives. Eur. Phys. J. C 2016, 76, 362. [CrossRef]

48. Sene, N. Integral Balance Methods for Stokes’ First, Equation Described by the Left Generalized
Fractional Derivative. Physics 2019, 1, 154–166. [CrossRef]

49. Mitchell, S.L.; Myers, T.G. Improving the accuracy of heat balance integral methods applied to thermal
problems with time dependent boundary conditions. Int. J. Heat Mass Transf. 2010, 53, 3540–3551. [CrossRef]

50. Sene, N.; Fall, A.N. Homotopy Perturbation ρ-Laplace Transform Method and Its Application to the
Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation. Fract. Fract. 2019, 3, 14.
[CrossRef]

51. Myers, T.G. Optimal exponent heat balance and refined integral methods applied to Stefan problems. Int. J.
Heat Mass Transf. 2010, 53, 1119–1127. [CrossRef]

52. Yavuz, M.; Ozdemir, N. Numerical inverse Laplace homotopy technique for fractional heat equations.
Ther. Sci. 2018, 22, 185–194. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chaos.2019.05.014
http://dx.doi.org/10.1080/10652461003675737
http://dx.doi.org/10.3390/sym11050608
http://dx.doi.org/10.3934/dcdss.2020039
http://dx.doi.org/10.22436/jnsa.010.05.27
http://dx.doi.org/10.1140/epjc/s10052-016-4209-3
http://dx.doi.org/10.3390/physics1010015
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.015
http://dx.doi.org/10.3390/fractalfract3020014
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.045
http://dx.doi.org/10.2298/TSCI170804285Y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Definitions on Fractional Derivations and Their Generalizations
	Model Presentation and Work Project
	Fundamental Qualitative Properties of the Solutions
	Description of Proposed Solution Methods 
	Heat Balance Integral Method (HBIM)
	-Homotopy Perturbation Laplace Transformation

	Procedure Solutions
	Graphics and Discussions
	Concluding Remarks
	References

