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Abstract: The aim of this work is to study oscillatory behavior of solutions for even-order neutral
nonlinear differential equations. By using the Riccati substitution, a new oscillation conditions is
obtained which insures that all solutions to the studied equation are oscillatory. The obtained results
complement the well-known oscillation results present in the literature. Some example are illustrated
to show the applicability of the obtained results.
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1. Introduction

Neutral differential equations appear in models concerning biological, physical and chemical
phenomena, optimization, mathematics of networks, dynamical systems and their application in
concerning materials and energy as well as problems of deformation of structures, elasticity or
soil settlement, see [1].

Recently, there has been steady enthusiasm for acquiring adequate conditions for oscillatory and
nonoscillatory behavior of differential equations of different orders; see [2–13]. Particular emphasize
has been given to the study of oscillation and oscillatory behavior of these equations which have been
under investigation by using different methods an various techniques; we refer to the papers [14–26].
In this paper we study the oscillatory behavior of the even-order nonlinear differential equation(

r (ς)
(

z(n−1) (ς)
)α)′

+ q (ς) xα (δ (ς)) = 0, (1)

where ς ≥ ς0, n is an even natural number and z (ς) := x (ς) + p (ς) x (τ (ς)). Throughout
this paper, we suppose that: r ∈ C[ς0, ∞), r (ς) > 0, r′ (ς) ≥ 0, p, q ∈ C ([ς0, ∞)) , q (ς) > 0,
0 ≤ p (ς) < p0 < ∞, q is not identically zero for large ς, τ ∈ C1[ς0, ∞), δ ∈ C[ς0, ∞), τ′ (ς) > 0,
τ (ς) ≤ ς, limς→∞ τ (ς) = limς→∞ δ (ς) = ∞ , α is a quotient of odd positive integers and∫ ∞

ς0

r−1/α (s)ds = ∞. (2)
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Definition 1. Let x be a real function defined for all ς in a real interval I := [ςx, ∞), ςx ≥ ς0, and having an
(n− 1)th derivative for all ς ∈ I. The function f is called a solution of the differential Equation (1) on I if it
fulfills the following two requirements:(

r (ς)
(
(x (t) + p (t) x (τ (t)))(n−1) (ς)

)α)
∈ C1 ([ςx, ∞))

and
x (ς) satisfies (1) on [ςx, ∞).

Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [ςx, ∞), and otherwise is
called to be nonoscillatory.

Definition 3. The Equation (1) is said to be oscillatory if all its solutions are oscillatory.

We collect some relevant facts and auxiliary results from the existing literature.
Bazighifan [2] using the Riccati transformation together with comparison method with second

order equations, focuses on the oscillation of equations of the form(
r (ς)

(
z(n−1) (ς)

)α)′
+ q (ς) f (x (δ (ς))) = 0, (3)

where n is even.
Moaaz et al. [27] gives us some results providing informations on the asymptotic behavior of (1).

This time, the authors used comparison method with first-order equations.
In [28] (Theorem 2), the authors considered Equation (1) and proved that (1) is oscillatory if

∫ ∞

ς0

(
Ψ (s)− 2α

(α + 1)α+1
r (s) (ρ′ (s))α+1

µαs2αρα (s)

)
ds = ∞,

for some µ ∈ (0, 1) and

∫ ∞

ς0

(
ϑ (s)

(∫ ∞

ς
(Q∗ (υ))

1
α r
−1
α (υ) dυ

)
−

ϑ′2+ (s)
4ϑ (s)

)
ds = ∞,

where Ψ (ς) := ϑρ (ς) Q (ς) (1− p (g (ς, a)))α (g (ς, a) /ς)3α .
Xing et al. [29] proved that (1) is oscillatory if(

δ−1 (ς)
)′
≥ δ0 > 0, τ′ (ς) ≥ τ0 > 0, τ−1 (δ (ς)) < ς

and

lim inf
ς→∞

∫ ς

τ−1(δ(ς))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
δ0

+
pα

0
δ0τ0

)
((n− 1)!)α

e
,

where q̂ (ς) := min
{

q
(
δ−1 (ς)

)
, q
(
δ−1 (τ (ς))

)}
.

In this article, we establish some oscillation criteria for the Equation (1) which complements some
of the results obtained in the literature. Some examples are presented to illustrate our main results.

To prove our main results we need the following lemmas:

Lemma 1 ([28]). Let α ≥ 1 be a ratio of two odd numbers. Then

Dw− Cw(α+1)/α ≤ αα

(α + 1)α+1
Dα+1

Cα
, C > 0.
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Lemma 2 ([30]). Let h (ς) ∈ Cn ([ς0, ∞) , (0, ∞)) . If h(n−1) (ς) h(n) (ς) ≤ 0 for all ς ≥ ςx, then for every
θ ∈ (0, 1) , there exists a constant M > 0 such that

h′ (θς) ≥ Mςn−2h(n−1) (ς) ,

for all sufficient large ς.

Lemma 3 ([31] Lemma 2.2.3). Let x ∈ Cn ([ς0, ∞) , (0, ∞)). Assume that x(n) (ς) is of fixed sign and not
identically zero on [ς0, ∞) and that there exists a ς1 ≥ ς0 such that x(n−1) (ς) x(n) (ς) ≤ 0 for all ς ≥ ς1.
If limς→∞ x (ς) 6= 0, then for every µ ∈ (0, 1) there exists ςµ ≥ ς1 such that

x (ς) ≥ µ

(n− 1)!
ςn−1

∣∣∣x(n−1) (ς)
∣∣∣ for ς ≥ ςµ.

Lemma 4 ([32]). Let h ∈ Cn ([ς0, ∞) , (0, ∞)) . If h(n) (ς) is eventually of one sign for all large ς, then there
exists a ςx > ς1 for some ς1 > ς0 and an integer m, 0 ≤ m ≤ n with n + m even for h(n) (ς) ≥ 0 or
n + m odd for h(n) (ς) ≤ 0 such that m > 0 implies that h(k) (ς) > 0 for ς > ςx, k = 0, 1, . . . , m− 1 and
m ≤ n− 1 implies that (−1)m+k h(k) (ς) > 0 for ς > ςx, k = m, m + 1, . . . , n− 1.

2. One Condition Theorem

Notation 1. Here, we define the next notation:

Ω (s) =
ϑ (s)

δ0(α + 1)α+1 (λM)α

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)α+1

,

Θ (s) =
ϑ (s) ((n− 2)!)α

µαδ0(α + 1)α+1

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)α+1

and
Q (s) = min

{
q
(

δ−1 (s)
)

, q
(

δ−1 (τ (s))
)}

.

Following [33], we say that a function Φ = Φ (ς, s, l) belongs to the function class Y if
Φ ∈ (E,R) where E = {(ς, s, l) : ς0 ≤ 1 ≤ s ≤ ς} which satisfies Φ (ς, ς, l) = 0, Φ (ς, l, l) = 0 and
Φ (ς, s, l) > 0, for l < s < ς and has the partial derivative ∂Φ/∂s on E such that ∂Φ/∂s is locally
integrable with respect to s in E.

Definition 4. Define the operator B [·; l, ς] by

B [h; l, ς] =
∫ ς

l
Φ (ς, s, l) h (s)ds,

for ς0 ≤ 1 ≤ s ≤ ς and h ∈ C ([ς0, ∞),R). The function ϕ = ϕ (ς, s, l) is defined by

∂Φ (ς, s, l)
∂s

= ϕ (ς, s, l)Φ (ς, s, l) .

Remark 1. It is easy to verify that B [·; l, ς] is a linear operator and that it satisfies

B
[
h′; l, ς

]
= −B [hϕ; l, ς] , for h ∈ C1 ([ς0, ∞),R) . (4)

Lemma 5. Assume that x is an eventually positive solution of (1) and(
δ−1 (ς)

)′
≥ δ0 > 0, (τ (ς))′ ≥ τ0 > 0. (5)
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Then

1
δ0

(
r
(

δ−1 (ς)
) (

z(n−1)
(

δ−1 (ς)
))α)′

+
pα

0
δ0τ0

(
r
(

δ−1 (τ (ς))
) (

z(n−1)
(

δ−1 (τ (ς))
))α)′

+ Q (ς) zα (ς) ≤ 0. (6)

Proof. Let x be an eventually positive solution of (1) on [ς0, ∞). From (1), we see that

0 =
1

(δ−1 (ς))
′

(
r
(

δ−1 (ς)
) (

z(n−1)
(

δ−1 (ς)
))α)′

+ q
(

δ−1 (ς)
)

xα (ς) . (7)

Thus, for all sufficiently large ς, we have

0 =
1

(δ−1 (ς))
′

(
r
(

δ−1 (ς)
) (

z(n−1)
(

δ−1 (ς)
))α)′

+
pα

0

(δ−1 (τ (ς)))
′

(
r
(

δ−1 (τ (ς))
) (

z(n−1)
(

δ−1 (τ (ς))
))α)′

+q
(

δ−1 (ς)
)

xα (ς) + pα
0q
(

δ−1 (τ (ς))
)

xα (τ (ς)) . (8)

From (8) and the definition of z, we get

q
(

δ−1 (ς)
)

xα (ς) + pα
0q
(

δ−1 (τ (ς))
)

xα (τ (ς)) ≥ Q (ς) (x (ς) + p0x (τ (ς)))α

≥ Q (ς) zα (ς) . (9)

Thus, by using (8) and (9), we obtain

0 ≥ 1

(δ−1 (ς))
′

(
r
(

δ−1 (ς)
) (

z(n−1)
(

δ−1 (ς)
))α)′

+
pα

0

(δ−1 (τ (ς)))
′

(
r
(

δ−1 (τ (ς))
) (

z(n−1)
(

δ−1 (τ (ς))
))α)′

+ Q (ς) zα (ς) . (10)

From (5), we get

0 ≥ 1
δ0

(
r
(

δ−1 (ς)
) (

z(n−1)
(

δ−1 (ς)
))α)′

+
pα

0
δ0τ0

(
r
(

δ−1 (τ (ς))
) (

z(n−1)
(

δ−1 (τ (ς))
))α)′

+ Q (ς) zα (ς) .

This completes the proof.

Theorem 1. Let (2) hold. Assume that there exist positive functions ϑ ∈ C1 ([ς0, ∞) ,R) such that for all
M > 0

lim sup
ς→∞

B

ϑ (s) Q (s)−Ω (s)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς

 > 0, (11)

for some λ ∈ (0, 1), then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution in [ς0, ∞). Without loss of generality, we let x be
an eventually positive solution of (1). Then, there exists a ς1 ≥ ς0 such that x (ς) > 0, x (τ (ς)) > 0
and x (δ (ς)) > 0 for ς ≥ ς1. Thus, we have
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z (ς) > 0, z′ (ς) > 0, z(n−1) (ς) > 0, z(n) (ς) < 0. (12)

By Lemma 2, we get
z′ (λς) ≥ Mςn−2z(n−1) (ς) , (13)

where M is positive constant. Now, we define a function ψ by

ψ (ς) = ϑ (ς)
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α

zα (λς)
. (14)

Then we obtain ψ (ς) > 0 for ς ≥ ς1, and

ψ′ (ς) = ϑ′ (ς)
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α

zα (λς)
+ ϑ (ς)

(
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α)′
zα (λς)

−αλϑ (ς)
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α
z′ (λς)

zα+1 (λς)
. (15)

Combining (13) and (14) in (15), we obtain

ψ′ (ς) ≤ ϑ′ (ς)

ϑ (ς)
ψ (ς) + ϑ (ς)

(
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α)′
zα (λς)

−αλM
(

δ−1 (ς)
)n−2 (ψ (ς))α+1/α

(ϑ (ς) r (δ−1 (ς)))
1/α

. (16)

Similarly, define

ψ̃ (ς) = ϑ (ς)
r
(
δ−1 (τ (ς))

) (
z(n−1) (δ−1 (τ (ς))

))α

zα (λς)
. (17)

Then we obtain ψ̃ (ς) > 0 for ς ≥ ς1, and

ψ̃′ (ς) ≤ ϑ′ (ς)

ϑ (ς)
ψ̃ (ς) + ϑ (ς)

(
r
(
δ−1 (τ (ς))

) (
z(n−1) (δ−1 (τ (ς))

))α)′
zα (λς)

−αλM
(

δ−1 (τ (ς))
)n−2 (ψ̃ (ς))

α+1/α

(ϑ (ς) r (δ−1 (τ (ς))))
1/α

. (18)

Therefore, from (16) and (18), we obtain

1
δ0

ψ′ (ς) +
pα

0
δ0τ0

ψ̃′ (ς) ≤ ϑ (ς)

δ0

(
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α)′
zα (λς)

+
pα

0
δ0τ0

ϑ (ς)

(
r
(
δ−1 (τ (ς))

) (
z(n−1) (δ−1 (τ (ς))

))α)′
zα (λς)

+
ϑ′ (ς)

δ0ϑ (ς)
ψ (ς) +

pα
0

δ0τ0

ϑ′ (ς)

ϑ (ς)
ψ̃ (ς)

− 1
δ0

αλM
(

δ−1 (ς)
)n−2 (ψ (ς))α+1/α

(ϑ (ς) r (δ−1 (ς)))
1/α

−αλM
pα

0
δ0τ0

(
δ−1 (τ (ς))

)n−2 (ψ̃ (ς))
α+1/α

(ϑ (ς) r (δ−1 (τ (ς))))
1/α

. (19)
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From (16), we obtain

1
δ0

ψ′ (ς) +
pα

0
δ0τ0

ψ̃′ (ς) ≤ −ϑ (ς) Q (ς) +
ϑ′ (ς)

δ0ϑ (ς)
ψ (ς) +

pα
0

δ0τ0

ϑ′ (ς)

ϑ (ς)
ψ̃ (ς)

− 1
δ0

αλM
(

δ−1 (ς)
)n−2 (ψ (ς))α+1/α

(ϑ (ς) r (δ−1 (ς)))
1/α

−αλM
pα

0
δ0τ0

(
δ−1 (τ (ς))

)n−2 (ψ̃ (ς))
α+1/α

(ϑ (ς) r (δ−1 (τ (ς))))
1/α

. (20)

Applying B [·; l, ς] to (20), we obtain

B
[

1
δ0

ψ′ (ς) +
pα

0
δ0τ0

ψ̃′ (ς) ; l, ς
]
≤ B[−ϑ (s) Q (s) + ϑ′(s)

δ0ϑ(s)ψ (s) + pα
0

δ0τ0

ϑ′(s)
ϑ(s) ψ̃ (s)

− 1
δ0

αλM
(
δ−1 (s)

)n−2 (ψ(s))α+1/α

(ϑ(s)r(δ−1(s)))
1/α

−αλM pα
0

δ0τ0

(
δ−1 (τ (s))

)n−2 (ψ̃(s))α+1/α

(ϑ(s)r(δ−1(τ(s))))
1/α ; l, ς].

(21)

By (4) and the inequality above, we find

ς [ϑ (s) Q (s) ; l, ς] ≤ ς[
1
δ0

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)
ψ (s) +

pα
0

δ0τ0

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)
ψ̃ (s)

− 1
δ0

αλM
(

δ−1 (s)
)n−2 (ψ (s))α+1/α

(ϑ (s) r (δ−1 (s)))1/α

−αλM
pα

0
δ0τ0

(
δ−1 (τ (s))

)n−2 (ψ̃ (s))α+1/α

(ϑ (s) r (δ−1 (τ (s))))1/α
; l, ς]. (22)

Using Lemma 1, we set

D =
1
δ0

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)
, C =

1
δ0

αλM
(
δ−1 (s)

)n−2

(ϑ (s) r (δ−1 (s)))1/α
and w = ψ,

we have

1
δ0

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)
ψ (s)− 1

δ0
αλM

(
δ−1 (s)

)n−2 (ψ (s))α+1/α

(ϑ (ς) r (δ−1 (s)))1/α

<
1

(α + 1)α+1δ0

(
ϕ (ς) +

ϑ′ (s)
ϑ (s)

)α+1 ϑ (ς) r
(
δ−1 (τ (s))

)(
λM (δ−1 (s))n−2

)α . (23)

Hence, from (22) and (23), we have

B [ϑ (s) Q (s) ; l, ς] ≤ B[
(

ϕ (s) +
ϑ′ (s)
ϑ (s)

)α+1 ϑ (s) r
(
δ−1 (s)

)
(α + 1)α+1δ0

(
λM (δ−1 (s))n−2

)α

+

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)α+1 pα
0ϑ (s) r

(
δ−1 (τ (s))

)
(α + 1)α+1δ0τ0

(
λM (δ−1 (τ (s)))n−2

)α ; l, ς].

Easily, we find that
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B [ϑ (s) Q (s) ; l, ς] ≤ B[
ϑ (s)

δ0(α + 1)α+1 (λM)α

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)α+1

×

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς].

That is,

B

ϑ (s) Q (s)−Ω (ς)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς

 ≤ 0.

Taking the super limit in the inequality above, we obtain

lim sup
ς→∞

B

ϑ (s) Q (s)−Ω (s)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς

 ≤ 0, (24)

which is a contradiction. The proof is complete.

3. Tow Conditions Theorem

Lemma 6 ([22]). (Lemma 1.2) Assume that x is an eventually positive solution of (1). Then, there exists two
possible cases:

(I1) z (ς) > 0, z′ (ς) > 0, z′′ (ς) > 0, z(n−1) (ς) > 0, z(n) (ς) < 0,
(I2) z (ς) > 0, z(j)(ς) > 0, z(j+1)(ς) < 0 for all odd integer

j ∈ {1, 2, . . . , n− 3}, z(n−1)(ς) > 0, z(n)(ς) < 0,

for ς ≥ ς1, where ς1 ≥ ς0 is sufficiently large.

Lemma 7 ([22]). (Lemma 1.2) Assume that x is an eventually positive solution of (1) and

∫ ∞

ς0

(
Ψ (s)− 2α

(α + 1)α+1
r (s) (ρ′ (s))α+1

µαs2αρα (s)

)
ds = ∞, (25)

where
Ψ (ς) = ϑρ (ς) q (ς) (1− p (δ (ς)))α (δ (ς) \ς)3α ,

where ρ ∈ C1 ([ς0, ∞) , (0, ∞)), then it will be z does not satisfy case (I1) .

Lemma 8. Let (2) holds and assume that x is an eventually positive solution of (1). If there exists positive
functions ϑ ∈ C1 ([ς0, ∞) ,R) such that for all M > 0

lim sup
ς→∞

B

ϑ (s) Q (s)−Θ (s)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς

 > 0, (26)

for some µ ∈ (0, 1), then z not satisfies case (I2) .

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [ς0, ∞). Without loss
of generality, we let x be an eventually positive solution of (1). From Lemma 3, we obtain

z′ (ς) ≥ µ

(n− 2)!
ςn−2z(n−1) (ς) . (27)
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Now, we define a function ω by

ω (ς) = ϑ (ς)
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α

zα (ς)
. (28)

Then we see that ω (ς) > 0 for ς ≥ ς1, and

ω′ (ς) ≤ ϑ′ (ς)

ϑ (ς)
ω (ς) + ϑ (ς)

(
r
(
δ−1 (ς)

) (
z(n−1) (δ−1 (ς)

))α)′
zα (λς)

−α
µ

(n− 2)!

(
δ−1 (ς)

)n−2 (ω (ς))α+1/α

(ϑ (ς) r (δ−1 (ς)))
1/α

. (29)

Similarly, define

ω̃ (ς) = ϑ (ς)
r
(
δ−1 (τ (ς))

) (
z(n−1) (δ−1 (τ (ς))

))α

zα (ς)
. (30)

Then we see that ω̃ (ς) > 0 for ς ≥ ς1, and

ω̃′ (ς) ≤ ϑ′ (ς)

ϑ (ς)
ω̃ (ς) + ϑ (ς)

(
r
(
δ−1 (τ (ς))

) (
z(n−1) (δ−1 (τ (ς))

))α)′
zα (ς)

−α
µ

(n− 2)!

(
δ−1 (τ (ς))

)n−2 (ω̃ (ς))α+1/α

(ϑ (ς) r (δ−1 (τ (ς))))
1/α

.

Thus, we get

lim sup
ς→∞

B

ϑ (s) Q (s)−Θ (s)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς

 ≤ 0,

which is a contradiction. The proof is complete.

Theorem 2. Assume that (25) and (26) hold for some µ ∈ (0, 1). Then every solution of (1) is oscillatory.

Example 1. Consider the equation

(x (ς) + 2x (ς− 5π))′′ + q0x (ς− π) = 0. (31)

We note that r (ς) = 1, p (ς) = 2, τ (ς) = ς − 5π, δ (ς) = ς − π, δ−1 (s) = ς + π and
q (ς) = Q (ς) = q0. Thus, if we choose Φ (ς) = (ς− s) (s− l), then it is easy to see that

ϕ (ς, s, l) =
(ς− s)− (s− l)
(ς− s) (s− l)

and

Ω (s) =
ϑ (s)

δ0(α + 1)α+1 (λM)α

(
ϕ (s) +

ϑ′ (s)
ϑ (s)

)α+1

=
1

4λM

(
(ς− s)− (s− l)
(ς− s) (s− l)

)2
.
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Thus,

lim sup
ς→∞

B

ϑ (s) Q (s)−Ω (s)

 r
(
δ−1 (s)

)(
(δ−1 (s))n−2

)α +
pα

0r
(
δ−1 (τ (s))

)
τ0

(
(δ−1 (τ (s)))n−2

)α

 ; l, ς


= lim sup

ς→∞
B

[
q0 −

3
4λM

(
(ς− s)− (s− l)
(ς− s) (s− l)

)2
; l, ς

]
> 0.

Therefore, by Theorem 1, every solution of Equation (31) is oscillatory.

Example 2. Consider the equation

(x (ς) + p0x (ς− 5π))(4) + q0x (ς− π) , (32)

where q0 > 0. Let r (ς) = 1, p (ς) = p0, τ (ς) = ς − 5π, δ (ς) = ς − π, δ−1 (s) = ς + π and
q (ς) = Q (ς) = q0, then we have ∫ ∞

ς0

r−1/α (s)ds = ∞.

Next, if we choose ϕ (ς) = (ς− s) (s− l), then we conclude that the conditions (25) and (26) are satisfied.
Thus, using Theorem 2, Equation (32) is oscillatory.

4. Conclusions

In this work, by using the generalized Riccati transformations technique, we provided new
oscillation criteria for (1). Furthermore, in future work, by using the comparison method, we find
some new Hille and Nehari types and Philos type oscillation criteria of (1).
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