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Abstract: The harvesting management is developed to protect the biological resources from
over-exploitation such as harvesting and trapping. In this article, we consider a predator–prey
interaction that follows the fractional-order Rosenzweig–MacArthur model where the predator is
harvested obeying a threshold harvesting policy (THP). The THP is applied to maintain the existence
of the population in the prey–predator mechanism. We first consider the Rosenzweig–MacArthur
model using the Caputo fractional-order derivative (that is, the operator with the power-law
kernel) and perform some dynamical analysis such as the existence and uniqueness, non-negativity,
boundedness, local stability, global stability, and the existence of Hopf bifurcation. We then reconsider
the same model involving the Atangana–Baleanu fractional derivative with the Mittag–Leffler kernel
in the Caputo sense (ABC). The existence and uniqueness of the solution of the model with ABC
operator are established. We also explore the dynamics of the model with both fractional derivative
operators numerically and confirm the theoretical findings. In particular, it is shown that models with
both Caputo operator and ABC operator undergo a Hopf bifurcation that can be controlled by the
conversion rate of consumed prey into the predator birth rate or by the order of fractional derivative.
However, the bifurcation point of the model with the Caputo operator is different from that of the
model with the ABC operator.

Keywords: Rosenzweig–MacArthur model; fractional derivatives; threshold harvesting

1. Introduction

More than 50 years after the model has been proposed, the Rosenzweig–MacArthur predator–prey
model [1] has been consistently developed by many scholars to approach the real world phenomena
with more realistic mathematical models. The commonsensical modified Rosenzweig–MacArthur
models are accomplishable by considering the biological perspectives of ecosystem conditions,
for instance the stage structure [2,3], the refuge effect [4–8], the fear effect [9], the Allee effect [10,11],
the intraspecific competition [12,13], the cannibalism [14], the infectious disease [15–17], and so forth.

On the other hand, the modeling also contemplates the optimal management of bioeconomic
resources as in fishery and pest management. Some researchers put an intervention into the
predator–prey model such as the harvesting to one or more population [8,18–22]. To protect
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the population from over-exploitation during the harvesting, some management techniques have
been established. One of the famous technique is a continuous threshold harvesting policy (THP)
(see [23–29]). THP is regulated as follows: when the population density above the threshold level,
harvesting is permitted; when the population density drops below the threshold level, harvesting
is prohibited.

In 2013, Lv et al. [26] proposed the following Rosenzweig–MacArthur model with THP in predator

dx
dt

=rx
(

1− x
K

)
− mxy

a + x
,

dy
dt

=
nxy

a + x
− dy− H(y),

(1)

where

H(y) =

 0 , if y < T,
h(y− T)

c + (y− T)
, if y ≥ T.

We describe the biological interpretation of variables and parameters of model (1) in Table 1.
Model (1) represents an interaction between two populations with a prey–predator relationship,
where THP is only applied for the predator to preserving its populations. Some appealing examples of
the ecological model (1) are given by the interaction between Sycanus sp. and Setothosea asigna and
between Rhinocoris sp. and Spodoptera litura. Shepard [30] reported that Sycanus sp. and Rhinocoris
sp. are the natural predators of the pests such as Setothosea asigna and Spodoptera litura which exist in
agricultural lands and plantations. The worrying problem is: How if the density of insects such as
Sycanus sp. and Rhinocoris sp. uncontrolled? One solution is applying THP as in model (1).

Table 1. Description of variables and parameters of the model (1).

Variables and Parameters Description

x(t) The density of prey
y(t) The density of predator

r The intrinsic growth rate of prey
K The environmental carrying capacity of prey
m The maximum uptake rate for prey
n The conversion rate of consumed prey into predator birth
a The environment protection for prey
d The natural death rate of predator
h The harvesting rate
c The half saturation constant for harvesting
T The threshold level of harvesting

Lv et al. [26] successfully explored the dynamics of the model (1) including the local stability
and the existence of various phenomena (saddle-node, Hopf, cusp, and Bogdanov–Taken bifurcations).
Despite their success works, the model with the first-order derivative is limited to its capability of involving
all previous conditions to the growth rates of both predator and prey. The growth rates of both populations
in the model (1) depend only on the current state. Biologically, the growth rates must be dependent on all
of the previous conditions which are known as the memory effects. To account for such memory effects,
some researchers proposed to apply the fractional-order derivative instead of the first-order derivative
when expressing the growth rate of the population. The fractional-order models are naturally related
to systems with memory which exists in most biological models [7,31]. The fractional-order models
are also well-liked due to their capability in providing an exact description of different nonlinear
phenomena [32]. In recent years, the development of fractional-order models grows rapidly and
becomes popular in studying the dynamical behavior of predator–prey interaction [17,33–38]. It has
been shown that the order of the fractional derivate significantly affects the dynamical behavior of
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the models, which is in contrast to the first-order derivative models that depend only on the values
of parameters.

In this paper, we modify the model of Lv et al. [26] by applying the fractional-order derivative to the
left-hand sides of the first-order differential Equation (1). We use two types of fractional-order derivatives,
namely the Caputo operator (that is, the operator with the power law kernel) [39] and Atangana–Baleanu
operator [40]. The basic difference between these two operators lies on their kernel. Atangana–Baleanu
operator has a non-singular and non-local (that is, Mittag–Leffler) kernel while the Caputo operator does
not [41,42]. From the biological meanings, a model with Atangana–Baleanu operator gives better results
in applying memory effects [43–45]. Nevertheless, the Caputo operator has more complex analytical tools
in investigating the dynamics of the model such as the local stability [46–50], the global stability [51,52],
bifurcation theory [52–54], and so on. By considering the deficiencies and advantages, the model with
Caputo and Atangana–Baleanu operator are employed in our work. Based on our literature review,
the dynamics of the model (1) with Caputo and Atangana–Baleanu operator have never been studied.
For this reason, we are interested in investigating the dynamical behavior of model (1) using both
Caputo and Atangana–Baleanu fractional-order operators.

If the first-order derivatives d
dt at the left hand sides of model (1) are replaced by the

fractional-order derivatives Dα
t , then we obtain

Dα
t x =r̂x

(
1− x

K

)
− m̂xy

a + x
,

Dα
t y =

n̂xy
a + x

− d̂y− H(y).
(2)

Note that the left hand sides of model (2) have the dimension of (time)−α, while the parameters at
the right hand sides of model (2) such as r̂, m̂, n̂, d̂, and ĥ have the dimension of (time)−1; this shows the
inconsistency of physical dimensions in the model (2) (see [55,56]). To overcome such inconsistency,
we rescale the parameters in the model (2) to get the following model

Dα
t x =r̂αx

(
1− x

K

)
− m̂αxy

a + x
,

Dα
t y =

n̂αxy
a + x

− d̂αy− H(y),
(3)

where

H(y) =


0 , if y < T,

ĥα(y− T)
c + (y− T)

, if y ≥ T.

By applying new parameters r = r̂α, m = m̂α, n = n̂α, d = d̂α, and h = ĥα, we obtain

Dα
t x =rx

(
1− x

K

)
− mxy

a + x
,

Dα
t y =

xy
a + x

− dy− H(y),
(4)

where

H(y) =

 0 , if y < T,
h(y− T)

c + (y− T)
, if y ≥ T.

This paper is organized as follows. In Section 2, we investigate the dynamics of model (4) with the
Caputo operator. We identify the existence, uniqueness, non-negativity, and boundedness of solutions.
Furthermore, we explore the dynamics of the model by examining the existence of the equilibrium
points, their local and global stability, and the existence of Hopf bifurcation. In Section 3, the existence
and uniqueness of solutions of the model with Atangana–Baleanu operator are verified. In Section 4,
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we explore the dynamics of the model using both operators numerically. We demonstrate numerically
the stability of the equilibrium point, and the occurrence of forward and Hopf bifurcations. We end
our works with a brief conclusion in Section 5.

2. The Caputo Fractional-Order Rosenzweig–MacArthur Model with THP in Predator

2.1. Model Formulation

The operator of Caputo fractional-order derivative is defined as follows

Definition 1. [48] Let α ∈ (0, 1], f ∈ Cn([0,+∞),R), and Γ(·) is the Gamma function. The Caputo fractional
derivative of order-α is defined by

CDα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f ′(s)ds, t ≥ 0. (5)

The kernel of Caputo operator is known as the power law kernel. By applying Definition 1 to
model (4), we get the Caputo fractional order Rosenzweig–MacArthur model with THP in predator

CDα
t x =rx

(
1− x

K

)
− mxy

a + x
≡ F1,

CDα
t y =

nxy
a + x

− dy− H(y) ≡ F2.
(6)

2.2. Existence and Uniqueness

In this part, we study the existence and uniqueness of model (6).

Lemma 1. [57] Consider a Caputo fractional-order system

CDα
t x(t) = f (t, x(t)), t > 0, x(0) ≥ 0, α ∈ (0, 1], (7)

where f : (0, ∞)×Θ → Rn, Θ ⊆ Rn. A unique solution of Equation (7) on (0, ∞)×Θ exists if f (t, x(t))
satisfies the locally Lipschitz condition with respect to x.

Since the right hand-side of model (6) is a piecewise function which is switched when the number
of predators passes through the threshold level, we divide the existence and uniqueness of the solution
into two cases, namely y ≥ T and y < T. We start from y ≥ T. Consider the region Θ× [0, T+] where
Θ :=

{
(x, y) ∈ R2 : max (|x|, |y|) ≤ γ, y ≥ T

}
, T+ < +∞, and a mapping F(Λ) = (F1(Λ), F2(Λ)).

For any Λ = (x,y) ∈ Θ and Λ̄ = (x̄, ȳ) ∈ Θ, we obtain
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∥∥F(Λ)− F(Λ̄)
∥∥ =

∣∣F1(Λ)− F1(Λ̄)
∣∣+ ∣∣F2(Λ)− F2(Λ̄)

∣∣
=

∣∣∣∣rx
(

1− x
K

)
− mxy

a + x
−
(

rx̄
(

1− x̄
K

)
− mx̄ȳ

a + x̄

)∣∣∣∣+∣∣∣∣ nxy
a + x

− dy− H(y)−
(

nx̄ȳ
a + x̄

− dȳ− H(ȳ)
)∣∣∣∣

=

∣∣∣∣r(x− x̄)− r
K

(
x2 − x̄2

)
−m

(
xy

a + x
− x̄ȳ

a + x̄

)∣∣∣∣+∣∣∣∣n( xy
a + x

− x̄ȳ
a + x̄

)
− d (y− ȳ)− (H(y)− H(ȳ))

∣∣∣∣
=r |x− x̄|+ r

K
|x + x̄| |x− x̄|+ (m + n)

∣∣∣∣ xy
a + x

− x̄ȳ
a + x̄

∣∣∣∣+
d |y− ȳ|+

∣∣∣∣ h(y− T)
c + (y− T)

− h(ȳ− T)
c + (ȳ− T)

∣∣∣∣
=r |x− x̄|+ r

K
|x + x̄| |x− x̄|+ (m + n)

∣∣∣∣ ay(x− x̄) + (ax̄ + x̄x)(y− ȳ)
(a + x)(a + x̄)

∣∣∣∣+
d |y− ȳ|+

∣∣∣∣ ch(y− ȳ)
(c + y− T)(c + ȳ− T)

∣∣∣∣
≤r |x− x̄|+ 2γr

K
|x− x̄|+ m + n

a2 |ay(x− x̄) + (ax̄ + x̄x)(y− ȳ)|+

d |y− ȳ|+ h
c
|y− ȳ|

≤r |x− x̄|+ 2γr
K
|x− x̄|+ (m + n)γ

a
|x− x̄|+

(m + n)(aγ + γ2)

a2 |y− ȳ|+ d |y− ȳ|+ h
c
|y− ȳ|

=

(
r +

2γr
K

+
(m + n)γ

a

)
|x− x̄|+

(
(m + n)(aγ + γ2)

a2 + d +
h
c

)
|y− ȳ|

≤M1
∥∥Λ− Λ̄

∥∥ ,

where M1 = max
{

r +
2γr
K

+
(m + n)γ

a
,
(m + n)(aγ + γ2)

a2 + d +
h
c

}
. Hence, F(Λ) satisfies the

Lipschitz condition for y ≥ T. By using similar approaches, when y < T, it is easy to check that∥∥F(Λ)− F(Λ̄)
∥∥ ≤ M2

∥∥Λ− Λ̄
∥∥, where M2 = max

{
r +

2γr
K

+
(m + n)γ

a
,
(m + n)(aγ + γ2)

a2 + d
}

and hence the Lipschitz condition is also satisfied. According to Lemma 1, model (6) with
non-negative initial condition has a unique solution Λ(t) = (x(t), y(t)) ∈ Θ. Thus, we establish
the following theorem.

Theorem 1. For each non-negative initial condition (x0, y0) ∈ Θ, there exists a unique solution
(x(t), y(t)) ∈ Θ of model (6), which is defined for all t ≥ 0.

2.3. Non-Negativity and Boundedness

The solution of model (6) is required to be nonnegative and bounded to establish a biologically
well-behaved model. To determine the non-negativity and boundedness of the solution of model (6),
the following lemmas are needed.

Lemma 2. [58] Let 0 < α ≤ 1. Suppose that f (t) ∈ C[a, b] and CDα
t f (t) ∈ C[a, b].

If CDα
t f (t) ≥ 0, ∀ t ∈ (a, b), then f (t) is a non-decreasing function for each t ∈ [a, b].

If CDα
t f (t) ≤ 0, ∀t ∈ (a, b), then f (t) is a non-increasing function for each t ∈ [a, b].



Axioms 2020, 9, 122 6 of 22

Lemma 3. (Standard comparison theorem for Caputo fractional-order derivative [31]). Let x(t) ∈ C ([0,+∞)).
If x(t) satisfies CDα

t x(t) + λx(t) ≤ µ, x(0) = x0, where α ∈ (0, 1], (λ, µ) ∈ R2 and λ 6= 0, then x(t) ≤(
x0 −

µ

λ

)
Eα[−λtα] +

µ

λ
.

In the following theorem, we prove the non-negativity and boundedness of solutions using the
above lemmas.

Theorem 2. All solutions of model (6) with non-negative initial conditions are non-negative and
uniformly bounded.

Proof. We start by proving that, if the initial condition is non-negative, then x(t) ≥ 0 for all t → ∞.
Suppose that it is incorrect; then, we can find t1 > 0 such that

x(t) > 0, 0 ≤ t < t1,
x(t1) = 0,
x(t+1 ) < 0

(8)

By employing (8) and the first equation of model (6), we obtain

CDα
t x(t1)

∣∣∣
x(t1)=0

= 0. (9)

Based on Lemma 2, we have x(t+1 ) = 0, which contradicts the fact that x(t+1 ) < 0. Thus, x(t) ≥ 0
for all t ≥ 0. Using a similar procedure, we conclude y(t) ≥ 0 for all t > 0.

Now, we adopt the similar manner as in [34] to show the boundedness of solutions. By setting up

a function V(t) = x +
my
n

, we get

CDα
t V(t) + dV(t) =CDα

t x +
m
n

CDα
t y + dx +

dmy
n

=rx
(

1− x
K

)
− mxy

a + x
+

m
n

(
nxy

a + x
− dy− H(y)

)
+ dx +

dmy
n

=(d + r)x− rx2

K
− mH(y)

n

=− r
K

(
x− (d + r)K

2r

)2

+
(d + r)2K

4r
− mH(y)

n

≤ (d + r)2K
4r

.

According to the standard comparison theorem for Caputo fractional-order derivative in Lemma 3,
we achieve the following inequality

V(t) ≤
(
V(0)− (d + r)2K

4r

)
Eα [−d(t)α] +

(d + r)2K
4r

,

where Eα is the one-parameter Mittag–Leffler function. Since Eα [−d(t)α] → 0 as t → 0, we acquire

V(t)→ (d + r)2K
4r

for t→ ∞. Hence, with non-negative initial condition, all solutions are restricted to
the region ΘM where

ΘM :=
{
(x, y) ∈ R2

+ : x +
my
n
≤ (d + r)2K

4r
+ ε, ε > 0

}
.

Consequently, all solutions of model (6) are uniformly bounded.
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2.4. The Existence of Equilibrium Point

The first commonplace technique in studying the dynamical behavior of a fractional-order system
is investigating the existence of the equilibrium point. Due to the biological nature, we give the
following definition.

Definition 2. Consider a Caputo fractional-order system

CDα
t ~x = ~f (~x);~x(0) = ~x0; α ∈ (0, 1]. (10)

A point ~x∗ is called an equilibrium point of Equation (10) if it satisfies ~f (~x∗) = 0. Particularly, it is called
the biological equilibrium point of Equation (10) if it satisfies ~x∗ ≥ 0.

Based on Definition 2, the equilibrium point of model (6) is obtained by solving[
r− rx

K
− my

a + x

]
x =0,

nxy
a + x

− dy− H(y) =0.
(11)

Thus, we get four feasible biological equilibrium points as follows.

(i) The equilibrium points when y < T are

(i.a) the origin point E0 = (0, 0) which always exists;

(i.b) the predator extinction point E1 = (K, 0) which always exists; and

(i.c) the first co-existence point Ê =

(
x̂,

(K− x̂) (a + x̂)r
mK

)
, with x̂ =

ad
n− d

, which exists if

n >
ad
K

+ d and (K− x̂) (a + x̂) <
TmK

r
.

(ii) The equilibrium point when y ≥ T is the second co-existence point E∗ = (x∗, y∗) where y∗ =
(K− x∗) (a + x∗)r

mK
and x∗ is the positive roots of polynomial β1x4 + β2x3 + β3x2 + β4x + β5 = 0

where

β1 =(n− d)r2,

β2 = [(an + 2dK)− 2(ad + nK)] r2,

β3 =(nrK + 4adr + cdm + mnT + hm)rK

− ((drK + 2anr + cmn + dmT)K + a2dr)r,

β4 =((anr + cmn + dmT)K + (2adr + hm + cdm)a)rK

− ((2adr + hm + cdm + mnT)K + admT)rK,

β5 = [(adr + hm)mT − (adr + hm + cdm)ar]K2.

E∗ exists if 0 < x∗ < K and (K− x∗) (a + x∗) ≥ TmK
r

.

2.5. Local Asymptotic Stability

In this part, we discuss the local stability of E0, E1, Ê, and E∗. For this aim, we need the
following theorem.

Theorem 3. (Matignon condition [48,59]) The equilibrium point ~x∗ of system (10) is locally asymptotically
stable if all eigenvalues λj of the Jacobian matrix J = ∂~f /∂~x evaluated at ~x∗ satisfy | arg(λj)| > απ/2.
If there exists at least one eigenvalue satisfying | arg(λk)| > απ/2 and | arg(λl)| < απ/2, k 6= l, then ~x∗ is
a saddle-point.
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Now, we present Theorems 4–7 to show the local stability properties of E0, E1, Ê, and E∗.

Theorem 4. The origin point E0 = (0, 0) is always a saddle point.

Proof. When E0 = (0, 0), the model (6) has Jacobian matrix J(E0) =

[
r 0
0 −d

]
, where its eigenvalues

are λ1 = r > 0 and λ2 = −d < 0. It is clear that |arg(λ1)| = 0 < απ/2 and |arg(λ2)| = π > απ/2.
Therefore, based on Theorem 3, E0 is always a saddle point.

Theorem 5. The predator extinction point E1 = (K, 0) is locally asymptotically stable if n <
ad
K

+ d.

Otherwise, if n >
ad
K

+ d, then E1 = (K, 0) is a saddle point.

Proof. The Jacobian matrix of model (6) evaluated at E1 is J(E1) =

[
−r − mK

a+K
0 nK

a+K − d

]
. The eigenvalues

of J(E1) are λ1 = −r < 0 and λ2 =
nK

a + K
− d. Clearly, |arg(λ1)| = π > απ/2 and |arg(λ2)| = π >

απ/2 if n <
ad
K

+ d and |arg(λ2)| = 0 < απ/2 if n >
ad
K

+ d. Hence, we have the theorem.

Remark 1. It is noted that the existence condition for the first co-existence point Ê contradicts the stability
condition of E1. Consequently, if E1 is locally asymptotically stable, then Ê does not exist. This condition also
indicates the existence of forward bifurcation, which is confirmed numerically in the next section.

Theorem 6. Let ∆ =
4 (K− x̂) anrx̂
(a + x̂)2K

−
(

K− x̂
a + x̂

− 1
)2 r2 x̂2

K2 and α̂ =
2
π

tan−1

( √
∆(a + x̂)K

(K− a− 2x̂) rx̂

)
.

Suppose that one of the following statements is obeyed.

(i) x̂ >
K− a

2
; or

(ii) x̂ <
K− a

2
, ∆ > 0, and α < α̂.

Then, the first co-existence point Ê =

(
x̂,

(K− x̂) (a + x̂)r
mK

)
is locally asymptotically stable.

Proof. We first observe that the Jacobian matrix of model (6) evaluated at Ê is

J(Ê) =


(

K− x̂
a + x̂

− 1
)

rx̂
K
− mx̂

a + x̂
(K− x̂) anr
(a + x̂)mK

0

 . (12)

The eigenvalues of the Jacobian matrix (12) are the solutions of the characteristic equation

λ2 −
(

K− x̂
a + x̂

− 1
)

rx̂
K

λ +
(K− x̂) anrx̂
(a + x̂)2K

= 0,

namely

λ1 =

(
K− x̂
a + x̂

− 1
)

rx̂
2K

+
i
√

∆
2

,

λ2 =

(
K− x̂
a + x̂

− 1
)

rx̂
2K
− i
√

∆
2

.

(13)
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When x̂ >
K− a

2
, the real parts of λ1,2 are negative. Thus, the eigenvalues (13) always satisfy

|arg(λ1,2)| > απ/2 for any ∆. If x̂ <
K− a

2
and ∆ ≤ 0, then λ1λ2 =

(K− x̂) anrx̂
(a + x̂)2K

> 0 and λ1 +

λ2 =

(
K− x̂
a + x̂

− 1
)

rx̂
K

> 0, meaning that |arg(λ1,2)| = 0 < απ/2. If x̂ <
K− a

2
and ∆ > 0,

then |arg(λ1,2)| > απ/2 for α < α̂. Hence, we prove the theorem.

Theorem 7. Let

ξ =
((y∗ − T)2 − cT)h

y∗(c + y∗ − T)2 +

(
my∗

(a + x∗)2 −
r
K

)
x∗,

θ =

(
my∗

(a + x∗)2 −
r
K

)
((y∗ − T)2 − cT)h

y∗(c + y∗ − T)2 x∗ +
(

1− x∗

a + x

)
mnx∗y∗

(a + x∗)2 .

If one of the following statements is satisfied, then the second co-existence point E∗ = (x∗, y∗) is locally
asymptotically stable:

(i) θ > 0 and ξ < 0; or
(ii) ξ2 < 4θ, ξ > 0, and α < α∗.

Proof. The Jacobian matrix of model (6) evaluated at E∗ is given by

J(E∗) =


(

my∗

(a + x∗)2 −
r
K

)
x∗ − mx∗

a + x∗(
1− x∗

a + x∗

)
ny∗

a + x∗
((y∗ − T)2 − cT)h

y∗(c + y∗ − T)2

 . (14)

The eigenvalues of (14) are obtained by solving the characteristic equation λ2 − ξλ + θ = 0. Thus,

we have λ1,2 =
ξ

2
±
√

ξ2 − 4θ

2
. If θ > 0 and ξ < 0, then |arg(λ1,2)| > απ/2. If ξ2 < 4θ and ξ > 0,

then |arg(λ1,2)| > απ/2 for α < α∗. Using Theorem 3, the local stability of E∗ is completely proven.

2.6. Global Asymptotic stability

To study the global stability of equilibrium points, we need the following lemmas.

Lemma 4. [51] Let x(t) ∈ C (R+), x∗ ∈ R+, and its Caputo fractional derivative of order-α exists for any

α ∈ (0, 1]. Then, for any t > 0, we have CDα
t

[
x(t)− x∗ − x∗ ln

x(t)
x∗

]
≤
(

1− x∗

x(t)

)
CDα

t x(t).

Lemma 5. (Generalized Lasalle Invariance Principle [52]). Suppose Ω is a bounded closed set and every
solution of system

CDα
t x(t) = f (x(t)), (15)

which starts from a point in Ω remains in Ω for all time. Let V(x) : Ω→ R be a continuously differentiable
function such that

CDα
t V|(15) ≤ 0.

Let E :=
{

x|CDα
t V|(15) = 0

}
and M be the largest invariant set of E. Then, every solution x(t) originating

in Ω tends to M as t→ ∞.

Since model (6) is basically a piecewise fractional-order differential equations that depends on
T, the analysis of the global stability is split into two regions defined by Ω1 := {(x, y) : x ≥ 0, y < T}
and Ω2 := {(x, y) : x ≥ 0, y ≥ T}. Therefore, the global stabilities of E1, Ê, and E∗ are investigated
as follows.
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Theorem 8. If n <
ad
K

, then the predator extinction point E1 = (K, 0) is globally asymptotically stable in the
region Ω1.

Proof. By specifying a positive Lyapunov function L1(x, y) =
(

x− K− K ln
x
K

)
+

my
n

,
and conforming to Lemma 4, we obtain

CDα
t L1(x, y) ≤

(
x− K

x

)
CDα

t x +
m
n

CDα
t y

=(x− K)
(

r− rx
K
− my

a + x

)
+

m
n

(
nxy

a + x
− dy

)
=2rx− rK− rx2

K
+

mKy
a + x

− dmy
n

=− r
K
(x− K)2 +

mKy
a + x

− dmy
n

≤− r
K
(x− K)2 +

mKy
a
− dmy

n

≤−
(

d
n
− K

a

)
my.

Owing to the fact that n <
ad
K

, we have CDα
t L1(x, y) ≤ 0. In consequence of Lemma 5, E1 is

globally asymptotically stable in the region Ω1.

Remark 2. Notice E1 is locally asymptotically stable if n <
ad
K

+ d and is globally asymptotically stable if

n <
ad
K

. Hence, if the global stability condition is fulfilled, then the local stability is also achieved but not vice
versa. This fact reinforces that the global stability condition has a larger attracting region than that of the local
stability condition.

Theorem 9. If (K− x̂) (a+ x̂) < a2 , then the first co-existence point Ê =

(
x̂,

(K− x̂) (a + x̂)r
mK

)
is globally

asymptotically stable in the region Ω1.

Proof. Let Ê = (x̂, ŷ) where ŷ =
(K− x̂) (a + x̂)r

mK
and ϕ is a positive constant. By considering a

Lyapunov function L2(x, y) =
[

x− x̂− x̂ ln
x
x̂

]
+ ϕ

[
y− ŷ− ŷ ln

y
ŷ

]
, and using Lemma 4, we get

CDα
t L2(x, y) ≤

(
x− x̂

x

)
CDα

t x + ϕ

(
y− ŷ

y

)
CDα

t y

=(x− x̂)
(

r− rx
K
− my

a + x

)
+ ϕ(y− ŷ)

(
nx

a + x
− d
)

=(x− x̂)
(

rx̂
K

+
mŷ

a + x̂
− rx

K
− my

a + x

)
+ ϕ(y− ŷ)

(
nx

a + x
− nx̂

a + x̂

)
=− (x− x̂)

(
(x− x̂)

r
K

+

(
y

a + x
− ŷ

a + x̂

)
m
)
+ nϕ(y− ŷ)

(
x

a + x
− x̂

a + x̂

)
=− (x− x̂)2 r

K
− (x− x̂)

(
(y− ŷ)(a + x̂) + (x̂− x)ŷ

(a + x)(a + x̂)

)
m +

(
(x− x̂)(y− ŷ)
(a + x)(a + x̂)

)
anϕ

=− (x− x̂)2 r
K
−
(
(x− x̂)(y− ŷ)(a + x̂)

(a + x)(a + x̂)

)
m +

(
(x− x̂)2ŷ

(a + x)(a + x̂)

)
m+(

(x− x̂)(y− ŷ)
(a + x)(a + x̂)

)
anϕ

≤− (x− x̂)2
(

r
K
− mŷ

a2

)
+

(
(x− x̂)(y− ŷ)
(a + x)(a + x̂)

)
(anϕ− (a + x̂)m).
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By choosing ϕ =
(a + x̂)m

an
and substituting the value of ŷ, we get

CDα
t L2(x, y) ≤ − (x− x̂)2

(
a2 − (K− x̂) (a + x̂)

) r
a2K

.

Therefore, if (K− x̂) (a + x̂) < a2, then CDα
t L2(x, y) ≤ 0. Using Lemma 5, we conclude that Ê is

globally asymptotically stable in the region Ω1.

Based on Theorem 2, x(t) and y(t) are bounded. Let Ψ be the upper bound of y(t) such that
0 < T ≤ y(t) ≤ Ψ. The global stability of E∗ is stated in the following theorem.

Theorem 10. If y∗ < min
{

a2r
mK

,
cT

Ψ− T
+ T

}
, then the second co-existence point E∗ = (x∗, y∗) is globally

asymptotically stable in the region Ω2.

Proof. We consider a positive Lyapunov function L3(E∗) =
[

x− x∗ − x∗ ln
x
x∗
]
+

ϕ∗
[

y− y∗ − y∗ ln
y
y∗

]
. According to Lemma 4, the fractional derivative of L3(E∗) satisfies

CDα
t L2(x, y) ≤

(
x− x∗

x

)
CDα

t x + ϕ∗
(

y− y∗

y

)
CDα

t y

=(x− x∗)
(

r− rx
K
− my

a + x

)
+ ϕ∗(y− y∗)

(
nx

a + x
− d− h(y− T)

(c + y− T)y

)
=(x− x∗)

(
rx∗

K
+

my∗

a + x∗
− rx

K
− my

a + x

)
+ ϕ∗(y− y∗)

(
nx

a + x
− nx∗

a + x∗
+

h(y∗ − T)
(c + y∗ − T)y∗

− h(y− T)
(c + y− T)y

)

=− (x− x∗)2 r
K
− (x− x∗)

(
(y− y∗)(a + x∗)m− (x− x∗)my∗

(a + x∗)(a + x)

)
+ ϕ∗(y− y∗)

(
(x− x∗)an

(a + x∗)(a + x)
− (y− y∗)chT − (y− y∗)(y∗ − T)(y− T)h

(c + y∗ − T)(c + y− T)y∗y

)
=− (x− x∗)2 r

K
− (x− x∗)(y− y∗)(a + x∗)m

(a + x∗)(a + x)
+

(x− x∗)2my∗

(a + x∗)(a + x)

+
(x− x∗)(y− y∗)anϕ∗

(a + x∗)(a + x)
− (cT − (y∗ − T)(y− T))(y− y∗)2hϕ∗

(c + y∗ − T)(c + y− T)y∗y

≤− (x− x∗)2 r
K
− (x− x∗)(y− y∗)(a + x∗)m

(a + x∗)(a + x)
+ (x− x∗)2 my∗

a2

+
(x− x∗)(y− y∗)anϕ∗

(a + x∗)(a + x)
− (cT − (y∗ − T)(y− T))(y− y∗)2hϕ∗

(c + y∗ − T)(c + y− T)y∗y

By taking ϕ∗ =
(a + x∗)m

an
and remembering that y(t) < Ψ, we obtain

CDα
t L2(E∗) ≤− (x− x∗)2

(
r
K
− my∗

a2

)
− (cT − (y∗ − T)(Ψ− T))(y− y∗)2(a + x∗)mh

(c + y∗ − T)(c + y− T)any∗y
.

It is easily confirmed that, if y∗ < min
{

a2r
mK

,
cT

Ψ− T
+ T

}
, then CDα

t L2(x, y) ≤ 0. Based on

Lemma 5, Ê is globally asymptotically stable in the region Ω2.
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2.7. The Existence of Hopf Bifurcation

The Hopf bifurcation is a local phenomenon when a stable equilibrium point loses its stability
and all nearby solutions converge to a periodic solution namely limit-cycle if a parameter is
varied [54,60,61]. It is shown that many fractional-order models involving the Caputo operator
undergo a Hopf bifurcation which is driven by the order of the derivative (see [2,17,34,53,62]).
The difference between the Hopf bifurcation in the integer-order model and that in the fractional-order
model lies on the property of the limit-cycle. In the integer-order model, the limit-cycle is a
periodic orbit which does not exist in the fractional-order model [63]. In the fractional-order model,
the limit-cycle is not a periodic solution, but all nearby solutions converge to a limit-cycle [56,62].

Adapted from Theorem 3 in [62], for two dimensional Caputo fractional-order system, a Hopf
bifurcation occurs when the eigenvalues λ1,2 of the Jacobian matrix evaluated at the equilibrium point
satisfy the following conditions:

(i) λ1,2 = ψ±ωi where ψ > 0;
(ii) m(α∗) = α∗π/2−min1≤i≤2 |arg(λi)| = 0; and

(iii)
dm(α)

dα

∣∣∣∣
α=α∗

6= 0.

Now, consider the stability condition in Theorems 6 and 7. For y < T, the Jacobian matrix of
model (6) evaluated at Ê has a pair of complex eigenvalues if ∆ > 0. We can easily confirm that,

if x̂ <
K− a

2
, then the real part of the eigenvalues are positive. We also have that m(α̂) = 0 and

dm(α)

dα

∣∣∣∣
α=α̂

6= 0. Therefore, Ê undergoes a Hopf bifurcation when α crosses α̂. A similar circumstance

also occurs when y ≥ T. When ξ2 < 4θ, the Jacobian matrix of model (6) has a pair of complex
eigenvalues. The real part of the eigenvalues are also positive when ξ > 0. We can also check that

m(α∗) = 0 and
dm(α)

dα

∣∣∣∣
α=α∗

6= 0. This means the Hopf bifurcation also occurs when y ≥ T. Therefore,

we have the following theorem.

Theorem 11. (i) Let ∆ > 0 and x̂ <
K− a

2
. The first co-existence point Ê undergoes a Hopf bifurcation

when α passes through α̂ in the region Ω1.
(ii) Let ξ2 < 4θ and ξ > 0. The second co-existence point E∗ undergoes a Hopf bifurcation when α passes

through α∗ in the region Ω2.

3. The Atangana–Baleanu Fractional-Order Rosenzweig–MacArthur Model with THP in Predator

3.1. Model Formulation

In this section, we consider a fractional-order Rosenzweig–MacArthur model with THP in
predator involving the Atangana–Baleanu operator. Specifically, we consider the Atangana–Baleanu
operator in Caputo sense of order-α which is defined as follows.

Definition 3. [40] Suppose 0 < α ≤ 1. The Atangana–Baleanu fractional integral and derivative in Caputo
sense of order-α (ABC) is defined by

ABCIα
t f (t) =

1− α

B(α)
f (t) +

α

Γ(α)B(α)

∫ t

0
(t− s)α−1 f (s)ds,

ABCDα
t f (t) =

B(α)
1− α

∫ t

0
Eα

[
− α

1− α
(t− s)α

]
f ′(s)ds,

where t ≥ 0, f ∈ Cn([0,+∞),R), Eα(t) = ∑∞
k=0

tk

Γ(αk + 1)
is the Mittag–Leffler function and B(α) is a

normalization function with B(0) = B(1) = 1. In this paper, we define B(α) = 1− α +
α

Γ(α)
.
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By applying Definition 3 to model (4), we get the following fractional-order model with
ABC operator

ABCDα
t x =rx

(
1− x

K

)
− mxy

a + x
≡ G1,

ABCDα
t y =

nxy
a + x

− dy− H(y) ≡ G2.
(16)

Due to the lack of analytical theory, model (16) is investigated numerically. However, we first
show the existence and uniqueness of the solution of the model (16).

3.2. Existence and Uniqueness

We start this work by representing the Lipschitz condition of the kernels of model (16). Since the
harvesting is performed by obeying threshold harvesting policy, we give the proof into two cases i.e.,
y < T and y ≥ T.

We start for y ≥ T. Let x, x̄, y, and ȳ be functions satisfying ‖x‖ ≤ a1, ‖x̄‖ ≤ a2, ‖y‖ ≤ b1,
and ‖ȳ‖ ≤ b2. Suppose that

g1 =r + (a1 + a2)
r
K
+

my
a

,

g2 =n + d +
h
c

.

Therefore, we get

‖G1(x)− G1(x̄)‖ =
∥∥∥∥(rx

(
1− x

K

)
− mxy

a + x

)
−
(

rx̄
(

1− x̄
K

)
− mx̄y

a + x̄

)∥∥∥∥
=

∥∥∥∥rx− rx2

K
− mxy

a + x
− rx̄ +

rx̄2

K
+

mx̄y
a + x̄

∥∥∥∥
=

∥∥∥∥r(x− x̄)− r
K
(x2 − x̄2)−my

(
x

a + x
− x̄

a + x̄

)∥∥∥∥
=

∥∥∥∥r(x− x̄)− r
K
(x + x̄)(x− x̄)− amy(x− x̄)

(a + x)(a + x̄)

∥∥∥∥
≤r ‖x− x̄‖+ (a1 + a2)

r
K
‖x− x̄‖+ my

a
‖x− x̄‖

=
(

r + (a1 + a2)
r
K
+

my
a

)
‖x− x̄‖

=g1 ‖x− x̄‖ ,

(17)

and

‖G2(y)− G2(ȳ)‖ =
∥∥∥∥( nxy

a + x
− dy− h(y− T)

c + (y− T)

)
−
(

nxȳ
a + x

− dȳ− h(ȳ− T)
c + (ȳ− T)

)∥∥∥∥
=

∥∥∥∥ nxy
a + x

− dy− h(y− T)
c + (y− T)

− nxȳ
a + x

+ dȳ +
h(ȳ− T)

c + (ȳ− T)

∥∥∥∥
=

∥∥∥∥nx(y− ȳ)
a + x

− d(y− ȳ)− ch(y− ȳ)
(c + y− T)(c + ȳ− T)

∥∥∥∥
≤n ‖y− ȳ‖+ d ‖y− ȳ‖+ h

c
‖y− ȳ‖

=

(
n + d +

h
c

)
‖y− ȳ‖

=g2 ‖y− ȳ‖ .

(18)
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When y < T, by utilizing the similar manner, we achieve ‖G2(y)− G2(ȳ)‖ ≤ g3 ‖y− ȳ‖ where
g3 = n + d. Accordingly, the kernel of (16) satisfies the Lipschitz condition. Furthermore, if 0 ≤ g1 < 1
and 0 ≤ g3 < g2 < 1, then G1 and G2 are contracted.

Now, by employing the fixed-point theorem, the solution of model (16) is investigated. By utilizing
the Atangana–Baleanu fractional integral operator, model (16) is transformed into the following
Volterra-type integral equation.

x(t)− x(0) =
1− α

B(α)
G1(t, x) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, x)ds,

y(t)− y(0) =
1− α

B(α)
G2(t, y) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, y)ds.

(19)

In a recursive form, Equation (19) is written as

xn(t) =
1− α

B(α)
G1(t, xn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, xn−1)ds,

yn(t) =
1− α

B(α)
G2(t, yn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, yn−1)ds.

(20)

The associated initial conditions along with Equation (20) are x0(t) = x(0) and y0(t) = y(0).
By considering Equation (20), we have the difference expression of successive terms as follows.

Φ1,n(t) =xn(t)− xn−1(t)

=
1− α

B(α)
(G1(t, xn−1)− G1(t, xn−2)) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1 (G1(t, xn−1)− G1(t, xn−2)) ds,

Φ2,n(t) =yn(t)− yn−1(t)

=
1− α

B(α)
(G2(t, yn−1)− G2(t, yn−2)) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1 (G2(t, yn−1)− G2(t, yn−2)) ds.

(21)

According to Equation (21), we get xn(t) = ∑n
i=1 Φ1,i(t) and yn(t) = ∑n

i=1 Φ2,i(t). By applying
Equations (17), (18) and (21), we have that

‖Φ1,n(t)‖ ≤
1− α

B(α)
g1 ‖Φ1,n−1‖+

α

B(α)Γ(α)
g1

∫ t

0
‖Φ1,n−1(s)‖ (t− s)α−1ds,

‖Φ2,n(t)‖ ≤
1− α

B(α)
g2 ‖Φ2,n−1‖+

α

B(α)Γ(α)
g2

∫ t

0
‖Φ2,n−1(s)‖ (t− s)α−1ds.

(22)

Therefore, by using (22), the existence and uniqueness of model (16) is presented as follows.

Theorem 12. Model (16) has a unique solution if we can find t0 such that

(1− α)gi
B(α)

+
tα
0 gi

B(α)Γ(α)
< 1, i = 1, 2, 3. (23)

Proof. Let x(t) and y(t) be bounded functions, and hence the Lipschitz condition is satisfied.
Thus, according to Equation (22), we obtain the following inequalities.

‖Φ1,n(t)‖ ≤ ‖x0‖
(
(1− α)g1

B(α)
+

tαg1

B(α)Γ(α)

)n
,

‖Φ2,n(t)‖ ≤ ‖y0‖
(
(1− α)g2

B(α)
+

tαg2

B(α)Γ(α)

)n
.

(24)
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Therefore, the continuity and existence of solution are proved since ‖Φ1,n(t)‖ → 0 and
‖Φ2,n(t)‖ → 0 as n→ ∞ and t = t0. Now, suppose that

x(t)− x(0) =xn(t)− Υ1,n(t),

y(t)− y(0) =yn(t)− Υ2,n(t).
(25)

We confirm that

‖Υ1,n(t)‖ ≤
(
(1− α)

B(α)
+

tα

B(α)Γ(α)

)n+1

gn+1
1 (26)

It is clear that ‖Υ1,n(t)‖ → 0 when n → ∞. By using a similar manner, we acquire
‖Υ2,n(t)‖ → 0, n→ ∞. Finally, the uniqueness of solution for the model is proven. Suppose that there
exists different set of solutions denote by x̃(t) and ỹ(t); then, we have

x(t)− x̃(t) =
1− α

B(α)
(G1(t, x)− G1(t, x̃)) +

α

B(α)Γ(α)

∫ t

0
(G1(s, x)− G1(s, x̃))(t− s)α−1ds. (27)

Taking the norm for both sides and using a simplification as in (22) and (24), we obtain

‖x(t)− x̃(t)‖
(

1− (1− α)g1

B(α)
− tαg1

B(α)Γ(α)

)
≤ 0. (28)

For t = t0, we have (23), thus ‖x(t)− x̃(t)‖ = 0 and hence x(t) = x̃(t). Applying the same
algebraic procedures, we can show that y(t) = ỹ(t). Therefore, the solution is unique.

4. Numerical Simulations

In this section, the numerical simulations of Caputo model (6) and ABC model (16) are
performed to illustrate the previous theoretical results. In the literature, there exist many numerical
methods to solve a system of fractional differential equations, such as the Monte Carlo method [64],
the Grünwald–Letnikov method [65,66] and the predictor–corrector method [67–69]. We apply the
predictor–corrector scheme proposed by Diethelm et al. [67] to solve the Caputo fractional-order model
and the predictor–corrector scheme proposed by Baleanu et al. [69] to solve the Atangana–Baleanu in
Caputo sense model (ABC). Due to the limitation of field data, we use hypothetical parameter values
that correspond to the theoretical results. The initial parameter values are given as follows.

r = 0.5, K = 1, m = 0.3, a = 0.2, d = 0.1, h = 0.1, T = 0.9, c = 0.1, and α = 0.9. (29)

In Figure 1, we plot a bifurcation diagram by varying the conversion rate of consumed prey
into predator birth n in interval [0.08, 0.2]. We notice that the parameter values (29) and the interval
0.08 ≤ n ≤ 0.2 lead to the non-existence of equilibrium point in Ω2. Therefore, the first numerical
simulations are focused on the dynamics in Ω1.

For 0.08 ≤ n < n∗1 = 0.12, Theorem 5 states that the predator extinction point E1 = (1, 0) is the
only equilibrium point which is asymptotically stable. To see this behavior, we take n = 0.1 and plot
the phase portrait and the time series as in Figure 2. It is seen that all solutions with initial values in
both Ω1 and Ω2 are convergent to E1. When the initial value is in Ω2, then the solution is oscillating
when it crosses the threshold harvesting level and eventually converges to E1.

When n passes through n∗1 , the equilibrium point E1 = (1, 0) undergoes a forward bifurcation.
In this case, there appear two equilibrium points, namely the unstable E1 and an asymptotically stable
Ê. Figure 1 shows that Ê is asymptotically stable if 0.12 < n . n∗2 = 0.1557. In Figure 3, we show
the phase portrait and time series for the case of n = 0.14. We see that E0 = (0, 0) and E1 = (1, 0)
are saddle points, while Ê = (0.5, 0.5833) is asymptotically stable. This circumstance corresponds to
Theorems 4–6 and 9.



Axioms 2020, 9, 122 16 of 22

0.0

0.2

0.4

0.6

0.8

1.0
y
(t

)

Upper bound of limit-cycle

Lower bound of limit-cycle

E1-stable E1-unstable

E-stable E-unstable

n= 0.1

n= 0.14

n= 0.2

Caputo

ABC

0.08 0.10 0.12 0.14 0.16 0.18 0.20

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
(t

)

Upper bound of limit-cycle

Lower bound of limit-cycle

E1-stable E1-unstable

E-stable E-unstable

n= 0.1

n= 0.14

n= 0.2Caputo

ABC

Figure 1. Bifurcation diagram of Caputo model (6) and ABC model (16) driven by the conversion
rate of consumed prey into predator birth (n) with constant parameter values (29). There exists two
bifurcations namely a forward bifurcation which occurs when n passes through n∗1 ≈ 0.12, and a Hopf
bifurcation which occurs when n passes through n∗2 ≈ 0.1557.
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Figure 2. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.1: Figure (a) phase portrait; and Figure (b) time series.

Furthermore, if we increase the value of n such that n > n∗2 , then the equilibrium point Ê loses its
stability, and all solutions converge to a limit-cycle. This situation confirms the occurrence of a Hopf
bifurcation driven by n. For example, if we select n = 0.2 then all equilibrium points are unstable and
all solutions eventually converge to limit cycle (see Figure 4).

Now, we perform simulation using the same parameter values as in Figure 4, but with a lower
threshold value, namely T = 0.5. In this case, there is no equilibrium point Ê in Ω1, and E∗ =

(0.5954, 0.5364) occurs in Ω2. According to Theorem 7, E∗ is asymptotically stable. Such dynamics
can be clearly seen in Figure 5. This simulation shows that by applying the THP when the interior
equilibrium point is stable, we can choose a suitable constant of threshold so that the existence of both
prey and predator are maintained.
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Figure 3. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.14: Figure (a) phase portrait; and Figure (b) time series.

Notice that, in Figures 2–5, we see that both model with Caputo operator (6) and
Atangana–Baleanu operator (16) have similar dynamical behavior. The noticeable difference between
them is the orbit of solutions and the diameter of the limit-cycle. In Figure 4, the diameter of the
limit-cycle of the model with ABC operator looks shorter than that of the Caputo operator, which may
give different dynamics when a Hopf bifurcation occurs. To get more detail view, we plot a bifurcation
diagram by varying the order of the fractional derivative (α) (see Figure 6). In this simulation, we use
parameter values as in Figure 4 and vary the order-α in the interval [0.6, 0.9]. It is clearly seen that,
besides the diameter of the limit-cycle, the bifurcation points of Caputo model and ABC model are also
different. The Caputo model has an earlier bifurcation point than that of the ABC model. To show this
situation, we show some numerical simulations using different values of α (see Figure 7). For α = 0.7,
the equilibrium point Ê of both model are asymptotically stable. For α = 0.772, the equilibrium point
Ê of the Caputo model loses its stability, while that of the ABC model remains asymtotically stable.
For α = 0.83, the equilibrium point Ê of both models are unstable.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x(t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y
(t
)

E

E0 E1

Caputo

ABC

LC-Caputo

LC-ABC

THP

(a)

0.0

0.2

0.4

0.6

0.8

1.0

y(
t)

Caputo
ABC

0 250 500 750 1000 1250 1500 1750 2000
t

0.0

0.2

0.4

0.6

0.8

1.0

x(
t)

Caputo
ABC

(b)
Figure 4. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.2: Figure (a) phase portrait; and Figure (b) time series.
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Figure 5. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29),
n = 0.2 and T = 0.5.
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Figure 7. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29),
n = 0.2, and α = {0.7, 0.772, 0.83}: Figure (a) phase portrait; and Figure (b) time series.

From the biological point of view, all previous numerical simulations show that the dynamical
properties of both Caputo model and ABC model are similar except when the eigenvalues of the
Jacobian matrix evaluated at the interior equilibrium point Ê are a pair of complex conjugate with
positive real part. There is a biological condition such that the prey and predator densities are
eventually periodic for the Caputo model, while for ABC model, the densities of both predator and
prey are eventually constant.

5. Conclusions

The dynamics of a Rosenzweig–MacArthur model with continuous threshold harvesting in
predator involving the Caputo fractional-order derivative and ABC fractional-order derivative are
studied. We prove the existence and uniqueness of solutions of both Caputo and ABC models.
Particularly, we completely investigate the dynamics of the Caputo model including the non-negativity,
boundedness, local stability, global stability, and the existence of Hopf bifurcation. From the biological
meanings, the extinction of both populations never occurs since the origin point (E0) is a saddle point.
Some of the situations that might occur are: (1) the predator goes extinct while the prey still survives,
which is indicated by the stability of E1; (2) both predator and prey co-exist and converge to a constant
population density, which happens if the interior point Ê or E∗ are asymptotically stable; and (3) both
predator and prey co-exist where both population densities change periodically, namely when a Hopf
bifurcation occurs. We show numerically that our model may undergo a forward bifurcation or a
Hopf bifurcation. The Hopf bifurcation in models with both Caputo operator and ABC operator can
be driven by the conversion rate of consumed prey into the predator birth rate or by the order of
fractional derivative. Our numerical simulations show that the Hopf bifurcation point of both models
are different.
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