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Abstract: In this article, firstly, an overview of affine fractal interpolation functions using a suitable
iterated function system is presented and, secondly, the construction of Bernstein affine fractal
interpolation functions in two and three dimensions is introduced. Moreover, the convergence of
the proposed Bernstein affine fractal interpolation functions towards the data generating function
does not require any condition on the scaling factors. Consequently, the proposed Bernstein affine
fractal interpolation functions possess irregularity at any stage of convergence towards the data
generating function.

Keywords: attractor; Bernstein polynomial; bivariate surfaces; dynamic system; fractal interpolation;
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1. Introduction

Classic interpolation techniques fit an elementary function to the given data in order to render a
connected visualisation of a sample. Such elementary functions often imbue the visualisation with a
degree of smoothness that may not be consistent with the nature of a prescribed data set. Utilising the
theory of an iterated function system firstly presented in [1] and popularised in [2,3] the concept
of a fractal interpolation function was proposed whose graph is the attractor, a fractal set, of an
appropriately chosen iterated function system. If this graph has a Hausdorff–Besicovitch dimension
between 1 and 2, the resulting attractor is called fractal interpolation curved line or fractal interpolation
curve. If this graph has a Hausdorff–Besicovitch dimension between 2 and 3, the resulting attractor is
called fractal interpolation surface.

In general, fractal interpolation functions arise as fixed points of the Read-Bajraktarević operator
defined on suitable function spaces. Using fractal interpolation methodology, it is possible to construct
interpolants, i.e. functions used to generate interpolation, with integer and non-integer dimensions.
Fractal interpolation functions have been applied in order to prevent inappropriate smoothing;
for instance, see [4]. Various types of fractal interpolation functions have been constructed and
some significant properties of them, including calculus, dimension, smoothness, stability, perturbation
error, etc., have been widely studied (see [5–7]). For real-time applications of FIFs, one may refer [8–11].

This article mainly focuses on affine fractal interpolation and its useful aspects and can be
considered complementary to [12,13] in many ways. Firstly, we are discussing a simple procedure for
finding the box-counting dimension of affine fractal interpolation functions studied in [3]. Secondly, for
a prescribed set of data points, there exist an infinite number of affine fractal interpolation functions.
We discuss the existence of an optimal affine fractal interpolation function close to a traditional
(classical) interpolant studied in [14]. Thirdly, for given interpolation data, by exploiting fractal
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interpolation theory and classical Bernstein polynomial, we construct a sequence of Bernstein affine
fractal interpolation functions in one and two variables that uniformly converges to the data generating
function for any choice of the scaling factors. In Navascués [15] approach, affine fractal interpolation
functions converge to the data generating function, if the magnitude of the corresponding scaling
factors goes to zero, whereas in our approach convergence of Bernstein affine fractal interpolation
functions does require any condition on the scaling factors.

Particularly, in Section 2 we briefly review the theory of iterated function systems. In Section 3,
we revisit the fractal interpolation theory and state the prerequisites of the main construction.
In Section 4, the affine FIFs are defined and constructed. In Section 5, we introduce the construction
of Bernstein affinefractal interpolation functions and study their convergence. The construction
of Bernstein affine fractal interpolation surface and its convergence are carried out in Section 6.
Finally, Sections 7 and 8 summarize our conclusions and points out areas of future work.

2. Iterated Function System and Scaling

The following notation and terminologies will be used throughout the article. The set of real
numbers will be denoted by R, whilst the set of natural numbers by N. For a fixed N ∈ N, we shall
write NN for the set of the first N natural numbers. Let (X , dX ) be a complete metric space andH(X )

be the set of all nonempty compact subsets of X . Subsequently,H(X ) is a complete metric space with
respect to the Hausdorff metric h, where h is defined as h(A, B) = max{dX (A, B), dX (B, A)} and

dX (A, B) = max
x∈A

min
y∈B

dX (x, y).

Let wn : X → X be continuous functions for n ∈ NN . The collection I = {X ; wn, n ∈ NN} is called
iterated function system or IFS for short.

An IFS I is called hyperbolic, if each wn, n ∈ NN is a contraction with corresponding contractivity
factor αn for n ∈ NN , i.e. |αn| ≤ κ < 1. For any A ∈ H(X ), the set valued Hutchinson operator W on
H(X ) is defined as

W(B) =
N⋃

n=1

wn(B), B ∈ H(X ).

If the IFS I is hyperbolic, then it is well known that W is a contraction map onH(X ) with contractivity
factor |α|∞ = max{|αn| : n ∈ NN}. Then by the Banach Fixed Point Theorem, there exists a fixed point
A ∈ H(X ) of W, i.e., W(A) = A.

Definition 1. The fixed point of the Hutchinson operator is called the attractor or deterministic fractal for
the IFS I . The fixed point A ∈ H(X ) is some times called the invariant or self-referential set of I .

In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or
box-counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space
Rn, or more generally in a metric space (X, d). Another notion dealing with the measurement of
fractals is the fractal derivative or Hausdorff derivative, which is a non-Newtonian generalisation
of the derivative. Fractal derivatives were created for the study of anomalous diffusion, by which
traditional approaches fail to factor in the fractal nature of the media. A fractal measure t is scaled
according to ta. Such a derivative is local, in contrast to the similarly applied fractional derivative.

When we study a problem, the scale used is of great importance. This observation leads to a
two-scale transformation to convert approximately a fractal space to a continuous partner. The two
scale transform, for example, in x-direction, is s = xa, where x is for the small scale and s for large
scale, a the two-scale dimensions. Using the two-scale transform, the fractional differential equations
can be converted into traditional differential ones, which are easy to be solved; see also [16].
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3. Fractal Interpolation Functions

Let x0 < x1 < x2 · · · < xN−1 < xN , where N > 1, be a partition of the closed interval I = [x0, xN ],
and z0, z1, . . . , zN be a collection of real numbers. Let Ln, n ∈ NN be a set of homeomorphisms from I
to In = [xn−1, xn] satisfying

Ln(x0) = xn−1, Ln(xN) = xn. (1)

Let Fn be a function from I × K to K, where K is a suitable compact subset of R), which is continuous in
the x-direction and contractive in the y-direction with contractivity or vertical scaling factor |αn| ≤ κ < 1,
such that

Fn(x0, z0) = zn−1, Fn(xN , zN) = zn, n ∈ NN . (2)

In the existing constructions, the maps Ln and Fn are defined as

Ln(x) = anx + bn, Fn(x, z) = αnz + qn(x), n ∈ NN , (3)

where qn : I → R are suitable continuous functions such that (2) is satisfied.
Let G = {g : I → R | g is continuous, g(x0) = z0 and g(xN) = zN}. We define a metric on G by

ρ(h, g) = max{|h(x)− g(x)| : x ∈ I} for h, g ∈ G. Then (G, ρ) is a complete metric space. Define the
Read-Bajraktarević operator Tα on (G, ρ) by

Tαg(x) = Fn(L−1
n (x), g ◦ L−1

n (x)), x ∈ In. (4)

Using the properties of Ln and (1)-(2), Tαg is continuous on the interval In for n ∈ NN , and at each of
the points x0, x1, . . . , xN . Also,

ρ(Tαg, Tαh) ≤ |α|∞ ρ(g, h),

where |α|∞ = max{|αn| : n ∈ NN} < 1. Hence, Tα is a contraction mapping on the complete metric
space (G, ρ). Therefore, by the Banach fixed point theorem, Tα possesses a unique fixed point, let’s
say f α, on G, i.e., (Tα fα)(x) = fα(x) for all x ∈ I. According to (4), the function fα satisfies the
functional equation

fα(x) = Fn(L−1
n (x), fα ◦ L−1

n (x)), x ∈ In, n ∈ NN . (5)

Further, using (1)-(2), it is easy to verify that fα(xi) = zi, i ∈ N∗N . By defining a mapping wn : I × K →
In × K as wn(x, z) = (Ln(x), Fn(x, z)), (x, z) ∈ I × K, n ∈ NN , the graph G( fα) of fα satisfies

G( fα) =
⋃

n∈NN

wn(G( fα)),

whereas fα is called fractal interpolation function or FIF for short corresponding to the IFS I = {I ×
K, wn(x, y) = (Ln(x), Fn(x, y)), n ∈ NN}.

Remark 1. The main differences of a fractal interpolant with a traditional interpolant include: (i) the
construction via IFS theory that offers a functional equation for the interpolant and it implies a self similarity
in small scales; (ii) the construction by iteration of the interpolant instead of using an analytic formula; and,
(iii) the usage of scaling factors, which offers flexibility in the choice of interpolant in contrast to the unicity of a
specific traditional interpolant.

4. Affine Fif

For n ∈ NN , if qn(x) = θc1
n + (1− θ)d1

n, θ = L−1
n (x)−x0
xN−x0

, x ∈ In in (3), then fα is called an affine FIF
and it is expressed as

fα(x) = αn fα(L−1
n (x)) + c1

nθ + d1
n(1− θ), θ =

L−1
n (x)− x0

xN − x0
, x ∈ In. (6)
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Taking x = xn−1 and x = xn in (6), we get d1
n = zn−1− αnz0 and c1

n = zn − αnzN respectively with help
of (2). Finally the affine FIF fα takes the following form:
For n ∈ NN ,

fα(x) = αn fα(L−1
n (x)) + (zn − αnzN)θ + (zn−1 − αnz0)(1− θ), x ∈ In. (7)

Barnsley [3] studied the box-counting dimension of an affine FIF, where its details are given in the
following proposition.

Proposition 1. Let {(xi, zi), i ∈ N∗N} be a set of data ponts. Then the graph G of the affine FIF corresponding
to the given data points has box-counting dimension

dimG
B =

 D, if
N

∑
n=1
|αn| > 1 and data points are noncollinear

1, otherwise,
(8)

where D is the solution of
N

∑
n=1
|αn|aD−1

n = 1.

Example 1. Consider the interpolation data {(−1, 1.4), (0, 12.8), (1.7, 28.9), (8, 31), (13.3, 44.5)}. From (7),
it is clear that affine FIF is recursive. Hence, one has to use iterative procedure to evaluate the affine FIF at
different points of [−1, 13.3]. For the above data, after first, second, and sixth iteration, affine FIF with the
scaling factors α1 = α2 = α3 = 0.9, α4 = −0.9 is generated respectively in Figure 1a–c. From Figure 1a–c, it is
clear that to obtain the values of affine FIF at more points of [−1, 13.3], one has to use more number of iterations.
Similarly, some more affine FIFs are generated after sixth iteration in Figure 1d–f using different choices of the
scaling factors as mentioned in the respective figure.

4.1. Inscribing Affine Fif in a Rectangle

In most of the applications, for instance fractal-based image encoding and compression, we need
to interpolate the given data within a given rectangle. The sufficient conditions on the scaling factors
which ensure that affine FIF sits within in the given rectangle are studied in [17,18]. The following
proposition provides the details.

Proposition 2. Let fα be an affine FIF associated with the data
{
(xi, zi), i ∈ N∗N

}
. Let k1 < min{zi : i ∈ N∗N}

and k2 > max{zi : i ∈ N∗N}. Then graph of affine FIF fα contained in the rectangle [x0, xN ]× [k1, k2], if the
scaling factors are chosen in the following way:

αn ∈ (τ∗n , τn), n ∈ NN (9)

where τn = min
{

1,
zn−1 − k1

z0 − k1
,

zn − k1

zN − k1
,

k2 − zn−1

k2 − z0
,

k2 − zn

k2 − zN

}
,

τ∗n = max
{
− 1,
−(zn−1 − k1)

k2 − z0
,
−(zn − k1)

k2 − zN
,
−(k2 − zn−1)

z0 − k1
,
−(k2 − zn)

zN − k1

}
.
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(a) An AFIF after first iteration with
α1 = α2 = α3 = 0.9, α4 = −0.9.
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(b) An AFIF after second iteration with
α1 = α2 = α3 = 0.9, α4 = −0.9.
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(c) An AFIF after sixth iteration with
α1 = α2 = α3 = 0.9, α4 = −0.9.
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(d) An AFIF after sixth iteration with
αn = (−1)n+10.9, n = 1, 2, 3, 4.
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(e) An AFIF after sixth iteration with
αn = (−1)n0.9, n = 1, 2, 3, 4.
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(f) An AFIF after sixth iteration with
αn = (−1)n+10.1, n = 1, 2, 3, 4.

Figure 1. Affine FIFs.

Example 2. We now illustrate the importance of Proposition 2 by constructing the examples of affine FIFs
that interpolate the data set {(3, 4), (6, 1), (11, 9), (15, 2)}. Suppose that for some reason it is required to
inscribe the graph of the interpolant in the rectangle [2, 16]× [0, 11]. To obtain it, with respect to (9), the scaling
vector is chosen as α = (−0.27, −0.6, −0.55,−0.5). The corresponding affine FIF inscribed in the rectangle
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[2, 16]× [0, 11] is generated in Figure 2a. Note in particular that the interpolating curve is non-negative, thus
solving a constrained interpolation problem for the given data. Similarly, another affine FIF is generated in
Figure 2b with the scaling vector α = (−0.8, −0.6, −0.6, −0.6). It is easy to verify that scaling vector
α = (−0.8, −0.6, −0.6, −0.6) does not obey (9). As a result, the affine FIF generated in Figure 2b is not
inscribed in the rectangle [2, 16]× [0, 11] and also affine FIF taking negative values although the given data is
positive. From this experiment, we can understand imporatnce of (9) for obtaining the affine FIFs inscribed in
the given rectangle.
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(a) Affine FIF inscribed in the rectangle
[2, 16]× [0, 11].
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(b) Affine FIF not inscribed in the rectangle
[2, 16]× [0, 11].

Figure 2. Affine FIFs inscribed in a rectangle.

4.2. Existence of Optimal Affine Fif

It can be easily seen from (6) that the affine FIF depends on the choice of the vertical scaling
factors and there are infinite number of ways to select them. As a result, there exist an infinite
number of affine FIFs corresponding to a given set of data. Hence, one can ask whether an optimal
affine FIF exists. As an answer to this question, it is proved in [14] that there exists an affine FIF
close to some classical interpolant f that interpolates the data points (xi, zi), i ∈ N∗N . Now, it is
easy to verify that the affine FIF fα is the fixed point of the Read-Bajraktarević operator (Tαh)(x) =
g(x) + αn[h(x) − b(x)] ◦ L−1

n (x), x ∈ In, where g is the piecewise linear function that interpolates
(xi, zi), i ∈ N∗N , and b is the line joining (x0, z0) and (xN , zN). Further, |α|∞ is contractivity factor of Tα.
Let us recall the Collage theorem [18,19] which serves as a prelude to our analysis.

Theorem 1 (Collage Theorem). Let f ∈ C(I) and U : C(I)→ C(I) be a contraction map with contractivity
factor c ∈ [0, 1). If ‖U f − f ‖∞ ≤ ε, then ‖ f − f̃ ‖∞ ≤ ε

1−c , where f̃ is fixed point of U.

The previous theorem states that, if f ∈ C(I) is given and α∗ is such that ‖Tα∗ f − f ‖∞ ≤ ε, then

‖ f − fα∗‖∞ = ‖ f − Tα∗ fα∗‖∞ ≤
ε

1− |α∗|∞
.

Owing to the above reason, we have to search for α∗ ∈ Σ = {α ∈ RN : |α|∞ ≤ µ < 1} such that
‖ f − Tα∗ f ‖∞ is minimum.

Proposition 3. Let f ∈ C(I). Then the map η : Σ → C(I) defined by η(α) = Tα is Lipschitz continuous.
Consequently, the map F : Σ→ R+ ∪ {0} defined by F(α) = ‖Tα f − f ‖∞ is continuous.
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Proof. Let α, β ∈ Σ. From (4) and (5), we have

Tα f = g(x) + αn
[

f (L−1
n (x))− b(L−1

n (x)
]
, x ∈ In,

Tβ f = g(x) + βn
[

f (L−1
n (x))− b(L−1

n (x)
]
, x ∈ In.

Consequently,
|Tα f − Tβ f | ≤ |αn − βn|‖ f − b‖∞.

Hence, we have

‖Tα f − Tβ f ‖∞ ≤ |α− β|∞‖ f − b‖∞, |α− β|∞ = max{|αn − βn| : n ∈ NN}.

That is, ‖η(α)− η(β)‖∞ ≤ |α− β|∞‖ f − b‖∞. Therefore, η is a Lipschitz continuous map with Lipschitz
constant ‖ f − b‖∞. Finally, continuity of F follows from the result that the sum and composition of
continuous functions are continuous.

Corollary 1. There exists an optimal scaling vector α∗ ∈ Σ for which the function defined by F(α) =

‖Tα f − f ‖∞ is minimum.

Proof. Since the function F : Σ→ R+ ∪ {0} is continuous and the set Σ is compact, the existence of an
optimal scaling vector α∗ such that

F(α∗) = min
α∈Σ

F(α) = min
α∈Σ
‖Tα f − f ‖∞

follows from the result that a continuous real function on a compact metric space attains its maximum
and minimum.

Having established the existence, now the following result provides a tool to find α∗.

Proposition 4. The function F : Σ→ R+ ∪ {0} defined by F(α) = ‖Tα f − f ‖∞ is convex.

Proof. Let α, β ∈ Σ and λ ∈ [0, 1]. It follows that

F((1− λ)α + λβ) =max{|T(1−λ)α+λβ f (x)− f (x)| : x ∈ I}

=max
n

max
x∈In
{|[(1− λ)αn + λβn]

[
f (L−1

n (x))− b(L−1
n (x)

]
+ g(x)− b(x)|}

≤(1− λ)max
n

max
x∈In
{|αn

[
f (L−1

n (x))− b(L−1
n (x)

]
+ g(x)− f (x)|}

+ λmax
n

max
x∈In
{|βn

[
f (L−1

n (x))− b(L−1
n (x)

]
+ g(x)− f (x)|}

=(1− λ)‖Tα f − f ‖∞ + λ‖Tβ f − f ‖∞

=(1− λ)F(α) + λF(β).

(10)

It is straight forward to see that Σ is a convex subset of RN . Consequently, from the previous
proposition, it follows that the problem of finding α∗ ∈ Σ such that F(α∗) = min

α∈Σ
F(α) is a constrained

convex optimization problem. Following the Collage theorem, If α∗ is the optimum scaling vector,
then the expression F(α∗)

1−|α∗ |∞ provides an upper bound for the uniform distance ‖ f − fα∗‖∞, where f is
a classical interpolant and fα∗ is the affine FIF close to f .
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4.3. Convergence of Affine Fif

Theorem 2. (Navascués and Sebastián, 2007) Let ψ ∈ C(I). Let fα be the affine FIF associated with the
data set {(xi, zi) ∈ R2 : i ∈ N∗N}, where ψ(xi) = zi. Let g be the piecewise linear function that interpolates
(xi, zi), i ∈ N∗N , that is, g(x) = znθ + zn−1(1− θ), and b(x) = zNθ + z0(1− θ), θ = x−xn−1

xn−xn−1
, x ∈ In. Then

‖ fα − ψ‖∞ ≤ 2ωψ(h) +
|α|∞

1− |α|∞
‖g− b‖∞, (11)

where ωψ(h) is the modulus of continuity of ψ defined by ωψ(h) = sup
|x−x∗ |≤h

|ψ(x)− ψ(x∗)| and h is the norm

of the partition defined by h = max{hn : n ∈ NN}, where hn = xn − xn−1.

Proof. We rewrite (7) in terms of g and b as

fα(x)− g(x) = αn fα(L−1
n (x))− αnb(L−1

n (x)),

= αn
[

fα(L−1
n (x))− g(L−1

n (x))
]
+ αng(L−1

n (x))− αnb(L−1
n (x)).

Therefore, for x ∈ In,∣∣ fα(x)− g(x)
∣∣ ≤ ∣∣αn

∣∣∣∣ fα(L−1
n (x))− g(L−1

n (x))
∣∣+ ∣∣αn

∣∣|g(L−1
n (x))| − b(L−1

n (x))
∣∣

≤ |α|∞‖ fα − g‖∞ + |α|∞‖g− b‖∞.

Since the above inequality is valid for each In, n ∈ NN , we have

‖ fα − g‖∞ ≤ |α|∞‖ fα − g‖∞ + |α|∞‖g− b‖∞,

and hence

‖ fα − g‖∞ ≤
|α|∞‖g− b‖∞

1− |α|∞
. (12)

Noting that

g(x)− ψ(x) = znθ + zn−1(1− θ)− ψ(x)

= (zn − zn−1)θ + zn−1 − ψ(x)

= (zn − zn−1)θ + ψ(xn−1)− ψ(x)

=
(
ψ(xn)− ψ(xn−1)

)
θ + ψ(xn−1)− ψ(x).

we find that
‖g− ψ‖∞ ≤ 2ωψ(h). (13)

Consider the triangle inequality

‖ fα − ψ‖∞ ≤ ‖ fα − g‖∞ + ‖g− ψ‖∞. (14)

Combining (13) and (12) with (14), we settle (11).

Since ψ ∈ C(I) is uniformly continuous, ωψ(h) → 0 as h → 0. Therefore, from Theorem 2,
we assert that fα converges to ψ as h→ 0 and |α|∞ → 0.

5. Bernstein Affine Fif

Let the data set {(xi, zi) ∈ R2 : i ∈ NN} be obtained from the function ψ ∈ C[x1, xN ]. Let h =

max{hi : i ∈ NN−1}, where hi = xi+1 − xi. Let g be the piecewise linear function that interpolates
(xi, zi), i ∈ NN , that is, g(x) = zi+1θ + zi(1− θ), θ = x−xi

xi+1−xi
, x ∈ Ii. In the previous section (Theorem 2),
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it is seen that the affine FIF fα associated with the data set {(xi, zi) ∈ R2 : i ∈ NN} converges to the
data generating function if h → 0 and |α|∞ → 0. In the present section, we develop a sequence of
Bernstein affine FIFs corresponding the data set {(xi, zi) ∈ R2 : i ∈ NN} that converges uniformly to ψ

if h→ 0. In (3), we choose the qi as

qi(x) = g(Li(x))− αiBn(g, x),

where Bn(g, x) is the Bernstein polynomial [20] of g, i.e.,

Bn(g, x) =
1

(xN − x1)n

n

∑
k=0

(
n
k

)
(x− x1)

k(xN − x)n−kg
(

x1 +
k(xN − x1)

n

)
, ∀x ∈ I, ∀n ∈ N.

It is easy to verify that Bn(g, x1) = g(x1), Bn(g, xN) = g(xN) for all n ∈ N. In this case, the affine FIF
fα= fn,α, n ∈ N is called the Bernstein affine FIF corresponding to {(xi, zi) ∈ R2 : i ∈ NN} and

fn,α(x) = αi fn,α(L−1
i (x)) + g(x)− αiBn(g, L−1

i (x)), x ∈ Ii, i ∈ NN−1. (15)

From the construction of fractal functions (see previous section), it can be verified that for every n ∈ N,
the Bernstein affine FIF fn,α is obtained via the IFS defined by

In = {I × K,
(

Li(x), Fn,i(x, z)
)
, i ∈ NN−1}, (16)

where Fn,i(x, z) = αiz + g(Li(x))− αiBn(g, x). From (15), it is easy to notice that for a given f ∈ C(I)
there exists a sequence { fn,α}∞

n=1 of Bernstein affine FIFs. The following theorem addresses the
convergence of the sequence { fn,α}∞

n=1 towards the data generating function ψ ∈ C(I).

Theorem 3. Let ψ ∈ C(I). Let {(xi, zi) ∈ R2 : i ∈ NN} be a data set, where ψ(xi) = zi. Let g(x) =

zi+1θ + zi(1− θ), θ = x−xi
xi+1−xi

, x ∈ Ii. Let α = (α1, α2, . . . , αN−1). Then, for every scaling vector α, the

sequence
{
In
}∞

n=1 of IFSs determine a sequence { fn,α}∞
n=1 of Bernstein affine FIFs that converges uniformly to

the data generating function ψ.

Proof. From (15), it is easy to deduce that

‖ fn,α − g‖∞ ≤|α|∞‖ fn,α − Bn(g, .)‖∞,

≤|α|∞[‖ fn,α − g‖∞ + ‖g− Bn(g, .)‖∞].

Hence we obtain

‖ fn,α − g‖∞ ≤
|α|∞

1− |α|∞
‖g− Bn(g, .)‖∞. (17)

Substituting (13) and (17) in (14), we get

‖ fn,α − ψ‖∞ ≤ 2ωψ(h) +
|α|∞

1− |α|∞
‖g− Bn(g, .)‖∞, (18)

where ωψ(h) is the modulus of continuity of ψ. Since ψ ∈ C(I) is uniformly continuous, ωψ(h)→ 0 as
h→ 0 and from the approximation theory [20], it follows that ‖g− Bn(g, .)‖∞ → 0 and n→ ∞. As a
result, from (18), it follows that fn,α → ψ uniformly if h→ 0 and n→ ∞.

6. Bernstein Affine Fis

Let us consider the surface data set placed on the rectangular grid Dgrid : x1 < x2 < · · · <
xN−1 < xN , y1 < y2 < · · · < yM−1 < yM, be given by41 = {(xi, yj, zi,j) ∈ R3 | i ∈ NN , j ∈ NM}. Let
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I = [x1, xN ], Ii = [xi, xi+1], J = [y1, yM], Jj = [yj, yj+1], and D = I × J, and Di,j = Ii × Jj. We construct
the Bernstein affine fractal surface Φn, n ∈ N as a blending of the Bernstein affine FIFs constructed
along the grid lines of the interpolation domain D so that Φn : D → R, Φn(xi, yj) = zi,j, i ∈ NN , j ∈ NM.
Now for above surface data, Tj = {(xi, zi,j) : i ∈ NN} is the interpolation data along the jth, j ∈ NM
grid line parallel to x-axis. Similarly, T∗i = {(yj, zi,j) : j ∈ NM} is the interpolation data along the
ith, i ∈ NN grid line parallel to y-axis. For j ∈ NM, let gj(x) = zi+1,jθ + zi,j(1− θ), θ = x−xi

xi+1−xi
, x ∈ Ii.

Similarly, for i ∈ NN , let g∗i (y) = zi,j+1φ + zi,j(1− φ), φ =
y−yj

yj+1−yj
, y ∈ Jj. Suppose Ψn,j(x, αi,j) and

Ψ∗n,i(y, α∗i,j) are the Bernstein affine FIFs interpolating the data sets Tj and T∗i respectively. By utilizing
the functional equation of the Bernstein affine FIF fn,α (cf. (15)), we obtain the functional equations of
Ψn,j(x, αi,j), j ∈ NM and Ψ∗n,i(y, α∗i,j), i ∈ NN respectively as

Ψn,j(x, αi,j) = αi,jΨn,j(L−1
i (x), αi,j) + gj(x)− αi,jBn(gj, L−1

i (x)), θ =
L−1

i (x)− x1

xN − x1
, x ∈ Ii, (19)

Ψ∗n,i(y, α∗i,j) = α∗i,jΨ
∗
n,i(L∗−1

j (y), α∗i,j) + +g∗i (y)− α∗i,jBn(g∗i , L∗−1
j (y)), φ =

L∗−1
j (y)− y1

yM − y1
, y ∈ Jj, (20)

αi,j and α∗i,j are the scaling factors in x-direction and y-direction respectively satisfying |αi,j| < 1

and |α∗i,j| < 1, L∗j (y) = cjy + dj =
(yj+1−yj)y

yN−y1
+

yMyj−y1yj+1
yM−y1

: J → Jj is a homeomorphism such that
L∗j (y1) = yj, L∗j (yM) = yj+1, j ∈ NM−1. Now we define the Bernstein affine FIS Φn as blending of the
above affine FIFs Ψn,j, j ∈ NM and Ψ∗n,i, i ∈ NN . In the present construction, we use the following
choice of blending functions:

ax,0(θ) = (1− θ)2(1 + 2θ), ax,1(θ) = θ2(3− 2θ), θ =
L−1

i (x)−x1
xN−x1

= x−xi
xi+1−xi

, x ∈ Ii,

by,0(φ) = (1− φ)2(1 + 2φ), by,1(φ) = φ2(3− 2φ), φ =
L∗−1

j (y)−y1

yM−y1
=

y−yj
yj+1−yj

, y ∈ Jj.
The boundary of the sub-rectangle Di,j is taken as the union of four boundary lines Ii × yj, Ii × yj+1,
xi × Jj, and xi+1 × Jj. We define Φn, n ∈ N over Di,j, i ∈ NN−1, j ∈ NM−1, as

Φn(x, y) = −M1Υn(x, y)MT
2 , (x, y) ∈ Di,j, (21)

where Υn(x, y) =

 0 Ψn,j(x, αi,j) Ψn,j+1(x, αi,j+1)

Ψ∗n,i(y, α∗i,j) zi,j zi,j+1

Ψ∗n,i+1(y, α∗i+1,j) zi+1,j zi+1,j+1

 , M1 = [−1 ax,0(θ) ax,1(θ)],

and M2 = [−1 by,0(φ) by,1(φ)]. From (21), it easy to verify that Φn(xi, yj) = zi,j, Φn(xi+1, yj) = zi+1,j,
Φn(xi, yj+1) = zi,j+1, Φn(xi+1, yj+1) = zi+1,j+1, i ∈ NN−1, j ∈ NM−1. Thus Φn interpolates 41 at
the grid points of the interpolation domain D. We invite the readers to check that Φn(xi, y) =

Ψ∗n,i(y, α∗i,j), Φn(xi+1, y) = Ψ∗n,i+1(y, α∗i+1,j), Φn(x, yj) = Ψj(x, αi,j), Φn(x, yj+1) = Ψn,j+1(x, αi,j+1).
In other words, along the boundaries Ii × yj, Ii × yj+1, xi × Jj, and xi+1 × Jj of Di,j, the fractal surface
Φn reduces to Bernstein affine FIFs Ψn,j(x, αi,j), Ψn,j+1(x, αi,j+1), Ψ∗n,i(y, α∗i,j), and Ψ∗n,i+1(y, α∗i+1,j)

respectively. Similarly, using (21), the fractal surface Φn over the sub-rectangle Di,j+1 is defined
as a blending of the Bernstein affine FIFs Ψn,j+1(x, αi,j+1), Ψn,j+2(x, αi,j+2), Ψ∗n,i(y, α∗i,j+1), y ∈ Jj+1,
and Ψ∗n,i+1(y, α∗i+1,j+1), y ∈ Jj+1. Along the boundary line Ii × Jj+1, the fractal surface Φn reduces to
Ψn,j+1(x, αi,j+1), and hence Φn is continuous over the the domains Di,j ∪ Di,j+1, i ∈ NN−1, j ∈ NM−2.
A similar type of arguments gives that Φn is continuous over the the domain Di,j ∪ Di+1,j, i ∈ NN−2,
j ∈ NM−1. From the above discussion, we conclude that the fractal surface Φn is continuous over the
interpolation domain D. Since we have used only Bernstein affine FIFs in the construction of Φn, we
refer it as Bernstein affine FIS. The scaling factors involved in the Bernstein affine FIFs Ψn,j, j ∈ NM,
and Ψ∗n,i, i ∈ NN are put in matrices α = [αi,j](N−1)×M, and α∗ = [α∗i,j]N×(M−1) respectively.
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Remark 2. If α = [0](N−1)×M and α∗ = [0]N×(M−1), then we get the classical affine surface interpolant as

Sn(x, y) =by,0(φ)Ψn,j(x, 0) + by,1(φ)Ψn,j+1(x, 0) + ax,0(θ)Ψ∗n,i(y, 0)

+ ax,1(θ)Ψ∗n,i+1(y, 0)− ax,0(θ)by,0(φ)zi,j − ax,0(θ)by,1(φ)zi,j+1

− ax,1(θ)by,0(φ)zi+1,j − ax,1(θ)by,1(φ)zi+1,j+1,

(22)

where Ψn,j(x, 0) = gj(x) and Ψ∗n,i(y, 0) = g∗i (y) are the classical affine interpolants for the data sets Tj and
T∗i respectively.

Convergence of Bernstein affine FIS

Theorem 4. For n ∈ N, let Φn be the Bernstein affine FIS with respect to the surface data {(xi, yj, zi,j) :
i ∈ NN , j ∈ NM} generated from the function F ∈ C(D). Then, the sequence {Φn}∞

n=1 of Bernstein affine
FISs converges uniformly to F ∈ C(D) if h → 0 and k → 0, where h = max{xi+1 − xi : i ∈ NN−1} and
k = max{yj+1 − yj : j ∈ NM−1}.

Proof. From (21) and Remark 2, we have

|Φn(x, y)− Sn(x, y)| ≤ by,0(φ)|Ψn,j(x, αi,j)−Ψn,j(x, 0)|
+ by,1(φ)|Ψn,j+1(x, αi,j+1)−Ψn,j+1(x, 0)|
+ ax,0(θ)|Ψ∗n,i(y, α∗i,j)−Ψ∗n,i(y, 0)|

+ ax,1(θ)|Ψ∗n,i+1(y, α∗i,j)−Ψ∗n,i+1(y, 0)|.

(23)

Since Ψn,j(x, 0) = gj(x) and Ψ∗n,i(y, 0) = g∗i (y), using (17), we obtain

|Ψn,j(x, αi,j)−Ψn,j(x, 0)| ≤
|αj|∞

1− |αj|∞
‖gj − Bn(gj, .)‖∞, j ∈ NM,

Ψ∗n,i(y, α∗i,j)−Ψ∗n,i(y, 0)| ≤
|α∗i |∞

1− |α∗i |∞
‖g∗i − Bn(g∗i , .)‖∞, i ∈ NN ,

(24)

|αj|∞ = max{|αi,j| : i ∈ NN−1}, and |α∗i |∞ = max{|α∗i,j| : j ∈ NM−1}. Also it is easy to calculate that

ax,0 ≤ 1, ax,1 ≤ 1, by,0 ≤ 1, by,1 ≤ 1. (25)

|Φn(x, y)− Sn(x, y)| ≤
|αj|∞

1− |αj|∞
‖gj − Bn(gj, .)‖∞

+
|αj+1|∞

1− |αj+1|∞
‖gj+1 − Bn(gj+1, .)‖∞

+
|α∗i |∞

1− |α∗i |∞
‖g∗i − Bn(g∗i , .)‖∞

+
|α∗i+1|∞

1− |α∗i+1|∞
‖g∗i+1 − Bn(g∗i+1, .)‖∞.

(26)
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Since the above inequality is true for every (x, y) ∈ Di,j, i ∈ NN−1, j ∈ NM−1, we get

‖Φn − Sn‖∞ ≤
|αj|∞

1− |αj|∞
‖gj − Bn(gj, .)‖∞

+
|αj+1|∞

1− |αj+1|∞
‖gj+1 − Bn(gj+1, .)‖∞

+
|α∗i |∞

1− |α∗i |∞
‖g∗i − Bn(g∗i , .)‖∞

+
|α∗i+1|∞

1− |α∗i+1|∞
‖g∗i+1 − Bn(g∗i+1, .)‖∞.

(27)

Applying the procedure which is similar to the procedure used in obtaining (13), we get

‖F− Sn‖ ≤ e(ωFj(h) + ωFi(k)), (28)

where e is a suitable constant, ωFj(h) is the modulus of continuity of F(x, yj), and ωFi(k) is the modulus
of continuity of F(xi, y).

Consider the triangle inequality

‖Φn − F‖∞ ≤ ‖Φn − Sn‖∞ + ‖Sn − F‖∞. (29)

Combining (27) and (28) with (29), we obtain

‖Φn − F‖∞ ≤
|αj|∞

1− |αj|∞
‖gj − Bn(gj, .)‖∞

+
|αj+1|∞

1− |αj+1|∞
‖gj+1 − Bn(gj+1, .)‖∞

+
|α∗i |∞

1− |α∗i |∞
‖g∗i − Bn(g∗i , .)‖∞

+
|α∗i+1|∞

1− |α∗i+1|∞
‖g∗i+1 − Bn(g∗i+1, .)‖∞ + e(ωFj(h) + ωFi(k)).

(30)

Now, it is easy to verify that (i) ‖gj − Bn(gj, .)‖∞ → 0, j ∈ NM and ‖g∗i − Bn(g∗i , .)‖∞ → 0, i ∈ NN as
n→ ∞, (ii) ωFj(h) → 0, j ∈ NM and ωFi(k) → 0, i ∈ NN , as h, k → 0. Consequently, we get the desired
result from (30).

Example 3. The Bernstein affine FISs Φ1 and Φ26 in Figure 3a,b are constructed with respect to the surface
data given in Table 1 and the scaling matrices α = [0.99]3×4 and α∗ = [−0.99]4×3.

Table 1. Surface data.

↓ y/x → −4 −3 −2 −1

0.1 2 12 9 7

0.2 7 3 1 2

0.3 8 3 9 8

0.8 2 3 6 9
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(a) The Bernstein Affine FIS Φ1 with
α = [0.99]3×4 and α∗ = [−0.99]4×3.
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(b) The Bernstein Affine FIS Φ26 with
α = [0.99]3×4 and α∗ = [−0.99]4×3.

Figure 3. Bernstein Affine FISs.

7. Discussion

If the magnitude of the scaling factors goes to zero, then the corresponding existing affine FIFs
converge to the data generating function. In this case, the scaling factors may not fulfil condition (8).
Consequently, the box-counting dimension of the existing affine FIFs would be one. In this article,
using the Bernstein polynomials and the theory of IFSs, we have presented Bernstein affine FIFs as a
comprehensive tool to analyse the data that originated from an irregular phenomenon. In our approach,
the convergence of Bernstein FIFs towards the original function does not demand any condition on
the scaling factors. As a result, we can fulfil the condition (8) and the box-counting dimension of
the Bernstein affine FIFs must lie between one and two. In this work, we have also introduced the
Bernstein affine FIS for the data arranged on the rectangular grid. The convergence of the affine FISs
studied in [21] demand a condition on the scaling factors whereas our Bernstein affine FIS does not
need any such condition. Because the shapes of the Bernstein affine FISs can be adjusted by using
different choices of the scaling factors, our scheme offers a large flexibility for simulation or modelling
of irregular objects. The optimal approximation of the Bernstein affine FIS for a given surface is under
investigation using a genetic algorithm.

8. Materials and Methods

In the present article, we have used a sequential approach for obtaining a new class of affine
FIFs, namely, Bernstein affine FIFs. Owing to the sequential technique, the convergence of the
proposed Bernstein affine FIFs or FISs does depend on the choice of the scaling factors. A three
dimensional problem can be approximated by either a two-dimensional or one-dimensional case,
but some information will be lost. Two-scale mathematics is needed in order to reveal the lost
information due to the lower dimensional approach. Generally, one scale is established by usage
where traditional calculus works, and the other scale is for revealing the lost information where
the continuum assumption might be forbidden, and fractional calculus or fractal calculus has to be
used. Additionally, we have exploited the blending technique [22] for the construction of Bernstein
affine FISs.
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